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Abstract
In this paper, we consider the stochastic heat equation of the form

∂u

∂ t
=�αu +

∂2B

∂ t ∂x
,

where ∂2B
∂t ∂x is a fractional Brownian sheet with Hurst indices H1,H2 ∈ ( 12 , 1) and

�α = –(–�)α/2 is a fractional Laplacian operator with 1 < α ≤ 2. In particular, when
H2 = 1

2 we show that the temporal process {u(t, ·), 0≤ t ≤ T} admits a nontrivial
p-variation with p = 2α

2αH1–1
and study its local nondeterminism and existence of the

local time.
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1 Introduction
The stochastic calculus of Gaussian processes is not only an important research direction
in stochastic analysis, but also an important instrument. Many important Gaussian pro-
cesses such as fractional Brownian motion, sub-fractional Brownian motion, bi-fractional
Brownian motion and weighted-fractional Brownian motion have be studied. Some sur-
veys and a complete list of literature for fBm could be found in Alós et al. [], Nualart []
and the references therein. On the other hand, stochastic heat equations driven by Gaus-
sian noises are a recent research direction in probability theory and stochastic analysis,
and many interesting studies have been given. We mention the works of Bo et al. [], Chen
et al. [], Duncan et al. [], Hajipour and Malek [], M Hu et al. [], Y Hu [–], Jiang
et al. [], Liu and Yan [], Nualart and Ouknine [], Tindel et al. [], Walsh [], Yang
and Baleanu [] and the references therein. Moreover, the solutions of linear stochastic
heat equations with additive Gaussian noises are some Gaussian fields. Such a stochastic
heat equation on R can be written as

⎧
⎨

⎩

∂
∂t u(t, x) = Lu + ∂

∂t ∂x B(t, x), t ∈ [, T], x ∈R,

u(, x) = , x ∈R,
(.)
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where L is a quasi-differential operator and B is a two-parameter Gaussian field. There-
fore, it seems interesting to study the properties and calculus for the solutions of equation
(.) as some special Gaussian process.

When L = � and B is a white noise, the solution of (.) satisfies

Eu(t, x)u(s, x) =
√
π

(√
s + t –

√|t – s|)

for all s, t ∈ [, T] and x ∈ R. In this case, the temporal process {u(t, ·), t ∈ [, T]} is a bi-
fractional Brownian motion, and it admits a nontrivial quartic variation. More works can
be found in Mueller and Tribe [], Pospisil and Tribe [], Sun and Yan [], Swanson
[] and the references therein. When L = � and B is a fractional noise with Hurst index

 < H < , the solution of (.) satisfies

Eu(t, x)u(s, x) =
H(H – )


√

π

∫ t



∫ s


|u – v|H–(s + t – u – v)– 

 du dv

for all s, t ∈ [, T] and x ∈R, which shows that the temporal process {u(t, ·), t ∈ [, T]} is a
self-similar Gaussian process with the index H – 

 . Moreover, Ouahhabi and Tudor []
studied the local nondeterminism and joint continuity of its local times of the solution
to (.). When L = � and B is a fractional noise in time with correlated spatial structure,
Tudor and Xiao [] studied various path properties of the solution process u with respect
to the time and space variable. When L = –(–�) α

 and B is a white noise, Cui et al. []
and Wu [] studied some properties and stochastic calculus of the solution of (.).

Motivated by the above results, in this paper we consider also equation (.) when
L = –(–�) α

 and W is a fractional Brownian sheet with Hurst indices H, H ∈ ( 
 , ). Our

main objectives are to introduce the local nondeterminism, existence of the local time
and p-variation of the solution. In Section , we give some basic notations on the frac-
tional Laplacian operator �α = –(–�) α

 and the fractional Brownian sheet. In Section 
we consider the time regularity of solution u(t, x) to (.) with L = –(–�) α

 and a frac-
tional Brownian sheet B. In particular, when H = 

 we show that the temporal process
{u(t, ·), t ∈ [, T]} of the solution satisfies

C|t – s|H– 
α ≤ E

∣
∣u(s, x) – u(t, x)

∣
∣ ≤ C|t – s|H– 

α

for any t, s ∈ [, T], x ∈R. As a corollary, we see that the temporal process {u(t, ·), t ∈ [, T]}
is nontrivial p-variation with p = α

αH– . The existence of the local nondeterminism and
the local times of the solution will be discussed in Section , respectively.

