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Abstract
This paper studies a new class of boundary value problems of sequential fractional
differential equations of order q ∈ (2, 3] supplemented with nonlocal non-separated
boundary conditions involving lower-order fractional derivatives. Existence and
uniqueness results for the given problem are obtained by applying standard
fixed-point theorems and are illustrated with the aid of examples. Some interesting
observations are presented.

1 Introduction
Fractional calculus has been extensively studied and developed during the last few
decades. It has been mainly due to an overwhelming interest shown by the modelers and
researchers in the subject. One can find the applications of fractional-order derivatives
and integrals in diverse disciplines such as applied mathematics, physics, control theory,
mechanical structures, thermodynamics, etc. [–]. In contrast to the classical Laplacian,
which is a local operator, the fractional Laplacian is a paradigm of the vast family of non-
local linear operators and has immediate consequences in the formulation of basic equa-
tions like the diffusion equation. In particular, there has been a significant progress on
fractional-order initial/boundary value problems, and the literature on the topic is now
much enriched, covering theoretical development as well as applications of this impor-
tant topic. The advancement in the study of fractional-order boundary value problems
includes different kinds of boundary conditions such as two-point, multi-point, nonlo-
cal, periodic/anti-periodic, and integral conditions. For details and examples, we refer the
reader to a series of papers [–]. For some works on sequential fractional differential
equations, for example, see [, ] and the references cited therein. In a recent work [],
the authors obtained some existence results for sequential fractional differential equations
with anti-periodic type boundary conditions.

In this paper, we plan to develop the existence theory for nonlinear sequential fractional
differential equations equipped with nonlocal non-separated fractional boundary condi-
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tions. Precisely, we consider the following problem:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(cDq + kcDq–)u(t) = f (t, u(t)),  < q ≤ ,  < t < T ,

αu(η) + βu(T) = a,

α
cDq–u(η) + β

cDq–u(T) = b,

α
cDq–u(η) + β

cDq–u(T) = c,

(.)

where cDq denotes the Caputo fractional derivative of order q,α,α,α,β,β,β, a, b, c ∈
R, k ∈R

+,  < η < T , and f is a given continuous function.
To the best of our knowledge, problem (.) considered in this paper is new and covers

a variety of special cases for appropriate values of the parameters involved in the bound-
ary conditions (see the ‘Concluding remarks’ section). The rest of the paper is organized as
follows. In Section , we recall some preliminary concepts of fractional calculus and prove
an auxiliary lemma associated with the linear variant of the given problem. Section  con-
tains our main results which are supported with illustrative examples. Some interesting
observations are presented in the last section.

2 Preliminary work
First of all, we recall some basic definitions [, ].

Definition . The fractional integral of order r with the lower limit zero for a function
f : [,∞) → R is defined as

Irf (t) =


�(r)

∫ t



f (s)
(t – s)–r ds, t > , r > ,

provided the right-hand side is point-wise defined on [,∞), where �(·) is the gamma
function, which is defined by �(r) =

∫ ∞
 tr–e–t dt.

Definition . The Riemann-Liouville fractional derivative of order r > , n –  < r < n,
n ∈ N , is defined as

Dr
+f (t) =


�(n – r)

(
d
dt

)n ∫ t


(t – s)n–r–f (s) ds,

where the function f : [,∞) → R has an absolutely continuous derivative up to order
(n – ).

Definition . The Caputo derivative of order r for a function f : [,∞) → R can be
written as

cDrf (t) = Dr
+

(

f (t) –
n–∑

k=

tk

k!
f (k)()

)

, t > , n –  < r < n.

Remark . If f (t) ∈ Cn[,∞), then

cDrf (t) =


�(n – r)

∫ t



f (n)(s)
(t – s)r+–n ds = In–rf (n)(t), t > , n –  < q < n.
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To define a solution for problem (.), we need the following lemma for its linear variant.

Lemma . Let h ∈ C([, T],R). Then the following linear problem

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(cDq + kcDq–)u(t) = h(t),  < q ≤ ,  < t < T ,

αu(η) + βu(T) = a,

α
cDq–u(η) + β

cDq–u(T) = b,

α
cDq–u(η) + β

cDq–u(T) = c,

(.)

is equivalent to the fractional integral equation

u(t) = ν(t) +
∫ t


e–k(t–s)

(∫ s



(s – x)q–

�(q – )
h(x) dx

)

ds

–
α

ρ

∫ η


e–k(η–s)

(∫ s



(s – x)q–

�(q – )
h(x) dx

)

ds

–
β

ρ

∫ T


e–k(T–s)

(∫ s



(s – x)q–

�(q – )
h(x) dx

)

ds

+ ν(t)
∫ η


(η – s)–q

(∫ s


e–k(s–x)

(∫ x



(x – m)q–

�(q – )
h(m) dm

)

dx
)

ds

+ ν(t)
∫ T


(T – s)–q

(∫ s


e–k(s–x)

(∫ x



(x – m)q–

�(q – )
h(m) dm

)

dx
)

ds

+ ν(t)
∫ η


(η – s)–q

(∫ s



(s – x)q–

�(q – )
h(x) dx

)

ds

+ ν(t)
∫ T


(T – s)–q

(∫ s



(s – x)q–

�(q – )
h(x) dx

)

ds

+ ν(t)
∫ η


(η – s)–q

(∫ s



(s – x)q–

�(q – )
h(x) dx

)

ds

+ ν(t)
∫ T


(T – s)–q

(∫ s



(s – x)q–

�(q – )
h(x) dx

)

ds, (.)

