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Abstract
In the article, the existence and uniqueness of positive solutions for a class of
fractional differential equation with nonlinear boundary conditions are discussed. By
applying some fixed point theorems on cone, we gain a unique positive solution and
construct two iterative sequences to approximate the solution. Moreover, as
applications of our main results, some examples are also presented.
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1 Introduction
As is well known, fractional differential equations has been widely applied to various fields
of physical, engineering, biology, chemistry, etc.; see [–]. Recently, more and more au-
thors have paid attention to the research on the solutions for fractional differential equa-
tions. There are many great results as regards positive solutions of boundary value prob-
lems (see [–]). For example, Zhai, Yan and Yang [] studied the existence and unique-
ness of positive solutions to fractional differential equation boundary value problems. In
[], Yuan was concerned with the (n – , )-type semipositone conjugate boundary value
problems. Yang [] and the authors [] considered nonlinear fractional differential equa-
tions with integral boundary conditions. In [], the authors were interested in the non-
linear fractional differential equation with a derivative term.

In this paper, we study the nonlinear fractional differential equation given by

⎧
⎪⎪⎨

⎪⎪⎩

Dν
+ x(t) + f (t, x(t), Dγ

+ x(t)) + g(t, x(t)) = , t ∈ (, ), n –  < ν < n;

x(i)() = , i = , , , , . . . , n – ;

[Dβ

+ x(t)]t= = k(x()),

(.)

where n > ,  ≤ γ ≤ β ≤ n – , f : [, ] × [,∞) × [,∞) → [,∞), g : [, ] × [,∞) →
[,∞), and k : [,∞) → [,∞) are continuous functions, Dν

+ stands for the Riemann-
Liouville fractional derivative of order ν , and x(i)represents the ith (ordinary) derivative
of x.
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When k(x) =  and f (t, x, Dγ

+ x(t)) =  in (.), the problem (.) is changed into the form
of the following fractional differential equation considered in []:

⎧
⎪⎪⎨

⎪⎪⎩

Dν
+ x(t) + g(t, x(t)) = , t ∈ (, ), n –  < ν ≤ n;

x(i)() = , i = , , , , . . . , n – ;

[Dβ

+ x(t)]t= = ,  ≤ β ≤ n – .

(.)

By means of the Krasnosel’skii fixed point theorem in cones, Goodrich only came to the
conclusion that problem (.) has at least one positive solution. Meanwhile, he did not
mention the uniqueness.

When k(x) =  and γ =  in (.), Mohamed Jleli and Bessem Samet [] considered the
following problem:

⎧
⎪⎪⎨

⎪⎪⎩

Dν
+ x(t) + f (t, x(t), x(t)) + g(t, x(t)) = , t ∈ (, ), n –  < ν ≤ n;

x(i)() = , i = , , , , . . . , n – ;

[Dβ

+ x(t)]t= = ,  ≤ β ≤ n – .

(.)

They investigated a unique positive solution of problem (.) by using a fixed point theo-
rem of a mixed monotone operator.

Compared with [] and [], we not only generalize the boundary conditions but also
consider the derivative term. As far as we know, few papers can be found in the literature
on the existence and uniqueness of positive solutions for the (.), especially the analysis
relying on fixed point theorems of a sum operator. Our main contribution in this paper is
to give some distinct methods to obtain the main results of [, ]. By some fixed theorems
of a sum operator on cone, we establish a unique solution and set up two iterative schemes
to approximate the solution.

The construction of this paper is displayed as follows. In Section , we recall some basic
definitions and notations and several useful lemmas. Section  contains the existence and
uniqueness of solution for nonlinear fractional differential equations (.), based on some
fixed point theorems. In Section , we give some examples to illustrate our main results.

2 Preliminaries
For convenience, we present some basic definitions, lemmas and preliminary results that
will be used in this manuscript.

Definition . ([]) The Riemann-Liouville fractional derivative of order (p > ) of a func-
tion h ∈ C[, ] is given by

Dp
+ h(t) =


�(n – p)

(
d
dt

)n ∫ t



h(s)
(t – s)p–n+ ds.

The Riemann-Liouville fractional integral of order (q > ) of h is given by

Ip
+ h(t) =


�(p)

∫ t


(t – s)p–h(s) ds,

where n = [p] + , [p] denotes the integer part of number p, provided that the right side is
pointwise defined on (, ).
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Lemma . ([]) Assume h ∈ C[, ], q ≥ p ≥ , then

Dp
+ Iq

+ h(t) = Iq–p
+ h(t).

Lemma . ([]) Let h ∈ C[, ]
⋂

L[, ], p > , then

Ip
+ Dp

+ h(t) = ctp– + ctp– + · · · + cntp–n,

where ci ∈ R, i = , , , . . . , n (n = [p] + ).