2 Preliminaries
In this section, we briefly recall some basic results for the Green function of the operator
�α = –(–�)α/ and fractional Brownian sheet. We refer to Chen and Kumagai [], Russo
and Tudor [] and the references therein for more details. Throughout this paper, for
simplicity we let C stand for a positive constant and its value may be different in different
appearances; and sometimes we also stress that it depends on some constants. For x, y, z ∈
R, we denote x+ = max(x, ) and

J +(x, y, z) = (x – y)z– 


+ , J (x, y, z) = (x – y)z– 
 , K(x, y, z) = |x – y|z–.
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2.1 Fractional Laplacian operator �α = –(–�)α/2

Consider a symmetric α-stable motion X = {Xt , t ≥ } with α ∈ (, ) on R, and let its
transition density function be Gα(x, t). Then we have

∫

R

Gα(x, t)eizx dx = e–t|z|α

for all t ≥  and z ∈R, and Gα(x, t) is the fundamental solution of equation

∂u
∂t

= �αu.

Certainly, the kernel Gα is also called the heat kernel of the operator �α . Denote

Gα(s, x; t, y) = Gα(y – x, t – s)

for all x, y ∈ R and s, t ≥ . It follows that

C–


(

(t – s)– d
α ∧ aα(t – s)

|x – y|d+α

)

≤ Gα(s, y; t, x) ≤ C

(

(t – s)– d
α ∧ aα(t – s)

|x – y|d+α

)

, (.)
∣
∣
∣
∣
∂Gα(s, y; t, x)

∂t

∣
∣
∣
∣ ≤ C

t – s
Gα(s, y; t, x) (.)

for all x, y ∈ R, t > s ≥  and some constant C, C > , where x ∧ y = min{x, y} for x, y ∈R.

2.2 Fractional Brownian sheet
Recall that a two-parameter fractional Brownian sheet B = {B(t, x), t ∈ [, T], x ∈ R} is a
mean zero Gaussian random field with the covariance function

�H (s, t)�H (x, y) = E
(
B(t, x)B(s, y)

)

=


(
sH + tH – |s – t|H

) × 

(|x|H + |y|H – |x – y|H

)

with H, H ∈ (, ). Let H be the completion of the linear space E generated by the indi-
cator functions (s,t]×(x,y] on [, T] ×R with respect to the scalar product

〈[,t]×[,x]〉H = �H (s, t)�H (x, y),

where [,t]×[,x] = [,t]×[x,] if x ≤ . Define a linear mapping � on E by

ϕ = [,t]×[,x] 
−→ B(t, x) =
∫ T



∫

R

ϕ(s, y)B(ds, dy).

Then the mapping is an isometry between E and the Gaussian space associated with B.
Moreover, the mapping can be extended to H, and it is called the Wiener integral with
respect to B which is denoted by

B(ϕ) :=
∫ T



∫

R

ϕ(s, y)B(ds, dy), ϕ ∈H.
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Proposition . If ρ ∈H, then

∫

[,]

∫

R

ρ(s, y)B(ds, dy)

=
∫

R
W (ds, dy)

∫

R

ρ(t, y)J +(t, s, H)(,)(t) dt, (.)

where s ∈R, y ∈R and W (s, y) is a space-time white noise.

Representation (.) can be obtained by using the moving average expression of the frac-
tional Brownian motion. Notice that a similar transfer formula can be written using the
representation of the fractional Brownian motion as Wiener integral on a finite interval
(see, e.g., Nualart []). Denote

	H (t, s; x, y) = HH(H – )(H – )K(t, s, H)K(x, y, H)

for any  ≤ s < t ≤ T and x, y ∈ R. Thus, from Bo et al. [], Jiang et al. [] and Wei []
one can give the following statements:

• For H > 
 , we have

L

H
(
[, T] ×R

) ⊂H.

• For ϕ,ψ ∈H, we have E[B(ϕ)] =  and

E
[
B(ϕ)B(ψ)

]
=

∫

[,T]
dv du

∫

R
ϕ(u, x)ψ(v, y)	H(u, v; x, y) dy dx.

• If H > 
 and f , g ∈ L


H ([a, b]), then

∫ b

a

∫ b

a
f (u)g(v)K(u, v, H) du dv ≤ CH‖f ‖

L

H ([a,b])

‖g‖
L


H ([a,b])

.