where

ν(t) =
a
ρ

+
�( – q)b
kNρσ

(
N

(
ρe–kt – α

)
– k(z – ρt)ϑ

)
+

�( – q)c
Nρ

(ρt – z),

ν(t) =
α

ρσ

(
α – ρe–kt) +

k(tρ – z)(σα – αϑ)
ρσN

,

ν(t) =
β

ρσ

(
α – ρe–kt) +

k(ρt – z)(σβ – βϑ)
ρσN

,

ν(t) =
α

ρkσ

(
ρe–kt – α

)
+

(z – tρ)(σα – αϑ)
ρσN

,

ν(t) =
β

ρkσ

(
ρe–kt – α

)
+

(z – tρ)(σβ – βϑ)
ρσN

,

ν(t) =
α

ρNkσ

[
N

(
α – ρe–kt) + kϑ(z – ρt)

]
, (.)
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ν(t) =
β

ρNkσ

[
N

(
α – ρe–kt) + kϑ(z – ρt)

]
,

ρ = α + β, z = ηα + Tβ, σ = αγ + ββ ,

α = αe–kη + βe–kT , ϑ = αγ + ββ

N =
αη

–q + βT–q

 – q
, γ =

∫ η


(η – s)–qe–ks ds,

β =
∫ T


(T – s)–qe–ks ds.

Proof Writing the linear sequential fractional differential equation in (.) as cDq–(D +
k)u(t) = h(t) and then applying the Riemann-Liouville integral operator Iq– on both sides,
followed by integration from  to t, we get

u(t) = Ae–kt + A + At +
∫ t


e–k(t–s)Iq–h(s) ds, (.)

where A, A, and A are arbitrary constants and

Iq–h(t) =
∫ t



(t – x)q–

�(q – )
h(x) dx.

From (.), we have

cDq–u(t) =


�( – q)

∫ t


(t – s)–q

(

kAe–kt + k
∫ s


e–k(s–x)Iq–h(x) dx

– kIq–h(s) + Iq–h(s)
)

ds, (.)

cDq–u(t) =


�( – q)

∫ t


(t – s)–q

(

–kAe–ks + A – k
∫ s


e–k(s–x)Iq–h(x) dx

+ Iq–h(s)
)

ds. (.)

Now, using the boundary conditions given by (.) in (.), (.), and (.) together with
notations (.), we get

αA + ρA + zA + α

∫ η


e–k(η–s)Iq–h(s) ds + β

∫ T


e–k(T–s)Iq–h(s) ds = a, (.)

kA

�( – q)
(αγ + ββ)

+
α

�( – q)

∫ η


(η – s)–q

(

k
∫ s


e–k(s–x)Iq–h(x) dx – kIq–h(s) + Iq–h(s)

)

ds

+
β

�( – q)

∫ T


(T – s)–q

(

k
∫ s


e–k(s–x)Iq–h(x) dx

– kIq–h(s) + Iq–h(s)
)

ds = b, (.)
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–kA

�( – q)
(αγ + ββ) +

AN
�( – q)

+
α

�( – q)

∫ η


(η – s)–q

(

–k
∫ s


e–k(s–x)Iq–h(x) dx + Iq–h(s)

)

ds

+
β

�( – q)

∫ T


(T – s)–q

(

–k
∫ s


e–k(s–x)Iq–h(x) dx + Iq–h(s)

)

ds = c. (.)

Solving system (.), (.), and (.) for A, A, and A, we find that

A =
�( – q)b

kσ

–
α

kσ

∫ η


(η – s)–q

(

k
∫ s


e–k(s–x)Iq–h(x) dx – kIq–h(s) + Iq–h(s)

)

ds

–
β

kσ

∫ T


(T – s)–q

(

k
∫ s


e–k(s–x)Iq–h(x) dx – kIq–h(s) + Iq–h(s)

)

ds,

A =
a
ρ

–
�( – q)
kρσN

(Nα + zkϑ)b –
z�( – q)

Nρ
c

+


Nρσ

(
Nαα – zk(σα – αϑ)

)
∫ η


(η – s)–q

(∫ s


e–k(s–x)Iq–h(x) dx

)

ds

+


Nρσ

(
Nαβ – zk(σβ – βϑ)

)
∫ T


(T – s)–q

(∫ s


e–k(s–x)Iq–h(x) dx

)

ds

–


kNρσ

(
Nαα + kz(αϑ – σα)

)
∫ η


(η – s)–qIq–h(s) ds

–


kNρσ

(
Nαβ + kz(βϑ – σβ)

)
∫ η


(η – s)–qIq–h(s) ds

+
α

kNρσ
(Nα + zkϑ)

∫ η


(η – s)–qIq–h(s) ds

+
β

kNρσ
(Nα + zkϑ)

∫ T


(T – s)–qIq–h(s) ds

–
α

ρ

∫ η


e–k(η–s)Iq–h(s) ds –

β

ρ

∫ T


e–k(T–s)Iq–h(s) ds,

A =
�( – q)

Nkσ
(kσ c + bϑ) +

k
Nσ

(σα – αϑ)
∫ η


(η – s)–q

(∫ s


e–k(s–x)Iq–h(x) dx

)

ds

+
k

Nσ
(σβ – βϑ)

∫ T


(T – s)–q

(∫ s


e–k(s–x)Iq–h(x) dx

)

ds

+


Nσ
(αϑ – ασ )

∫ η


(η – s)–qIq–h(s) ds

+


Nσ
(βϑ – βσ )

∫ T


(T – s)–qIq–h(s) ds

–
αϑ

kNσ

∫ η


(η – s)–qIq–h(s) ds –

βϑ

kNσ

∫ T


(T – s)–qIq–h(s) ds.