Lemma . Let h ∈ C[, ], then the unique solution of the linear problem

Dν
+ x(t) + h(t) = , t ∈ (, ), n –  < ν ≤ n; (.)

xi() = , i = , , , , . . . , n – ; (.)
[
Dβ

+ x(t)
]

t= = k
(
x()

)
,  ≤ β ≤ n – , (.)

is given by

x(t) =
∫ 


G(t, s)h(s) ds +

�(ν – β)
�(ν)

k
(
x()

)
tν–,

where

G(t, s) =

⎧
⎨

⎩

tν–(–s)ν–β––(t–s)ν–

�(ν) ,  ≤ s ≤ t ≤ ;
tν–(–s)ν–β–

�(ν) ,  ≤ t ≤ s ≤ ,
(.)

is the Green’s function.

Proof In view of Lemma . and (.), we have

x(t) = –Iν
+ h(t) + ctν– + ctν– + · · · + cntν–n.

The boundary condition (.) implies that cn = cn– = cn– = · · · = c = . Thus, the solution
of (.) is equivalent to the following one:

x(t) = –Iν
+ h(t) + ctν–. (.)

Using the equality Dα
+ tβ = �(β+)

�(β–α+) tβ–α and Lemma ., (.) reduces to

Dβ

+ x(t) = –Iν–β

+ h(t) +
�(ν)

�(ν – β)
tν–β–c

= –
∫ t



(t – s)ν–β–

�(ν – β)
h(s) ds +

�(ν)
�(ν – β)

tν–β–c. (.)

From (.) and (.), then we conclude

–
∫ 



( – s)ν–β–

�(ν – β)
h(s) ds +

�(ν)
�(ν – β)

c = k
(
x()

)
. (.)
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Equation (.) may be simplified to get

c =
�(ν – β)

�(ν)
k
(
x()

)
+

∫ 



( – s)ν–β–

�(ν)
h(s) ds. (.)

Finally, plugging (.) into (.), the unique solution of problem (.), (.), (.) is given
by

x(t) = –Iν
+ h(t) + tν–

{
�(ν – β)

�(ν)
k
(
x()

)
+

∫ 



( – s)ν–β–

�(ν)
h(s) ds

}

= –
∫ t



(t – s)ν–

�(ν)
h(s) ds +

�(ν – β)
�(ν)

k
(
x()

)
tν– +

∫ 



( – s)ν–β–tν–

�(ν)
h(s) ds

=
∫ 


G(t, s)h(s) ds +

�(ν – β)
�(ν)

k
(
x()

)
tν–,

where G(t, s) defined as (.). �

Lemma . The Green’s function (.) has the following properties:

 ≤ tν–( – s)ν–β–[ – ( – s)β
] ≤ �(ν)G(t, s) ≤ tν–( – s)ν–β–, t, s ∈ [, ], (.)

 ≤ tν–γ –( – s)ν–β–[ – ( – s)β–γ
] ≤ �(ν – γ )Dγ

+ G(t, s)

≤ tν–γ –( – s)ν–β–, t, s ∈ [, ]. (.)

Proof The first inequality (.) has been proved by []. Now we prove the inequality (.).
From (.), we get

Dγ

+ G(t, s) =

⎧
⎨

⎩

tν–γ –(–s)ν–β––(t–s)ν–γ –

�(ν–γ ) ,  ≤ s ≤ t ≤ ;
tν–γ –(–s)ν–β–

�(ν–γ ) ,  ≤ t ≤ s ≤ .
(.)

We can find that the right term in (.) is clear. So we only prove the right term. If  ≤
t ≤ s ≤ , since β ≥ γ , then

�(ν – γ )G(t, s) = tν–γ –( – s)ν–β–

≥ tν–γ –( – s)ν–β–[ – ( – s)β–γ
]
.

If  ≤ s ≤ t ≤ , since n –  < ν ≤ n with n >  and  ≤ γ ≤ n – , then we get t – s ≤ t – ts =
( – s)t, which implies that

(t – s)ν–γ – ≤ ( – s)ν–γ –tν–γ –.

Then

�(ν – γ )G(t, s) = tν–γ –( – s)ν–β– – (t – s)ν–γ –

≥ tν–γ –( – s)ν–β– – ( – s)ν–γ –tν–γ –

= tν–γ –( – s)ν–β–[ – ( – s)β–γ
]
.

Therefore equation (.) is demonstrated. �
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In the sequel, we state here some basic concepts in ordered Banach spaces and some
fixed point theorems, which will be used later.

Suppose that (E,‖ · ‖) is a real Banach space, which is partially ordered by a cone P ⊂ E,
i.e., x ≤ y if and only if y – x ∈ P. If x ≤ y and x 	= y, then we denote x < y or y > x. By θ we
denote the zero element of E. Recall that a nonempty closed convex set P ⊂ E is a cone if
it satisfies: () x ∈ P, r >  ⇒ rx ∈ P; () x ∈ P, –x ∈ P ⇒ x = θ .