3 Some basic estimates of the solution
Given a filtered probability space (�,F , (Ft)t≥, P), where Ft is the σ -algebra generated
by B up to time t. In this section, we introduce some basic estimates of the solution of the
equation

∂u
∂t

(t, x) = �αu +
∂B
∂t ∂x

(t, x), t ∈ [, T], x ∈R (.)

with initial value u(, x) = , where B is a two-parameter fractional Brownian sheet with
Hurst index H, H ∈ ( 

 , ). Clearly, the unique solution to (.) can be written as (see
Walsh [])

u(t, x) =
∫ t



∫

R

Gα(s, y; t, x)B(ds, dy) (.)

for all t ∈ [, T] and x ∈R.
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Proposition . The unique solution (.) satisfies

sup
t∈[,T],x∈R

E
∣
∣u(t, x)

∣
∣p < ∞

for all T > , α ∈ (, ), H, H ∈ ( 
 , ) and p ≥ .

Proof Clearly, we have

∫

R

(

(t – s)– 
α ∧ t – s

|x – y|+α

) 
H

dy

= 
∫ (t–s)


α


(t – s)– 

αH dy + 
∫ ∞

(t–s)

α

(
t – s
u+α

) 
H

du

= C(t – s)
H–
αH

for all t > s >  and x ∈R. It follows that

∥
∥Gα(s, ·; t, x)

∥
∥

L


H (R)
=

(∫

R

Gα(s, y; t, x)


H dy
)H

≤ C
(∫

R

(

(t – s)– 
α ∧ (t – s)

|x – y|+α

) 
H

dy
)H

≤ C(t – s)
H–

α

for all t > s >  and x ∈R, which implies that

E
∣
∣u(t, x)

∣
∣p

= E
∣
∣
∣
∣

∫ t



∫

R

Gα(s, z; t, x)B(ds, dz)
∣
∣
∣
∣

p

≤ C
(∫

[,t]
ds ds

∫

R
Gα(s, z; t, x)	H(s, s; z, z)Gα(s, z; t, x) dz dz

) p


= C
(∫

[,t]
K(s, s, H) ds ds

∫

R
K(z, z, H)Gα(s, z; t, x)Gα(s, z; t, x) dz dz

) p


≤ C
(∫

[,t]
K(s, s, H)

∥
∥Gα(s, ·; t, x)

∥
∥

L


H (R)

∥
∥Gα(s, ·; t, x)

∥
∥

L


H (R)
ds ds

) p


≤ C
(∫ t



(∥
∥Gα(s, ·; t, x)

∥
∥

L


H (R)

) 
H ds

)pH

≤ Ct
(αH+H–)p

α

for all t > s >  and x ∈R. Thus, we have showed that

sup
t∈[,T],x∈R

E
∣
∣u(t, x)

∣
∣p < ∞,

and the proposition follows. �



Xia and Yan Advances in Difference Equations  (2017) 2017:107 Page 6 of 16

Now, we give the time regularity of solution (.) and sharp upper and lower bounds for
the L-norm of increments.

Theorem . Let u(t, x) be the solution of (.). We then have that

E
∣
∣u(s, x) – u(t, x)

∣
∣ ≤ C|t – s|ϑ (.)

for any t, s ∈ [, T], x ∈R and ϑ ∈ (, αH+H–
α

). In particular, when H = 
 , we have

C|t – s|H– 
α ≤ E

∣
∣u(s, x) – u(t, x)

∣
∣ ≤ C|t – s|H– 

α

for any t, s ∈ [, T], x ∈R.

In order to prove the theorem, we need the following lemma.

Lemma . There exists a constant C >  such that

∫

R

(∣
∣
∣
∣
∂Gα

∂t
(r, z; t, x)

∣
∣
∣
∣

ϑ ∣
∣Gα(r, z; t, x)

∣
∣–ϑ

) 
H

dz ≤ C(t – r)
H–αϑ–

αH (.)

for all  < r < t ≤ T , x ∈R and ϑ ∈ (, ). Moreover, when ϑ < αH+H–
α

, we have

∫ t



(∫

R

(∣
∣
∣
∣
∂Gα

∂t
(r, z; t, x)

∣
∣
∣
∣

ϑ ∣
∣Gα(r, z; t, x)

∣
∣–ϑ

) 
H

dz
) H

H
dr ≤ C (.)

for all t ∈ [, T] and x ∈R.