Substituting the values of A, A, and A in (.) and using notations (.), we get the
solution (.). The converse follows by direct computation. This completes the proof. �
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3 Main results
Let P = C([, T],R) denote the Banach space of all continuous functions from [, T] →R

endowed with the norm defined by ‖u‖ = sup{|u(t)|, t ∈ [, T]}.
In view of Lemma ., we transform problem (.) into an equivalent fixed-point prob-

lem as

u = Hu, (.)

where H : P →P is defined by

(Hu)(t) = ν(t) +
∫ t


e–k(t–s)

(∫ s



(s – x)q–

�(q – )
f
(
x, u(x)

)
dx

)

ds

–
α

ρ

∫ η


e–k(η–s)

(∫ s



(s – x)q–

�(q – )
f
(
x, u(x)

)
dx

)

ds

–
β

ρ

∫ T


e–k(T–s)

(∫ s



(s – x)q–

�(q – )
f
(
x, u(x)

)
dx

)

ds

+ ν(t)
∫ η


(η – s)–q

(∫ s


e–k(s–x)

(∫ x



(x – m)q–

�(q – )
f
(
m, u(m)

)
dm

)

dx
)

ds

+ ν(t)
∫ T


(T – s)–q

(∫ s


e–k(s–x)

(∫ x



(x – m)q–

�(q – )
f
(
m, u(m)

)
dm

)

dx
)

ds

+ ν(t)
∫ η


(η – s)–q

(∫ s



(s – x)q–

�(q – )
f
(
x, u(x)

)
dx

)

ds

+ ν(t)
∫ T


(T – s)–q

(∫ s



(s – x)q–

�(q – )
f
(
x, u(x)

)
dx

)

ds

+ ν(t)
∫ η


(η – s)–q

(∫ s



(s – x)q–

�(q – )
f
(
x, u(x)

)
dx

)

ds

+ ν(t)
∫ T


(T – s)–q

(∫ s



(s – x)q–

�(q – )
f
(
x, u(x)

)
dx

)

ds. (.)

Observe that problem (.) has solutions if operator equation (.) has fixed points.
For computational convenience, we set

Q = sup
t∈[,T]

{
tq–|ρ|( – e–kt) + |α|ηq–( – e–kη) + |β|Tq–( – e–kT )

|ρ|k�(q)

+
|ν(t)|η( – e–kη) + |ν(t)|T( – e–kT ) + |ν(t)|kη + |ν(t)|kT

k( – q)�(q)

+
|ν(t)|η + |ν(t)|T

( – q)�(q – )

}

. (.)

In the following theorem, we establish the existence of a unique solution of problem (.)
by means of Banach’s fixed-point theorem.

Theorem . Let f : [, T] ×R →R be a continuous function satisfying the Lipschitz con-
dition:
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(A) There exists a positive number � such that |f (t, u) – f (t, v)| ≤ �|u – v|, ∀t ∈ [, T],
u, v ∈R.

Then the boundary value problem (.) has a unique solution on [, T] if � < /Q, where Q
is given by (.).

Proof Consider a set Br = {u ∈ P : ‖u‖ ≤ r}, where r ≥ QM+‖ν‖
–�Q , supt∈[,T] |f (t, )| = M and

Q is given by (.). In the first step, we show thatHBr ⊂ Br , where the operatorH is defined
by (.). For any u ∈ Br , t ∈ [, T], observe that

∣
∣f

(
t, u(t)

)∣
∣ =

∣
∣f

(
t, u(t)

)
– f (t, ) + f (t, )

∣
∣ ≤ ∣

∣f
(
t, u(t)

)
– f (t, )

∣
∣ +

∣
∣f (t, )

∣
∣

≤ �‖u‖ + M ≤ �r + M,

which together with (.) yields

∥
∥(Hu)

∥
∥ ≤ sup

t∈[,T]

{
∣
∣ν(t)

∣
∣ +

∫ t


e–k(t–s)

(∫ s



(s – x)α–

�(α – )
∣
∣f

(
x, u(x)

)∣
∣dx

)

ds

+
∣
∣
∣
∣
α

ρ

∣
∣
∣
∣

∫ η


e–k(η–s)

(∫ s



(s – x)q–

�(q – )
∣
∣f

(
x, u(x)

)∣
∣dx

)

ds

+
∣
∣
∣
∣
β

ρ

∣
∣
∣
∣

∫ T


e–k(T–s)

(∫ s



(s – x)q–

�(q – )
∣
∣f

(
x, u(x)

)∣
∣dx

)

ds

+
∣
∣ν(t)

∣
∣
∫ η


(η – s)–q

(∫ s


e–k(s–x)

(∫ x



(x – m)q–

�(q – )
∣
∣f

(
m, u(m)

)∣
∣dm

)

dx
)

ds

+
∣
∣ν(t)

∣
∣

×
∫ T


(T – s)–q

(∫ s


e–k(s–x)

(∫ x



(x – m)q–

�(q – )
∣
∣f

(
m, u(m)

)∣
∣dm

)

dx
)

ds

+
∣
∣ν(t)