P is called normal if ∃N >  such that θ ≤ x ≤ y implies ‖x‖ ≤ N‖y‖. In this case, the
smallest constant satisfying this inequality is called the normality constant of P. For all
x, y ∈ E, the notation x ∼ y means that there exist λ > , μ >  such that λy ≤ x ≤ μy.
Clearly, ∼ is an equivalence relation. Given h > θ , we denote by Ph the set Ph = {x ∈ E|x ∼
h}. It is easy to see that Ph ⊂ P.

Definition . An operator A : P → P is said to be sub-homogeneous if it satisfies

A(tx) ≥ tAx, ∀t ∈ (, ), x ∈ P. (.)

Definition . Let D = P or D = P̊ and α be a real number with  ≤ α < . An operator
A : D → D is said to be α-concave if it satisfies

A(tx) ≥ tαAx, ∀t ∈ (, ), x ∈ D. (.)

Definition . ([]) An operator A : P ×P → P is said to be a mixed monotone operator if
A(x, y) is increasing in first component and decreasing in second component, i.e., ui, vi(i =
, ) ∈ P, u ≤ u, v ≥ v, implies A(u, v) ≤ A(u, v). An element x ∈ P is called a fixed
point of A if A(x, x) = x.

In [], the operator equation Ax + Bx + C(x, x) = x is considered. Here, the operator
A : P → P is an increasing, B : P → P is a decreasing operator, C : P × P → P is a mixed
monotone operator. Then Wang and Zhang get the following main results.

Lemma . Let α ∈ (, ) and P is a normal cone of E. Assume that A is sub-homogeneous
and B, C satisfy the following conditions:

B
(
t–y

) ≥ tB(y), C
(
tx, t–y

) ≥ tαC(x, y), ∀t ∈ (, ), x, y ∈ P. (.)

Suppose that

(A) there exists h ∈ Ph such that A(h) ∈ Ph, B(h) ∈ Ph, C(h, h) ∈ Ph;
(A) there exists a constant δ >  such that C(x, y) ≥ δ(Ax + By), ∀x, y ∈ P.

Then
() A : Ph → Ph, B : Ph → Ph, C : Ph × Ph → Ph;
() there exist u, v ∈ Ph and r ∈ (, ) such that

rv ≤ u < v, u ≤ Au + Bv + C(u, v) ≤ Av + Bu + C(v, u) ≤ v;

() the operator equation Ax + Bx + C(x, x) = x has a unique solution x∗ in Ph;
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() for any initial values x, y ∈ Ph, constructing successively the sequences

xn = Axn– + Byn– + C(xn–, yn–), n = , , . . . ,

yn = Ayn– + Bxn– + C(yn–, xn–), n = , , . . . ,

we have xn → x∗ and yn → x∗ as n → ∞.

Lemma . Let α ∈ (, ) and P is a normal cone of E. Assume that A sub-homogeneous
operator, and the following inequalities hold for B, C:

B
(
t–y

) ≥ tαB(y), C
(
tx, t–y

) ≥ tC(x, y), ∀t ∈ (, ), x, y ∈ P.

Suppose that

(A′
) there exists h ∈ Ph such that A(h) ∈ Ph, B(h) ∈ Ph, C(h, h) ∈ Ph;

(A′
) there exists a constant δ >  such that Ax + C(x, y) ≤ δBy, ∀x, y ∈ P.

Then the conclusions ()-() in Lemma . hold.

Lemma . Let α ∈ (, ) and P is a normal cone of E. Assume that A is a α-concave
operator, the operators B, C satisfy

B
(
t–y

) ≥ tB(y), C
(
tx, t–y

) ≥ tC(x, y), ∀t ∈ (, ), x, y ∈ P.

Suppose that

(A′′
 ) there exists h ∈ Ph such that A(h) ∈ Ph, B(h) ∈ Ph, C(h, h) ∈ Ph;

(A′′
) there exists a constant δ >  such that By + C(x, y) ≤ δAx, ∀x, y ∈ P.

Then the conclusions ()-() in Lemma . hold.

3 Main results
In the section, we use Lemmas ., ., . to obtain the existence and uniqueness of
positive solutions for the problem (.).

Set E = {x|x ∈ C[, ], Dγ

+ x ∈ C[, ]} is a Banach space with the norm

∥
∥x(t)

∥
∥ = max

{
max
t∈[,]

∣
∣x(t)

∣
∣, max

t∈[,]
Dγ

+
∣
∣x(t)

∣
∣
}

.

E is endowed with an order relation u � v if u(t) ≤ v(t), Dγ

+ u(t) ≤ Dγ

+ v(t). Moreover, let
P ⊂ E be defined by

P =
{

x ∈ E : x(t) ≥ , Dγ

+ x(t) ≥ ,∀t ∈ [, ]
}

.