Proof Denote Dz = {|x – z| < (t – r) 
α }. We have

∫

R

(∣
∣
∣
∣
∂Gα

∂t
(r, z; t, x)

∣
∣
∣
∣

ϑ ∣
∣Gα(r, z; t, x)

∣
∣–ϑ

) 
H

dz

≤
∫

Dz

(∣
∣
∣
∣
(t – r)– 

α

t – r

∣
∣
∣
∣

ϑ
H · ∣∣(t – r)– 

α

∣
∣

–ϑ
H

)

dz

+
∫

Dz

(∣
∣
∣
∣

t–r
|x–z|+α

t – r

∣
∣
∣
∣

ϑ
H ·

∣
∣
∣
∣

t – r
|x – z|+α

∣
∣
∣
∣

–ϑ
H

)

dz

≤ C(t – r)
H–αϑ–

αH

for all t > r >  and x ∈ R, and (.) and (.) follow. �

Lemma . When 
 < H < , we have

∫

[,]
dv dr( – r)– 

α K(r, v, H)
∫ r∧v

v∨r


zH– 

 ( – z)–H dz < ∞.

Proof By some elementary calculations and the properties of beta functions, the conse-
quence is obvious. �
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Proof of Theorem . We shall divide the proof into two steps.
Step . We first consider the upper bound. Denote

∣
∣A(t, s, x)

∣
∣ =

∣
∣
∣
∣

∫ s



∫

R

(
Gα(r, z; t, x) – Gα(r, z; s, x)

)
B(dz, dr)

∣
∣
∣
∣,

∣
∣A(t, s, x)

∣
∣ =

∣
∣
∣
∣

∫ t

s

∫

R

Gα(r, z; t, x)B(dz, dr)
∣
∣
∣
∣

for each x ∈R and  ≤ s < t ≤ T . Then we have

∣
∣u(t, x) – u(s, x)

∣
∣ ≤ ∣

∣A(t, s, x)
∣
∣ +

∣
∣A(t, s, x)

∣
∣

for each x ∈R and  ≤ s < t ≤ T . Moreover, for every ϑ ∈ (, ), we let

∣
∣A,(t, s, x)

∣
∣ =

∥
∥
∣
∣Gα(·, ·; t, x) – Gα(·, ·; s, x)

∣
∣ϑ · ∣∣Gα(·, ·; t, x)

∣
∣–ϑ∥

∥
H,

∣
∣A,(t, s, x)

∣
∣ =

∥
∥
∣
∣Gα(·, ·; t, x) – Gα(·, ·; s, x)

∣
∣ϑ · ∣∣Gα(·, ·; s, x)

∣
∣–ϑ∥

∥
H

for each x ∈R and  ≤ s < t ≤ T . Then we have

E
∣
∣A(t, s, x)

∣
∣ ≤ C

∥
∥Gα(·, ·; t, x) – Gα(·, ·; s, x)

∥
∥
H

≤ C
∥
∥
∣
∣Gα(·, ·; t, x) – Gα(·, ·; s, x)

∣
∣ϑ · ∣∣Gα(·, ·; t, x) – Gα(·, ·; s, x)

∣
∣–ϑ∥

∥
H

≤ C
(∣
∣A,(t, s, x)

∣
∣ +

∣
∣A,(t, s, x)

∣
∣
)

for all x ∈R and  ≤ s < t ≤ T . Using (.), Proposition ., Lemma . and the mean-value
theorem, for η ∈ (s, t), one can get

∣
∣A,(t, s, x)

∣
∣

=
∥
∥
∥
∥

∣
∣
∣
∣
∂Gα

∂t
(·, ·;η, x)

∣
∣
∣
∣

ϑ

|t – s|ϑ · ∣∣Gα(·, ·; t, x)
∣
∣–ϑ

∥
∥
∥
∥



H

= |t – s|ϑ

∫

[,t]
dr dr

∫

R

∣
∣
∣
∣
∂Gα

∂t
(r, z;η, x)

∣
∣
∣
∣

ϑ ∣
∣Gα(r, z; t, x)

∣
∣–ϑ

× 	H (r, r; z, z)
∣
∣
∣
∣
∂Gα

∂t
(r, z;η, x)

∣
∣
∣
∣

ϑ ∣
∣Gα(r, z; t, x)

∣
∣–ϑ dz dz

≤ C|t – s|ϑ

(∫ T



(∫

R

(∣
∣
∣
∣
∂Gα

∂t
(r, z; t, x)

∣
∣
∣
∣

ϑ ∣
∣Gα(r, z; t, x)