∣
∣
∫ η


(η – s)–q

(∫ s



(s – x)q–

�(q – )
∣
∣f

(
x, u(x)

)∣
∣dx

)

ds

+
∣
∣ν(t)

∣
∣
∫ T


(T – s)–q

(∫ s



(s – x)q–

�(q – )
∣
∣f

(
x, u(x)

)∣
∣dx

)

ds

+
∣
∣ν(t)

∣
∣
∫ η


(η – s)–q

(∫ s



(s – x)q–

�(q – )
∣
∣f

(
x, u(x)

)∣
∣dx

)

ds

+
∣
∣ν(t)

∣
∣
∫ T


(T – s)–q

(∫ s



(s – x)q–

�(q – )
∣
∣f

(
x, u(x)

)∣
∣dx

)

ds
}

≤ (�r + M) sup
t∈[,T]

{

|ν| +
∫ t


e–k(t–s)

(∫ s



(s – x)α–

�(α – )
dx

)

ds

+
∣
∣
∣
∣
α

ρ

∣
∣
∣
∣

∫ η


e–k(η–s)

(∫ s



(s – x)q–

�(q – )
dx

)

ds

+
∣
∣
∣
∣
β

ρ

∣
∣
∣
∣

∫ η


e–k(η–s)

(∫ s



(s – x)q–

�(q – )
dx

)

ds

+
∣
∣ν(t)

∣
∣
∫ η


(η – s)–q

(∫ s


e–k(s–x)

(∫ x



(x – m)q–

�(q – )
dm

)

dx
)

ds

+
∣
∣ν(t)

∣
∣
∫ T


(T – s)–q

(∫ s


e–k(s–x)

(∫ x



(x – m)q–

�(q – )
dm

)

dx
)

ds
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+
∣
∣ν(t)

∣
∣
∫ η


(η – s)–q

(∫ s



(s – x)q–

�(q – )
dx

)

ds

+
∣
∣ν(t)

∣
∣
∫ T


(T – s)–q

(∫ s



(s – x)q–

�(q – )
dx

)

ds

+
∣
∣ν(t)

∣
∣
∫ η


(η – s)–q

(∫ s



(s – x)q–

�(q – )
dx

)

ds

+
∣
∣ν(t)

∣
∣
∫ T


(T – s)–q

(∫ s



(s – x)q–

�(q – )
dx

)

ds
}

≤ (�r + M)Q + ‖ν‖ ≤ r.

This shows that HBr ⊂ Br . Next we show that the operator H is a contraction. Let u, v ∈P .
Then

‖Hu – Hv‖ ≤ sup
t∈[,T]

{∫ t


e–k(t–s)

(∫ s



(s – x)α–

�(α – )
∣
∣f

(
x, u(x)

)
– f

(
x, v(x)

)∣
∣dx

)

ds

+
∣
∣
∣
∣
α

ρ

∣
∣
∣
∣

∫ η


e–k(η–s)

(∫ s



(s – x)q–

�(q – )
∣
∣f

(
x, u(x)

)
– f

(
x, v(x)

)∣
∣dx

)

ds

+
∣
∣
∣
∣
β

ρ

∣
∣
∣
∣

∫ T


e–k(T–s)

(∫ s



(s – x)q–

�(q – )
∣
∣f

(
x, u(x)

)
– f

(
x, v(x)

)∣
∣dx

)

ds

+
∣
∣ν(t)

∣
∣
∫ η


(η – s)–q

(∫ s


e–k(s–x)

(∫ x



(x – m)q–

�(q – )
∣
∣f

(
m, u(m)

)

– f
(
m, v(m)

)∣
∣dm

)

dx
)

ds

+
∣
∣ν(t)

∣
∣
∫ T


(T – s)–q

(∫ s


e–k(s–x)

(∫ x



(x – m)q–

�(q – )
∣
∣f

(
m, u(m)

)

– f
(
m, v(m)

)∣
∣dm

)

dx
)

ds

+
∣
∣ν(t)

∣
∣
∫ η


(η – s)–q

(∫ s



(s – x)q–

�(q – )
∣
∣f

(
x, u(x)

)
– f

(
x, v(x)

)∣
∣dx

)

ds

+
∣
∣ν(t)

∣
∣
∫ T


(T – s)–q

(∫ s



(s – x)q–

�(q – )
∣
∣f

(
x, u(x)

)
– f

(
x, v(x)

)∣
∣dx

)

ds

+
∣
∣ν(t)

∣
∣
∫ η


(η – s)–q

(∫ s



(s – x)q–

�(q – )
∣
∣f

(
x, u(x)

)
– f

(
x, v(x)

)∣
∣dx

)

ds

+
∣
∣ν(t)

∣
∣
∫ T


(T – s)–q

(∫ s



(s – x)q–

�(q – )
∣
∣f

(
x, u(x)

)
– f

(
x, v(x)

)∣
∣dx

)

ds
}

≤ �‖u – v‖ sup
t∈[,T]

{∫ t


e–k(t–s)

(∫ s



(s – x)α–

�(α – )
dx

)

ds

+
∣
∣
∣
∣
α

ρ

∣
∣
∣
∣

∫ η


e–k(η–s)

(∫ s



(s – x)q–

�(q – )
dx

)

ds

+
∣
∣
∣
∣
β

ρ

∣
∣
∣
∣

∫ T


e–k(T–s)