Clearly, P is a normal cone and Ph ⊂ E.
By Lemma ., we know that the unique solution for the problem (.) has an integral

formulation:

x(t) =
∫ 


G(t, s)f

(
s, x(s), Dγ

+ x(s)
)

ds +
∫ 


G(t, s)g

(
s, x(s)

)
ds +

�(ν – β)
�(ν)

k
(
x()

)
tν–,

where G(t, s) is given by (.).
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We define the operators A, B, C:

A(u)(t) =
∫ 


G(t, s)g

(
s, u(s)

)
ds, t ∈ [, ]; (.)

B(v)(t) =
�(ν – β)

�(ν)
k
(
v()

)
tν–, t ∈ [, ]; (.)

C(u, v)(t) =
∫ 


G(t, s)f

(
s, u(s), Dγ

+ v(s)
)

ds, t ∈ [, ]. (.)

Evidently u is the solution of problem (.) if and only if u = A(u) + B(u) + C(u, u).

Theorem . Assume that

(H) f : [, ] × [, +∞) × [, +∞) → [, +∞), g : [, ] × [, +∞) → [, +∞), and k :
[, +∞) → [, +∞) are continuous;

(H) f (t, x, y) is increasing in x ∈ [, +∞) for fixed t ∈ [, ] and y ∈ [, +∞), decreasing in
y ∈ [, +∞) for fixed t ∈ [, ] and x ∈ [, +∞), g(t, x) is increasing in x ∈ [, +∞) for
fixed t ∈ [, ], k(y) is decreasing in y ∈ [, +∞) for fixed t ∈ [, ] with k(y()) 	= ;

(H) there exists a constant α ∈ (, ) such that f (t,ηx,η–y) ≥ tαf (t, x, y), ∀η ∈ (, ), t ∈
[, ], x, y ∈ [, +∞); g(t, x), k(y) satisfy g(t,ηx) ≥ ηg(t, x), k(η–y) ≥ ηk(y), ∀η ∈ (, ),
x, y ∈ [, +∞);

(H) g(t, ) 	≡  for t ∈ [, ] and there exist two constants δ >  and δ >  such that
f (t, x, y) ≥ δg(t, x), f (t, x, y) ≥ δ ≥ k(y), t ∈ [, ], x, y ∈ [, +∞).

Then we have the following conclusions:
() there exist u, v ∈ Ph ⊂ E and r ∈ (, ) such that

rv � u ≺ v, that is, rv ≤ u < v, rDγ

+ v ≤ Dγ

+ u < Dγ

+ v;

u(t) ≤
∫ 


G(t, s)f

(
s, u(s), Dγ

+ v(s)
)

ds +
∫ 


G(t, s)g

(
s, u(s)

)
ds

+
�(ν – β)

�(ν)
k
(
v()

)
tν–, t ∈ [, ];

Dγ

+ u(t) ≤
∫ 


Dγ

+ G(t, s)f
(
s, u(s), Dγ

+ v(s)
)

ds +
∫ 


Dγ

+ G(t, s)g
(
s, u(s)

)
ds

+
�(ν – β)
�(ν – γ )

k
(
v()

)
tν–γ –, t ∈ [, ];

v(t) ≥
∫ 


G(t, s)f

(
s, v(s), Dγ

+ u(s)
)

ds +
∫ 


G(t, s)g

(
s, v(s)

)
ds

+
�(ν – β)

�(ν)
k
(
u()

)
tν–, t ∈ [, ];

Dγ

+ v(t) ≤
∫ 


Dγ

+ G(t, s)f
(
s, v(s), Dγ

+ u(s)
)

ds +
∫ 


Dγ

+ G(t, s)g
(
s, v(s)

)
ds

+
�(ν – β)
�(ν – γ )

k
(
u()

)
tν–γ –, t ∈ [, ];

where h(t) = tν–, t ∈ [, ] and G(t, s) is defined by (.);
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() the problem (.) has a unique positive solution x∗ in Ph;
() for any initial value x, y ∈ Ph, there are two iterative sequences {xn}, {yn} for

approximating x∗, that is, xn → x∗, yn → x∗, as n → ∞, where

xn(t) =
∫ 


G(t, s)f

(
s, xn–(s), Dγ

+ yn–(s)
)

ds +
∫ 


G(t, s)g

(
s, xn–(s)

)
ds

+
�(ν – β)

�(ν)
k
(
yn–()

)
tν–, n = , , . . . ;

yn(t) =
∫ 


G(t, s)f

(
s, yn–(s), Dγ

+ xn–(s)
)

ds +
∫ 


G(t, s)g

(
s, yn–(s)

)
ds

+
�(ν – β)

�(ν)
k
(
xn–()

)
tν–, n = , , . . . .

Proof By (.)-(.), we can calculate that

Dγ

+ A(u)(t) =
∫ 


Dγ

+ G(t, s)g
(
s, u(s)

)
ds, t ∈ [, ]; (.)

Dγ

+ B(v)(t) =
�(ν – β)
�(ν – γ )

k
(
v()

)
tν–γ –, t ∈ [, ]; (.)