∣
∣–ϑ

) 
H

dz
) H

H
dr

)H

≤ C|t – s|ϑ

for all x ∈R and  ≤ s < t ≤ T , which gives

∣
∣A,(t, s, x)

∣
∣ ≤ C|t – s|ϑ

for all x ∈R and  ≤ s < t ≤ T . Similarly, one can prove that

∣
∣A,(t, s, x)

∣
∣ ≤ C|t – s|ϑ
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for all x ∈R and  ≤ s < t ≤ T . It follows that

E
∣
∣A(t, s, x)

∣
∣p ≤ C|t – s|ϑ (.)

when ϑ ∈ (, αH+H–
α

).
On the other hand, we have that

E
∣
∣A(t, s, x)

∣
∣

= E
∣
∣
∣
∣

∫ t

s

∫

R

Gα(r, z; t, x)B(dr, dz)
∣
∣
∣
∣



≤ C
∫

[s,t]
dr dr

∫

R
Gα(r, z; t, x)	H (r, r; z, z)Gα(r, z; t, x) dz dz

= C
∫

[s,t]
K(r, r, H) dr dr

∫

R
K(z, z, H)

× Gα(r, z; t, x)Gα(r, z; t, x) dz dz

≤ C
∫

[s,t]
K(r, r, H)

∥
∥Gα(r, ·; t, x)

∥
∥

L


H (R)

∥
∥Gα(r, ·; t, x)

∥
∥

L


H (R)
dr dr

≤ C
(∫ t

s

(∥
∥Gα(r, ·; t, x)

∥
∥

L


H (R)

) 
H dr

)H

≤ C|t – s|ϑ (.)

for all x ∈R and  ≤ s < t ≤ T . Combining (.) and (.), we get

E
∣
∣u(t, x) – u(s, x)

∣
∣ ≤ C|t – s|ϑ

for all x ∈R and  ≤ s < t ≤ T .
Step . We consider the lower bound. We have that

u(t, x) – u(s, y) =
∫ 



∫

R

Gα(ω, y; t, x)(,)(ω)B(dω, dy)

–
∫ 



∫

R

Gα(ω, y; s, x)(,s)(ω)B(dω, dy)

for s, t ∈ [, T] and x, y ∈ R. Let B be fractional in time and white in space, that is, H ∈
( 

 , ), H = 
 . By the transfer rule (.) we have

u(t, x) – u(s, y)

=
∫

R
W (dω, dy)

∫

R

dvJ +(v,ω, H)Gα(v, y; t, x)(,t)(v)

–
∫

R
W (dω, dy)

∫

R

dvJ +(v,ω, H)Gα(v, y; s, x)(,s)(v)

for s, t ∈ [, T] and x, y ∈ R. Denote

Or,(v) =
∫

R

dyGα(v, y; t, x)Gα(r, y; t, x),
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Or,(v) =
∫ v∧r

s
J (v,ω, H)J (r,ω, H) dω

for v, s, t ∈ [, T] and w, x, y ∈ R. By the isometry of the Brownian motion W and
Gα(v, y; s, x) = , when v > s, it follows that

E
∣
∣u(t, x) – u(s, x)

∣
∣

=
∫

R
dω dy

(∫

R

J +(v,ω, H)
(
Gα(v, y; t, x)(,t)(v) – Gα(v, y; s, x)(,s)(v)

)
dv

)

≥
∫ t

s

∫

R

dω dy
(∫

R

J +(v,ω, H)
(
Gα(v, y; t, x)(,t)(v) – Gα(v, y; s, x)(,s)(v)

)
dv

)

=
∫ t

s

∫

R

dω dy
(∫ t

ω

J +(v,ω, H)Gα(v, y; t, x) dv
)

≥
∫ t

s

∫

R

dω dy
∫

[ω,t]
dr dvGα(v, y; t, x)J (v,ω, H)Gα(r, y; t, x)J (r, a, H)

=
∫

[s,t]

(∫ v∧r

s
J (v,ω, H)J (r,ω, H) dω

)

dv dr
∫

R

dyGα(v, y; t, x)Gα(r, y; t, x)

≥
∫

[s,t]
Or,(v)Or,(v) dv dr

for s, t ∈ [, T] and x, y ∈ R. Denote

D =
{|y – x| < (t – v)


α
}

, D =
{|y – x| ≥ (t – r)


α
}

for every x, y ∈R, t > r >  and t > v > . Some elementary calculations can show that