(∫ s



(s – x)q–

�(q – )
dx

)

ds

+
∣
∣ν(t)

∣
∣
∫ η


(η – s)–q

(∫ s


e–k(s–x)

(∫ x



(x – m)q–

�(q – )
dm

)

dx
)

ds
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+
∣
∣ν(t)

∣
∣
∫ T


(T – s)–q

(∫ s


e–k(s–x)

(∫ x



(x – m)q–

�(q – )
dm

)

dx
)

ds

+
∣
∣ν(t)

∣
∣
∫ η


(η – s)–q

(∫ s



(s – x)q–

�(q – )
dx

)

ds

+
∣
∣ν(t)

∣
∣
∫ T


(T – s)–q

(∫ s



(s – x)q–

�(q – )
dx

)

ds

+
∣
∣ν(t)

∣
∣
∫ η


(η – s)–q

(∫ s



(s – x)q–

�(q – )
dx

)

ds

+
∣
∣ν(t)

∣
∣
∫ T


(T – s)–q

(∫ s



(s – x)q–

�(q – )
dx

)

ds
}

≤ �Q‖u – v‖,

where we have used (.). By the given assumption � < /Q, it follows that the operator
H is a contraction. Thus, by Banach’s contraction mapping principle, we deduce that the
operator H has a fixed point, which equivalently implies that problem (.) has a unique
solution on [, T]. �

Next, we show the existence of solutions for problem (.) by applying Krasnoselskii’s
fixed-point theorem which is stated below.

Lemma . (Krasnoselskii’s fixed-point theorem []) Let Y be a closed bounded, convex,
and nonempty subset of a Banach space X . Let G,G be the operators such that (i) Gy +
Gy ∈ Y whenever y, y ∈ Y ; (ii) G is compact and continuous; and (iii) G is a contraction
mapping. Then there exists ŷ ∈ Y such that ŷ = Ĝy + Ĝy.

Theorem . Let f : [, T]×R→R be a continuous function satisfying condition (A) and
that |f (t, u)| ≤ g(t), ∀(t, u) ∈ [, T] ×R, where g ∈ C([, T],R+) with supt∈[,T] |g(t)| = ‖g‖.
In addition, it is assumed that �Q < , where

Q = sup
t∈[,T]

{ |α|ηq–( – e–kη) + |β|Tq–( – e–kT )
|ρ|k�(q)

+
|ν(t)|η( – e–kη) + |ν(t)|T( – e–kT ) + |ν(t)|kη + |ν(t)|kT

k( – q)�(q)

+
|ν(t)|η + |ν(t)|T

( – q)�(q – )

}

. (.)

Then problem (.) has at least one solution on [, T].

Proof Let us consider the closed set Ba = {u ∈P : ‖u‖ ≤ a}, where a ≥ Q‖g‖ + ‖ν‖ and Q
is given by (.). We define the operators H and H on Ba as

(Hu)(t) =
∫ t


e–k(t–s)

(∫ s



(s – x)α–

�(α – )
f
(
x, u(x)

)
dx

)

ds,
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(Hu)(t) = ν(t) –
α

ρ

∫ η


e–k(η–s)

(∫ s



(s – x)q–

�(q – )
f
(
x, u(x)

)
dx

)

ds

–
β

ρ

∫ T


e–k(T–s)

(∫ s



(s – x)q–

�(q – )
f
(
x, u(x)

)
dx

)

ds

+ ν(t)
∫ η


(η – s)–q

(∫ s


e–k(s–x)

(∫ x



(x – m)q–

�(q – )
f
(
m, u(m)

)
dm

)

dx
)

ds

+ ν(t)
∫ T


(T – s)–q

(∫ s


e–k(s–x)

(∫ x



(x – m)q–

�(q – )
f
(
m, u(m)

)
dm

)

dx
)

ds

+ ν(t)
∫ η


(η – s)–q

(∫ s



(s – x)q–

�(q – )
f
(
x, u(x)

)
dx

)

ds

+ ν(t)
∫ T


(T – s)–q

(∫ s



(s – x)q–

�(q – )
f
(
x, u(x)

)
dx

)

ds

+ ν(t)
∫ η


(η – s)–q

(∫ s



(s – x)q–

�(q – )
f
(
x, u(x)

)
dx

)

ds

+ ν(t)
∫ T


(T – s)–q

(∫ s



(s – x)q–

�(q – )
f
(
x, u(x)

)
dx

)

ds.

For u, v ∈ Ba, it is easy to verify that ‖Hu + Hv‖ ≤ Q‖g‖ + ‖ν‖. Thus, Hu + Hv ∈ Ba.
Using assumption (A) and (.), we can get ‖Hu – Hv‖ ≤ �Q‖u – v‖, which implies
that H is a contraction in view of the given condition �Q < .

Notice that the continuity of f implies that the operator H is continuous. Also, H is
uniformly bounded on Ba as

‖Hu‖ ≤ ( – e–kT )Tq–‖g‖
k�(q)

.