Dγ

+ C(u, v)(t) =
∫ 


Dγ

+ G(t, s)f
(
s, u(s), Dγ

+ v(s)
)

ds, t ∈ [, ]. (.)

To get the conclusions, we need to prove that the operators A, B, C satisfies all conditions
in Lemma ..

Firstly, the proof of A : P → P, B : P → P and C : P × P → P is presented. ∀u, v ∈ P,
from (H) and Lemma ., it is easy to obtain A(u)(t) ≥ , Dγ

+ A(u)(t) ≥ , B(v)(t) ≥ ,
Dγ

+ B(v)(t) ≥ , C(u, v)(t) ≥ , Dγ

+ C(u, v)(t) ≥ , ∀t ∈ [, ]. That is, A(u) ∈ P, B(v) ∈ P,
C(u, v) ∈ P. Therefore, A : P → P, B : P → P and C : P×P → P. Next, we show A is increas-
ing and B is decreasing. ∀u, v ∈ P and u � v, we know that u(t) ≤ v(t), Dγ

+ u(t) ≤ Dγ

+ v(t),
∀t ∈ [, ]. From (H) and G(t, s) � , we have

A(u) =
∫ 


G(t, s)g

(
s, u(s)

)
ds ≤

∫ 


G(t, s)g

(
s, v(s)

)
ds = A(v);

Dγ

+ A(u) =
∫ 


Dγ

+ G(t, s)g
(
s, u(s)

)
ds ≤

∫ 


Dγ

+ G(t, s)g
(
s, v(s)

)
ds = Dγ

+ A(v);

B(u) =
�(ν – β)

�(ν)
k
(
u()

)
tν– ≥ �(ν – β)

�(ν)
k
(
v()

)
tν– = B(v);

Dγ

+ B(u) =
�(ν – β)
�(ν – γ )

k
(
u()

)
tν–γ – ≥ �(ν – β)

�(ν – γ )
k
(
v()

)
tν–γ – = Dγ

+ B(v).

Hence, A(u) � A(v) and B(u) � B(v).
Further, we prove that C is a mixed monotone operator. ∀u, u, v, v ∈ P with u � u,

v � v, that is, u(t) ≤ u(t), Dγ

+ u(t) ≤ Dγ

+ u(t), v(t) ≥ u(t), Dγ

+ v(t) ≥ Dγ

+ v(t), t ∈
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[, ]. By (H) and G(t, s) � , we get

C(u, v) =
∫ 


G(t, s)f

(
s, u(s), Dγ

+ v(s)
)

ds

≤
∫ 


G(t, s)f

(
s, u(s), Dγ

+ v(s)
)

ds = C(u, v),

Dγ

+ C(u, v) =
∫ 


Dγ

+ G(t, s)f
(
s, u(s), Dγ

+ v(s)
)

ds

≤
∫ 


Dγ

+ G(t, s)f
(
s, u(s), Dγ

+ v(s)
)

ds = Dγ

+ C(u, v).

Thus, C(u, v) � C(u, v).
Now we prove A satisfies (.) and B and C satisfy (.). From (H), η ∈ (, ), we obtain

A(ηx) =
∫ 


G(t, s)g

(
s,ηx(s)

)
ds ≥ η

∫ 


G(t, s)g

(
s, x(s)

)
ds = ηA(x),

Dγ

+ A(ηx) =
∫ 


Dγ

+ G(t, s)g
(
s,ηx(s)

)
ds ≥ η

∫ 


Dγ

+ G(t, s)g
(
s, x(s)

)
ds = ηDγ

+ A(x),

that is, A(tx) � tAx, x ∈ P. Then A is a sub-homogeneous operator. Clearly, the following
inequalities are also tenable:

B
(
η–y

)
=

�(ν – β)
�(ν)

k
(
η–y()

)
tν– ≥ η

�(ν – β)
�(ν)

k
(
y()

)
tν– = ηB(y),

Dγ

+ B
(
η–y

)
=

�(ν – β)
�(ν – γ )

k
(
η–y()

)
tν–γ – ≥ η

�(ν – β)
�(ν – γ )

k
(
y()

)
tν–γ – = ηDγ

+ B(y),

C
(
ηx,η–y

)
=

∫ 


G(t, s)f

(
s,ηx(s),η–Dγ

+ y(s)
)

ds

≥ ηα

∫ 


G(t, s)f

(
s, x(s), Dγ

+ y(s)
)

ds = ηαC(x, y),

Dγ

+ C
(
ηx,η–y

)
=

∫ 


Dγ

+ G(t, s)f
(
s,ηx(s),η–Dγ

+ y(s)
)

ds

≥ ηα

∫ 


Dγ

+ G(t, s)f
(
s, x(s), Dγ

+ y(s)
)

ds = ηαDγ

+ C(x, y).