Or,(v) ≥ C
∫

R

(
t – v

|y – x|+α
∧ (t – v)– 

α

)(
t – r

|y – x|+α
∧ (t – r)– 

α

)

dy

= C
∫

D

(t – v)– 
α (t – r)– 

α dy + C
∫

D̄D̄

t – v
|y – x|+α

(t – r)– 
α dy

+ C
∫

D

t – v
|y – x|+α

t – r
|y – x|+α

dy

≥ C(t – r)– 
α (.)

for  < r < v. Similarly, when r > v, we have

Or,(v) ≥ C
∫

R

(
t – v

|y – x|+α
∧ (t – v)– 

α

)(
t – r

|y – x|+α
∧ (t – r)– 

α

)

dy

= C
∫

D

(t – v)– 
α (t – r)– 

α dy + C
∫

D̄D̄

(t – v)– 
α

t – r
|y – x|+α

dy

+ C
∫

D

t – v
|y – x|+α

t – r
|y – x|+α

dy

≥ C(t – v)– 
α . (.)
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Moreover, when  < r < v, setting z = (r – ω)/(v – ω), we have

Or,(v) = (v – r)H–
∫ r–s

v–s


zH– 

 ( – z)–H dz, (.)

and when r > v, let z = (v – ω)/(r – ω), we have

Or,(v) = (r – v)H–
∫ v–s

r–s


zH– 

 ( – z)–H dz. (.)

Let

ϒ(s, r, v) =
r – s
v – s

1{r<v} +
v – s
r – s

1{r>v},

ϒ(r, v) =
r
v
1{r<v} +

v
r
1{r>v}

for all t > r >  and t > v > . It follows from the substitutions (r, v) → (r + s, v + s) and
(r, v) → ((t – s)r, (t – s)v) that

E
∣
∣u(t, x) – u(s, x)

∣
∣ ≥

∫

[s,t]
dv dr(t – r)– 

α K(r, v, H)1{r<v}	
(
ϒ(s, r, v)

)

+
∫

[s,t]
dv dr(t – v)– 

α K(r, v, H)1{r>v}	
(
ϒ(s, r, v)

)

=
∫

[,t–s]
dv dr(t – s – r)– 

α K(r, v, H)1{r<v}	
(
ϒ(r, v)

)

+
∫

[,t–s]
dv dr(t – s – v)– 

α K(r, v, H)1{r>v}	
(
ϒ(r, v)

)

= (t – s)H– 
α

∫

[,]
dv dr( – r)– 

α K(r, v, H)1{r<v}	
(
ϒ(r, v)

)

+ (t – s)H– 
α

∫

[,]
dv dr( – v)– 

α K(r, v, H)1{r>v}	
(
ϒ(r, v)

)

≥ C(t – s)H– 
α

for all t > s >  and x ∈R, where

	(x) =
∫ x


zH– 

 ( – z)–H dz, x ∈ [, ].

This completes the proof. �

At the end of this section, we give the p-variations of solution (.). For a continuous
process U = {Ut ;  ≤ t < T}, we define

Vp,n(U ; T) :=
n∑

k=

|Utk – Utk– |p,

where τn = { = t < t < · · · < tn = T} is an arbitrary partition of [, T] such that maxk |tk –
tk–| tends to zero as n → ∞. The process U is said to be of bounded p-variation with
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p ≥  on the interval [, T] if

Vp(U ; T) := lim
n→∞Vp,n(U ; T)

exists in L as n → ∞.

Theorem . Let u(t, x) be the solution of (.) with H ∈ ( 
 , ) and H = 

 . Denote Wx =
u(t, x), t ∈ [, T] for x ∈ R. Then there exists a constant β >  depending only on H, T and
α such that

Vp(Wx; T) = β

if p = α
αH– .

When α =  and H = H = 
 , we know that the temporal process Wx = u(t, x), t ∈ [, T]

for x ∈ R admits a nontrivial quartic variation (see, for example, Swanson []). Thus, the
above theorem is a natural extension.