In the last step, it will be shown that the operator H is compact. Fixing
sup(t,u)∈[,T]×Ba |f (t, u)| = fa, for t, t ∈ [, T], we have

∥
∥(Hu)(t) – (Hu)(t)

∥
∥

≤ fa

(
∣
∣e–kt – e–kt

∣
∣
∫ t


eks

(∫ s



(s – x)q–

�(q – )
dx

)

ds

+
∫ t

t

e–k(t–s)
(∫ s



(s – x)q–

�(q – )
dx

)

ds
)

→  as t – t → 

independent of u. This implies that H is relatively compact on Ba. Hence, by the Arzelá-
Ascoli theorem, the operator H is compact on Ba. Thus all the assumptions of Lemma .
are satisfied. In consequence, it follows from the conclusion of Lemma . that problem
(.) has at least one solution on [, T]. �

Now we prove the existence of solutions for problem (.) via the Leray-Schauder alter-
native. Let us first recall the nonlinear alternative for single-valued maps [].

Lemma . Let C be a closed, convex subset of a Banach space E and U be an open subset
of C such that  ∈ U . Suppose that the operator T : U → C is a continuous and compact
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map, that is, T (U) is a relatively compact subset of C. Then either (i) T has a fixed point
in U , or (ii) there is u ∈ ∂U (the boundary of U in C) and λ ∈ (, ) such that u = λT (u).

Theorem . Let f : [, T] ×R →R be a continuous function. Assume that

(A) there exist a function p ∈ C([, T],R+) and a nondecreasing function ψ : R+ → R
+

such that |f (t, u)| ≤ p(t)ψ(‖u‖), ∀(t, u) ∈ [, T] ×R;
(A) there exists a constant M >  such that M/Q > , where

Q =
∥
∥ν(t)

∥
∥ + ‖p‖ψ(M)Q. (.)

Then problem (.) has at least one solution on [, T].

Proof We complete the proof in several steps. In the first step, it will be shown that the
operator H : P →P maps bounded sets into bounded sets in C([, T],R). For the positive
number r, let Br = {u ∈ C([, T],R) : ‖u‖ ≤ r} be a bounded set in C([, T],R). Then, in
view of assumption (A), one can get

∣
∣(Hu)(t)

∣
∣ ≤ ∣

∣ν(t)
∣
∣ +

∫ t


e–k(t–s)

(∫ s



(s – x)α–

�(α – )
p(x)ψ

(‖u‖)dx
)

ds

+
∣
∣
∣
∣
α

ρ

∣
∣
∣
∣

∫ η


e–k(η–s)

(∫ s



(s – x)q–

�(q – )
p(x)ψ

(‖u‖)dx
)

ds

+
∣
∣
∣
∣
β

ρ

∣
∣
∣
∣

∫ T


e–k(T–s)

(∫ s



(s – x)q–

�(q – )
p(x)ψ

(‖u‖)dx
)

ds

+
∣
∣ν(t)

∣
∣

×
∫ η


(η – s)–q

(∫ s


e–k(s–x)

(∫ x



(x – m)q–

�(q – )
p(m)ψ

(‖u‖)dm
)

dx
)

ds

+
∣
∣ν(t)

∣
∣

×
∫ T


(T – s)–q

(∫ s


e–k(s–x)

(∫ x



(x – m)q–

�(q – )
p(m)ψ

(‖u‖)dm
)

dx
)

ds

+
∣
∣ν(t)

∣
∣
∫ η


(η – s)–q

(∫ s



(s – x)q–

�(q – )
p(x)ψ

(‖u‖)dx
)

ds

+
∣
∣ν(t)

∣
∣
∫ T


(T – s)–q

(∫ s



(s – x)q–

�(q – )
p(x)ψ

(‖u‖)
)

ds

+
∣
∣ν(t)

∣
∣
∫ η


(η – s)–q

(∫ s



(s – x)q–

�(q – )
p(x)ψ

(‖u‖)dx
)

ds

+
∣
∣ν(t)

∣
∣
∫ T


(T – s)–q

(∫ s



(s – x)q–

�(q – )
p(x)ψ

(‖u‖)dx
)

ds.

In consequence, taking the norm on [, T], we have that

∥
∥(Hu)

∥
∥ ≤ ‖ν‖ + ‖p‖ψ(r)

{
tq–|ρ|( – e–kt) + |α|ηq–( – e–kη) + |β|Tq–( – e–kT )

|ρ|k�(q)

+
|ν(t)|η( – e–kη) + |ν(t)|T( – e–kT ) + |ν(t)|kη + |ν(t)|kT

k( – q)�(q)
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+
|ν(t)|η + |ν(t)|T

( – q)�(q – )

}

= ‖ν‖ + ‖p‖ψ(r)Q,

where Q is given by (.).
Next we show that H maps bounded sets into equicontinuous sets of C([, T],R). Let

t, t ∈ [, T] with t < t and u ∈ Br , where Br is a bounded set of C([, T],R). Then we
obtain

∣
∣(Hu)(t) – (Hu)(t)

∣
∣

≤ ∣
∣ν(t) – ν(t)

∣
∣

+
∣
∣
∣
∣

∫ t



(
e–k(t–s) – e–k(t–s))

(∫ s



(s – x)q–

�(q – )
f
(
x, u(x)

)
dx

)

ds
∣
∣
∣
∣

+
∣
∣
∣
∣

∫ t

t

e–k(t–s)
(∫ s



(s – x)q–

�(q – )
f
(
x, u(x)

)
dx

)

ds
∣
∣
∣
∣

+
∣
∣ν(t) – ν(t)

∣
∣

×
∫ η


(η – s)–q

(∫ s


e–k(s–x)

(∫ x



(x – m)q–

�(q – )
∣
∣f

(
m, u(m)

)∣
∣dm

)

dx
)

ds

+
∣
∣ν(t) – ν(t)