Hence, B(t–y) � tBy and C(x, y) � tαC(x, y).
In the sequel, we demonstrate that the assumptions (A) and (A) are satisfied. In view

of (H), (H) and (.) in Lemma ., we have

A(h) =
∫ 


G(t, s)g

(
s, sν–)ds

≤
∫ 



tν–( – s)ν–β–

�(ν)
g
(
s, sν–)ds

≤ tν–
∫ 



( – s)ν–β–g(s, )
�(ν)

ds,
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A(h) ≥
∫ 



tν–( – s)ν–β–[ – ( – s)β ]
�(ν)

g
(
s, sν–)ds

≥ tν–
∫ 



( – s)ν–β–[ – ( – s)β ]g(s, )
�(ν)

ds,

C(h, h) =
∫ 


G(t, s)f

(
s, sν–, Dγ

+ sν–)ds

≤
∫ 



tν–( – s)ν–β–

�(ν)
f
(

s, sν–,
�(ν)

�(ν – γ )
tν–γ –

)

ds

≤ tν–
∫ 



( – s)ν–β–

�(ν)
f (s, , ) ds,

C(h, h) ≥
∫ 



tν–( – s)ν–β–[ – ( – s)β ]
�(ν)

f
(

s, sν–,
�(ν)

�(ν – γ )
tν–γ –

)

ds

≥ tν–
∫ 



( – s)ν–β–[ – ( – s)β ]
�(ν)

f
(

s, ,
�(ν)

�(ν – γ )

)

ds.

On the other hand, (H), (H) and (.) imply

Dγ
+A(h) =

∫ 


Dγ

+G(t, s)g
(
s, sν–)ds

≤
∫ 



tν–γ –( – s)ν–β–

�(ν – γ )
g
(
s, sν–)ds

≤ �(ν)
�(ν – γ )

tν–γ –
∫ 



( – s)ν–β–g(s, )
�(ν)

ds,

Dγ
+A(h) ≥

∫ 



tν–γ –( – s)ν–β–[ – ( – s)β–γ ]
�(ν – γ )

g
(
s, sν–)ds

≥ �(ν)
�(ν – γ )

tν–γ –
∫ 



( – s)ν–β–[ – ( – s)β–γ ]g(s, )
�(ν)

ds,

Dγ
+C(h, h) =

∫ 


Dγ

+G(t, s)f
(
s, sν–, Dγ

+ sν–)ds

≤
∫ 



tν–γ –( – s)ν–β–

�(ν – γ )
f
(

s, sν–,
�(ν)

�(ν – γ )
tν–γ –

)

ds

≤ �(ν)
�(ν – γ )

tν–γ –
∫ 



( – s)ν–β–

�(ν)
f (s, , ) ds,

Dγ
+C(h, h) ≥

∫ 



tν–( – s)ν–β–[ – ( – s)β–γ ]
�(ν)

f
(

s, sν–,
�(ν)

�(ν – γ )
tν–γ –

)

ds

≥ �(ν)
�(ν – γ )

tν–γ –
∫ 



( – s)ν–β–[ – ( – s)β–γ ]
�(ν)

f
(

s, ,
�(ν)

�(ν – γ )

)

ds.

Set

c =
∫ 



( – s)ν–β–[ – ( – s)β–γ ]g(s, )
�(ν)

ds,

c =
∫ 



( – s)ν–β–g(s, )
�(ν)

ds,
(.)
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c =
∫ 



( – s)ν–β–[ – ( – s)β–γ ]f (s, , �(ν)
�(ν–γ ) )

�(ν)
ds,

c =
∫ 



( – s)ν–β–

�(ν)
f (s, , ) ds.

(.)

From (H) and (H), it is clear that

c ≥ c > , c ≥ c ≥ δc > .

Consequently,

ch � A(h) � ch, ch � C(h, h) � ch.

Further,

B(h) = tν– �(ν – β)
�(ν)

k() =
�(ν – β)

�(ν)
k()h(t), (.)

Dγ

+ B(h) =
�(ν)

�(ν – γ )
tν–γ – �(ν – β)

�(ν)
k() =

�(ν – β)
�(ν)

k()Dγ

+ h(t). (.)

From k(y()) 	= , we have B(h) ∈ Ph. Therefore, (A) in Lemma . is proved.
Next, we show the proof of the condition (A) of Lemma .. By (H),

C(x, y) =
∫ 


G(t, s)f

(
s, x(s), Dγ

+ y(s)
)

ds

≥ δ

∫ 


G(t, s)g

(
s, x(s)

)
ds

= δAx,

Dγ

+ C(x, y) =
∫ 


Dγ

+ G(t, s)f
(
s, x(s), Dγ

+ y(s)
)

ds

≥ δ

∫ 


Dγ

+ G(t, s)g
(
s, x(s)

)
ds

= δDγ

+ Ax.

Then

C(x, y) � δAx.