Proof of Theorem . Let τn = { = t < t < · · · < tn = T} be an arbitrary partition of [, T]
such that maxk{tk – tk–} tends to zero as n → ∞. By Theorem . we have that

E
(
Vp(Wx; T)

)
= E

( n∑

k=

|Wtk ,x – Wtk–,x|p
)

=
n∑

k=

E|Wtk ,x – Wtk–,x|p

= Cp

n∑

k=

(
E|Wtk ,x – Wtk–,x|

) p


� Cp

n∑

k=

|tk – tk–|
p(αH–)

α

� CT ,

which shows that the p-variation of the temporal process Wx is nontrivial if p = α
αH– for

all x ∈R, where the notation f � h denotes

cf (x) ≤ h(x) ≤ Cf (x)

in the common domain of definition for f and h. This completes the proof. �

4 Existence and regularity of the local times of the solution
We devote this section to discussion on the existence and regularity of the local time of
the temporal process Wx = {u(t, x), t ∈ [, T]} of solution (.). For convenience we take
x =  and T = . Denote u(t, ) = u(t), t ∈ [, ].

Let X = {X(t), t ∈ I} be a real-valued separable stochastic process. For every pair of linear
Borel sets B ⊂R+ and K ⊂ [, ], the occupation measure of X on B is defined as follows:

νK (B) = L
{

s ∈ K : X(s) ∈ B
}

, B ∈ B(R),
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where L denotes the one-dimensional Lebesgue measure. If, for fixed K ,νK is absolutely
continuous as a measure of B, we say that X(t) has local time on K . The local time is
defined as the Radon-Nykodim derivative of νK

�(K , x) =
d

dLνK (x), x ∈ R.

We will use the notation

�(t, x) := �
(
[, t], x

)
, t ∈ R+, x ∈R.

Moreover, �(t, x) satisfies the following occupation density formula:

∫

K
f
(
X(t)

)
dt =

∫

R
f (x)�(K , x) dx

for every Borel set K in I and for every measurable function f : R → R, see Geman and
Horowitz [].

We prove the existence of the local time of u. The result is a consequence of the left-hand
side of inequality (.) and a result in Berman []. We first need to show that the temporal
process {u(t, x), t ∈ [, ]} is local nondeterminism. The concept of local nondeterminism
was first introduced by Berman [] to unify and extend his methods for studying the
existence and joint continuity of local times of real-valued Gaussian processes. We refer
to Cuzick and DuPreez [], Xiao [] and the references therein for more details and
some extensions.

Definition . Let I be a closed interval on R+ and Y = {Y (t), t ∈ I} be a stochastic pro-
cess. For fixed κ ∈ (, ) and all s, t ∈ R+, we define the metric

νκ (s, t) = |t – s|κ . (.)

Then Y is said to be local νκ -nondeterministic on I if there exists a constant C >  such
that for any integer n ≥  and for all points t, . . . , tn ∈ I ,

Var
(
Y (tn)|Y (t), . . . , Y (tn–)

) ≥ C|tn – tn–|κ . (.)

The concept of local nondeterminism was extended by Cuzick [] who defined local
ντ -nondeterminism. As an immediate consequence of Definition ., Y (t) has strong local
ντ -nondeterminism on I if and only if there exist C, r >  such that

Var
(
Y (t)|Y (s), s ∈ T , r ≤ |t – s| ≤ r

) ≥ Cνκ (r) (.)

for all t ∈ I and  < r ≤ min(t, r).

Proposition . Let {u(t, x), t ∈ [, ], x ∈ R} be the solution of (.), and let νκ be given
by (.) with κ = H – 

α
. Then the temporal process Wx = {u(t, x), t ∈ [, T]} is strong local

νκ -nondeterministic for every fixed x ∈R.
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Proof Let  < t < t < · · · < tn– < tn <  be arbitrary points in (, ) and κ, . . . ,κn– ∈ R.
The local nondeterministic property will follow if we prove that

E

(

u(tn, x) –
n–∑

i=

κiu(ti, x)

)

≥ C|tn – tn–|H– 
α .

Using the transfer formula (.), we have

u(tn, x) –
n–∑

i=

κiu(ti, y)

=
∫ 



∫

R

Gα(s, y; tn, x)(,tn)(s)B(ds, dy)

–
∫ 



∫

R

n–∑

i=

κiGα(s, y; ti, x)(,ti)(s)B(ds, dy)

=
∫ 



∫

R

W (ds, dy)
∫

R

J +(v, s, H)Gα(v, y; tn, x)(,tn)(v) dv

–
∫ 



∫

R

W (ds, dy)
∫

R

J +(v, s, H)
n–∑

i=

κiGα(v, y; ti, x)(,ti)(v) dv,

where B is a two-dimensional Brownian sheet. By the isometry of the stochastic integral
with respect to B, bounding below the integral over the interval (tn–, tn) and (.), it fol-
lows that

E

(

u(tn, x) –
n–∑

i=

κiu(ti, y)

)

≥
∫ tn

tn–

ds
∫

R

dy
(∫ tn

s
dvGα(v, y; tn, x)J +(v, s, H)

)

≥ C(tn – tn–)H– 
α .