∣
∣

×
∫ T


(T – s)–q

(∫ s


e–k(s–x)

(∫ x



(x – m)q–

�(q – )
∣
∣f

(
m, u(m)

)∣
∣dm

)

dx
)

ds

+
∣
∣ν(t) – ν(t)

∣
∣
∫ η


(η – s)–q

(∫ s



(s – x)q–

�(q – )
∣
∣f

(
x, u(x)

)∣
∣dx

)

ds

+
∣
∣ν(t) – ν(t)

∣
∣
∫ T


(T – s)–q

(∫ s



(s – x)q–

�(q – )
∣
∣f

(
x, u(x)

)∣
∣dx

)

ds

+
∣
∣ν(t) – ν(t)

∣
∣
∫ η


(η – s)–q

(∫ s



(s – x)q–

�(q – )
∣
∣f

(
x, u(x)

)∣
∣dx

)

ds

+
∣
∣ν(t) – ν(t)

∣
∣
∫ T


(T – s)–q

(∫ s



(s – x)q–

�(q – )
∣
∣f

(
x, u(x)

)∣
∣dx

)

ds

≤
∣
∣
∣
∣
�( – q)b

kNσ

(
N

(
e–kt – e–kt

)
+ k(t – t)ϑ

)
+

�( – q)c
N

(t – t)
∣
∣
∣
∣

+ ‖p‖ψ(‖u‖)
(

∣
∣e–kt – e–kt

∣
∣
∫ t


eks

(∫ s



(s – x)q–

�(q – )
dx

)

ds

+
∫ t

t

e–k(t–s)
(∫ s



(s – x)q–

�(q – )
dx

)

ds
)

+
∣
∣
∣
∣
–α

σ

(
e–kt – e–kt

)
+

(
k(t – t)

N

)(

α –
αϑ

σ

)∣
∣
∣
∣

×
∫ η


(η – s)–q

(∫ s


e–k(s–x)

(∫ x



(x – m)q–

�(q – )
∣
∣f

(
m, u(m)

)∣
∣dm

)

dx
)

ds

+
∣
∣
∣
∣
–β

σ

(
e–kt – e–kt

)
+

(
k(t – t)

N

)(

β –
βϑ

σ

)∣
∣
∣
∣
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×
∫ T


(T – s)–q

(∫ s


e–k(s–x)

(∫ x



(x – m)q–

�(q – )
∣
∣f

(
m, u(m)

)∣
∣dm

)

dx
)

ds

+
∣
∣
∣
∣
α

kσ

(
e–kt – e–kt

)
–

(
(t – t)

N

)(

α –
αϑ

σ

)∣
∣
∣
∣

×
∫ η


(η – s)–q

(∫ s



(s – x)q–

�(q – )
∣
∣f

(
x, u(x)

)∣
∣dx

)

ds

+
∣
∣
∣
∣
β

kσ

(
e–kt – e–kt

)
–

(
(t – t)

N

)(

β –
βϑ

σ

)∣
∣
∣
∣

×
∫ T


(T – s)–q

(∫ s



(s – x)q–

�(q – )
∣
∣f

(
x, u(x)

)∣
∣dx

)

ds

+
∣
∣
∣
∣

–α

Nkσ

[
N

(
e–kt – e–kt

)
+ kϑ(t – t)

]
∣
∣
∣
∣

×
∫ η


(η – s)–q

(∫ s



(s – x)q–

�(q – )
∣
∣f

(
x, u(x)

)∣
∣dx

)

ds

+
∣
∣
∣
∣

–β

Nkσ

[
N

(
e–kt – e–kt

)
+ kϑ(t – t)

]
∣
∣
∣
∣

×
∫ T


(T – s)–q

(∫ s



(s – x)q–

�(q – )
∣
∣f

(
x, u(x)

)∣
∣dx

)

ds.

Obviously, the right-hand side of the above inequality tends to zero independently of u ∈
Br as t – t → . As H satisfies the above assumptions, it follows by the Arzelá-Ascoli
theorem that H : C([, T],R) → C([, T],R) is completely continuous.

The result will follow from the Leray-Schauder nonlinear alternative (Lemma .) once
we establish the boundedness of the set of all solutions to equations u = λHu for λ ∈ [, ].

Let u be a solution. Then, for t ∈ [, T], using the method of computations in proving
that H is bounded, we can obtain

∣
∣u(t)

∣
∣ =

∣
∣λ(Hu)(t)

∣
∣ ≤ ∥

∥ν(t)
∥
∥ + ‖p‖ψ(r)Q,

which implies that

‖u‖/
(|ν| + ‖p‖ψ(r)Q

) ≤ .

In view of (A), there exists M such that ‖u‖ 
= M. Let us set

U =
{

u ∈ C
(
[, T],R

)
: ‖u‖ < M

}
.

Note that the operator H : U → C([, T],R) is continuous and completely continuous.
From the choice of U , there is no u ∈ ∂U such that u = λH(u) for some λ ∈ (, ). Con-
sequently, by the nonlinear alternative of Leray-Schauder type (Lemma .), we deduce
that H has a fixed point u ∈ U which is a solution of problem (.). This completes the
proof. �

Our final result is based on Leray-Schauder degree theory.
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Theorem . Let f : [, T] ×R → R. Assume that there exist constants  ≤ k < 
Q , where

Q is given by (.) and M >  such that |f (t, u(t))| ≤ k‖u‖+ M for all t ∈ [, T], u ∈R . Then
boundary value problem (.) has at least one solution.