From (H) and Lemma ., we have

C(x, y) =
∫ 


G(t, s)f

(
s, x(s), Dγ

+ y(s)
)

ds

≥
∫ 



tν–( – s)ν–β–[ – ( – s)β ]
�(ν)

f
(
s, x(s), Dγ

+ y(s)
)

ds

≥ tν–

�(ν)

(


ν – β
–


ν

)

δ
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≥ tν–

�(ν)

(


ν – β
–


ν – γ

)

k
(
y()

)

=


�(ν – β)

(


ν – β
–


ν – γ

)

By,

Dγ

+ C(x, y) =
∫ 


Dγ

+ G(t, s)f
(
s, x(s), Dγ

+ y(s)
)

ds

≥ tν–γ –

�(ν – γ )

∫ 


( – s)ν–β–( – ( – s)β–γ

)
f
(
s, x(s), Dγ

+ y(s)
)

ds

≥ tν–γ –

�(ν – γ )

(


ν – β
–


ν – γ

)

k
(
y()

)

=


�(ν – β)

(


ν – β
–


ν – γ

)

Dγ

+ By.

That means C(x, y) � 
�(ν–β) ( 

ν–β
– 

ν–γ
)By. Let δ = min{δ, 

�(ν–β) ( 
ν–β

– 
ν–γ

)}. Then we have

C(x, y) � δ(Ax + By).

Finally, as an application of Lemma ., we see that the conclusion () in Lemma .
means that there exist u, v ∈ Ph and r ∈ (, ) such that

rv � u ≺ v, that is, rv ≤ u < v, rDγ

+ v ≤ Dγ

+ u < Dγ

+ v;

u(t) ≤
∫ 


G(t, s)f

(
s, u(s), Dγ

+ v(s)
)

ds +
∫ 


G(t, s)g

(
s, u(s)

)
ds

+
�(ν – β)

�(ν)
k
(
v()

)
tν–, t ∈ [, ];

Dγ

+ u(t) ≤
∫ 


Dγ

+ G(t, s)f
(
s, u(s), Dγ

+ v(s)
)

ds +
∫ 


Dγ

+ G(t, s)g
(
s, u(s)

)
ds

+
�(ν – β)
�(ν – γ )

k
(
v()

)
tν–γ –, t ∈ [, ];

v(t) ≥
∫ 


G(t, s)f

(
s, v(s), Dγ

+ u(s)
)

ds +
∫ 


G(t, s)g

(
s, v(s)

)
ds

+
�(ν – β)

�(ν)
k
(
u()

)
tν–, t ∈ [, ];

Dγ

+ v(t) ≤
∫ 


Dγ

+ G(t, s)f
(
s, v(s), Dγ

+ u(s)
)

ds +
∫ 


Dγ

+ G(t, s)g
(
s, v(s)

)
ds

+
�(ν – β)
�(ν – γ )

k
(
u()

)
tν–γ –, t ∈ [, ].

Equation () in Lemma . implies that the problem (.) has a unique positive solution
x∗ in Ph; Lemma .() means that, for any initial value x, y ∈ Ph, there are two iterative
sequences {xn}, {yn} for approximating x∗, that is, xn → x∗, yn → x∗, as n → ∞, where

xn(t) =
∫ 


G(t, s)f

(
s, xn–(s), Dγ

+ yn–(s)
)

ds +
∫ 


G(t, s)g

(
s, xn–(s)

)
ds

+
�(ν – β)

�(ν)
k
(
yn–()

)
tν–, n = , , . . . ;
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yn(t) =
∫ 


G(t, s)f

(
s, yn–(s), Dγ

+ xn–(s)
)

ds +
∫ 


G(t, s)g

(
s, yn–(s)

)
ds

+
�(ν – β)

�(ν)
k
(
xn–()

)
tν–, n = , , . . . . �

Theorem . Assume (H), (H) and suppose that

(H ′
) there exists a constant α ∈ (, ) such that k(η–y) ≥ ηαk(y), ∀η ∈ (, ), t ∈ [, ], y ∈

[, +∞) And g(t, x), f (t, x, y) satisfy g(t,ηx) ≥ ηg(t, x), f (t,ηx,η–y) ≥ ηf (t, x, y), ∀η ∈
(, ), x, y ∈ [, +∞).

(H ′
) g(t, ) 	≡ , f (t, , �(ν)

�(ν–β) ) 	≡  for t ∈ [, ] and there exists a constant δ such that
g(t, x) + f (t, x, y) ≤ δ ≤ k(y), t ∈ [, ], x, y ∈ [, +∞).

Then the conclusions ()-() of Theorem . hold.