This completes the proof. �

Theorem . The process {u(t), t ∈ [, ]} has a local time �([a, b], x), x ∈ R. Moreover, on
each time interval K = [a, b] ⊂ [,∞),

E
∫

R

�(K , x) dx < ∞, a.s.

Moreover, the local time admits the following L-integral representation:

�(K , x) =


π

∫

R

e–izx
∫

K
eizu(s) ds dz. (.)

Proof By Berman [] (see also Lemma . in Xiao []), for any continuous and zero-
mean Gaussian process X = (X(t), t ∈ [, T]) with bounded variance function, the condi-
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tion

∫

[,T]

ds dt
√

E[X(t) – X(s)]
< ∞

is sufficient for the local time of X to exist and to be square integrable. According to The-
orem ., for all K = [a, b] interval of [, ], we have

∫

K

ds dt
√

E(u(t) – u(s))
< C

∫

K

ds dt
√

(t – s)H– 
α

< ∞. (.)

Formula (.) is a consequence of Lemma . in Xiao []. �

At the end, let us prove now the joint continuity of the local time of u.

Theorem . For any integer k ≥ , there exists a finite constant Ck >  such that, for all
t ∈ [, ], δ ∈ (, ), x, x′ ∈ R, and

 < ζ <
 – H + 

α

H – 
α

, (.)

it holds

E
[
�(t + δ, x) – �(t, x) – �

(
t + δ, x′) + �

(
t, x′)]k ≤ Ck

∣
∣x – x′∣∣ζk

δk(–(H– 
α )(–ζ )). (.)

Proof From (.), for any x, x′ ∈R,A(t) := t < t < · · · < tk < t + δ ∈ [, ], let vj = zj – zj+, j =
, . . . , k –  and vk = zk , let εj = , , or , and

∑k
j= εj = k, we have

E
[
�(t + δ, x) – �(t, x) – �

(
t + δ, x′) + �

(
t, x′)]k

=


(π )k

∫

[t,t+δ]k

k∏

j=

dsj

∫

Rk

k∏

j=

(
e–ivjx – e–ivjx′)

E
(
ei

∑k
j= vju(sj))

k∏

j=

dvj

≤ Ck
∣
∣x – x′∣∣kζ

∫

[t,t+δ]k

k∏

j=

dsj

∫

Rk

k∏

j=

|vj|ζ E
(
ei

∑k
j= vju(sj))

k∏

j=

dvj

≤ Ck
∣
∣x – x′∣∣kζ

∫

A(t)

k∏

j=

dtj

∫

Rk

k∏

j=

|zj|ζεj

× exp

(

–
Ck



k∑

j=

z
j E

(
u(tj) – u(tj–)

)
) k∏

j=

dzj

≤ Ck
∣
∣x – x′∣∣kζ

∫

A(t)

k∏

j=

E
(
u(tj) – u(tj–)

)––ζεj
k∏

j=

dtj,

where we use the elementary inequalities | – eiη| ≤ –ζ |η|ζ and |a – b|ζ ≤ |a|ζ + |b|ζ for
all  < ζ <  and any η, a, b ∈R.
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According to Theorem ., we get

E
(
u(tj) – u(tj–)

) ≥ C|tj – tj–|H– 
α ,

it follows that

∫

A(t)

k∏

j=

E
(
u(tj) – u(tj–)

)––ζεj
k∏

j=

dtj

≤
∫

A(t)

k∏

j=

(tj – tj–)– 
 (H– 

α )(+ζεj)
k∏

j=

dtj

≤ ckδ
k–

∏k
j=


 (H– 

α )(+ζεj)

≤ ckhk–k(H– 
α )(+ζ )

= ckhk(–(H– 
α ))(+ζ )

for k ≥ , δ >  and  < ζ < –H+ 
α

H– 
α

, then

E
[
�(t + δ, x) – �(t, x) – �

(
t + δ, x′) + �

(
t, x′)]k ≤ Ck

∣
∣x – x′∣∣ζk

δk(–(H– 
α )(+ζ )).

This completes the proof. �
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