Proof In view of fixed-point problem (.), we just need to prove the existence of at least
one solution u ∈R satisfying (.). Define a suitable ball BR ⊂ C[, T] with radius R >  as

BR =
{

u ∈ C[, T] : ‖u‖ ≤ R
}

,

where R will be fixed later. Then it is sufficient to show that H : BR → C satisfies

u 
= λHu, ∀u ∈ ∂BR and ∀λ ∈ [, ]. (.)

Let us set

�(λ, u) = λHu, u ∈ C,λ ∈ [, ].

Then, by the Arzelá-Ascoli theorem, ωλ(u) = u – �(λ, u) = u – Hu is completely contin-
uous. If (.) is true, then the following Leray-Schauder degrees are well defined and, by
the homotopy invariance of topological degree, it follows that

deg(ωλ, BR, ) = deg(I – λH, BR, ) = deg(ω, BR, )

= deg(ω, BR, ) = deg(I, BR, ) =  
= ,  ∈ BR, (.)

where I denotes the unit operator. By the nonzero property of Leray-Schauder degree,
ω(t) = u – λHu =  for at least one u ∈ BR. To prove (.), we assume that u = λHu = 
for some λ ∈ [, ] and for all t ∈ [, T]. Then, as in the preceding results, one can obtain

‖u‖ ≤ ‖ν‖ + MQ
 – kQ

.

Letting R = ‖ν‖+MQ
–kQ

+ ., (.) holds. This completes the proof. �

Example . Consider the following anti-periodic fractional boundary value problem:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(cD/ + cD/)u(t) = f (t, u(t)), t ∈ [, ],

u() + u() = ,

–cD/u() – cD/u() = .,
cD/u() + cD/u() = –.

(.)

T = , η = , k = , α = , β = , α = –, β = –, α = , β = , a = , b = ., c = –. With
the given values, it is found that Q ≈ . and Q ≈ ., where Q and Q are
respectively defined by (.) and (.).

• For the applicability of Theorem ., let us take f (t, u(t)) = sin u
 + e–t cos t in (.). Then

� = / as |f (t, u) – f (t, v)| ≤ 
 |u – v| and �Q ≈ . < . Thus all the conditions
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of Theorem . are satisfied. Hence we deduce by the conclusion of Theorem . that
there exists a unique solution for problem (.) on [, ]. To illustrate Theorem .,
we find that |f (t, u)| ≤ g(t) = 

 + e–t cos t with ‖g‖ = 
 and �Q ≈ . < . In

consequence, by Theorem (.), problem (.) has at least one solution on [, ].
• For the illustration of Theorem ., we consider f (t, u(t)) = e–t tan–(u(t))

π
√

t+
in (.). Then

|f (t, u)| ≤ p(t)ψ(‖u‖) with ψ(‖u‖) = , p(t) = e–t√
t+

,
Q = ‖ν‖ + ‖p‖ψ(‖M‖)Q ≈ . (Q is given by (.)) and M > .. Thus all
the conditions of Theorem . are satisfied, and the conclusion of Theorem . applies
to problem (.).

• For demonstrating the applicability of Theorem ., let f (t, u(t)) = sin(πu)
π

+ 
+u in

(.). Obviously, |f (t, u)| ≤ ‖u‖/ +  with k = 
 , M = . Clearly,


 = k < 

Q = 
. . Thus the hypothesis of Theorem . is satisfied. Hence, it follows

by the conclusion of Theorem . that problem (.) has at least one solution on [, ].

4 Concluding remarks
We have discussed the existence of solutions for sequential fractional differential equa-
tions of order q ∈ (, ] equipped with nonlocal non-separated boundary conditions in-
volving lower-order fractional derivatives. The uniqueness result relies on Banach’s con-
traction mapping principle, while the existence of solutions is established by applying
Krasnoselskii’s fixed-point theorem, the Leray-Schauder nonlinear alternative and Leray-
Schauder degree theory. Though we make use of the standard tools of fixed-point theory,
our results are new and significantly contribute to the existing literature on fractional-
order boundary value problems with separated boundary conditions. Now we enlist some
interesting observations.

(a) For η = , our results correspond to the boundary conditions

αu() + βu(T) = a, cDq–u(T) = b/β, cDq–u(T) = c/β

as cDq–u() = , cDq–u() = . This situation is in contrast to classical boundary
conditions involving u′(η) and u′′(η), which do not vanish when η = . This is
equivalent to saying that the reduced results remain the same whether we take η = 
or α =  = α. From the preceding discussion, one can easily infer that the nonlocal
boundary conditions involving lower-order fractional derivatives considered in
problem (.) do not reduce to classical anti-periodic boundary conditions of the
form u() + u(T) = , u′() + u′(T) = , u′′() + u′′(T) =  when we take η = ,
αi =  = βi (i = , , ), a = b = c = .

(b) By taking βi = , i = , , , we obtain new results associated with one-point nonlocal
conditions involving lower-order derivative:

u(η) = a/α, cDq–u(η) = b/α, cDq–u(η) = c/α, αi 
= , i = , , ,  < η < T .

(c) In case we take αi =  = βi (i = , , ), a = b = c =  with  < η � T , our results
become the ones supplemented with perturbed anti-periodic boundary conditions
involving lower-order derivatives:

u(η) = –u(T), cDq–u(η) = –cDq–u(T), cDq–u(η) = –cDq–u(T).
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