Proof Similar to the proof of Theorem ., from (H) and (H), we see that A, B : P → P,
C : P × P → P and A is increasing, B is decreasing, C is a mixed monotone operator. From
(H ′

), we have

A(ηx) =
∫ 


G(t, s)g

(
s,ηx(s)

)
ds ≥ η

∫ 


G(t, s)g

(
s, x(s)

)
ds = ηA(x),

Dγ

+ A(ηx) =
∫ 


Dγ

+ G(t, s)g
(
s,ηx(s)

)
ds ≥ η

∫ 


Dγ

+ G(t, s)g
(
s, x(s)

)
ds = ηDγ

+ A(x),

B
(
η–y

)
=

�(ν – β)
�(ν)

k
(
η–y()

)
tν– ≥ ηα �(ν – β)

�(ν)
k
(
y()

)
tν– = ηαB(y),

Dγ

+ B
(
η–u

)
=

�(ν – β)
�(ν – γ )

k
(
η–y()

)
tν–γ – ≥ ηα �(ν – β)

�(ν – γ )
k
(
y()

)
tν–γ – = ηαDγ

+ B(y),

C
(
ηx,η–y

)
=

∫ 


G(t, s)f

(
s,ηx(s),η–Dγ

+ y(s)
)

ds

≥ η

∫ 


G(t, s)f

(
s, x(s), Dγ

+ y(s)
)

ds = ηC(x, y),

Dγ

+ C
(
ηx,η–ηy

)
=

∫ 


Dγ

+ G(t, s)f
(
s,η(s),η–Dγ

+ y(s)
)

ds

≥ η

∫ 


Dγ

+ G(t, s)f
(
s, x(s), Dγ

+ y(s)
)

ds = ηDγ

+ C(x, y).

Hence, A(tx) � tAx, B(t–y) � tαBy and C(x, y) � tC(x, y). Then A is a sub-homogeneous
operator. Since f (t, , �(ν)

�(ν–β) ) 	≡  and by (H), we obtain c ≥ c > . Obviously, C(h, h) ∈
Ph. From g(t, ) 	≡  and (H), we have c ≥ c > , which implies A(h) ∈ Ph. Here, c, c,
c, c is given by (.), (.). From (.) and (.) in Theorem . and k(y()) 	= , we get
B(h) ∈ Ph.

Now, we show the assumption (A′
) is satisfied. From (H ′

) and Lemma ., for t ∈ (, ),
x, y ∈ [, +∞), we obtain

Ax + C(x, y) =
∫ 


G(t, s)

(
g
(
s, x(s)

)
+ f

(
s, x(s), Dγ

+ y(s)
))

ds

≤
∫ 



tν–( – s)ν–β–

�(ν)
(
g
(
s, x(s)

)
+ f

(
s, x(s), Dγ

+ y(s)
))

ds
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≤
∫ 



tν–( – s)ν–β–

�(ν)
δ ds

≤ 
(ν – β)�(ν – β)

�(ν – β)
�(ν)

k
(
y()

)
tν–

=


�(ν – β + )
By,

Dγ

+
(
Ax + C(x, y)

)
=

∫ 


Dγ

+ G(t, s)(g
(
s, x(s)

)
+ f

(
s, x(s), Dγ

+ y(s)
)

ds

≤
∫ 



tν–γ –( – s)ν–β–

�(ν – γ )
(g

(
s, x(s)

)
+ f

(
s, x(s), Dγ

+ y(s)
)

ds

≤
∫ 



tν–γ –( – s)ν–β–

�(ν – γ )
δ ds

≤ 
(ν – β)�(ν – β)

�(ν – β)
�(ν – γ )

k
(
y()

)
tν–γ –

=


�(ν – β + )
Dγ

+ By.

Let δ = 
�(ν–β+) . Then

Ax + C(x, y) � δBy.

Therefore, by Lemma ., the conclusions ()-() in Theorem . hold. �

Theorem . Assume (H), (H) and suppose that

(H ′′
 ) there exists a constant α ∈ (, ) such that g(t,ηx) ≥ ηαg(t, x), ∀η ∈ (, ), t ∈ [, ],

x ∈ [, +∞). And k(y), f (t, x, y) satisfy k(η–y) ≥ ηk(y), f (t,ηx,η–y) ≥ ηf (t, x, y), ∀η ∈
(, ), x, y ∈ [, +∞).

(H ′′
 ) f (t, , �(ν)

�(ν–β) ) 	≡  for t ∈ [, ], k(y()) 	=  and there exist two constants δ, δ such that
k(y) ≤ δ ≤ g(t, x) and f (t, x, y) ≤ δg(t, x), t ∈ [, ], x, y ∈ [, +∞).

Then the conclusions ()-() of Theorem . hold.

Proof From the proof of Theorem ., we know that A : P → P is an increasing operator,
B : P → P is a decreasing operator, C : P × P → P is a mixed monotone operator.

In the following, we demonstrate that A, B, C satisfy all assumptions in Lemma .. From
(H ′′

 ), we know that

A(ηx) =
∫ 


G(t, s)g

(
s,ηx(s)

)
ds ≥ ηα

∫ 


G(t, s)g

(
s, x(s)

)
ds = ηαA(x),

Dγ

+ A(ηx) =
∫ 


Dγ

+ G(t, s)g
(
s,ηx(s)

)
ds ≥ ηα

∫ 


Dγ

+ G(t, s)g
(
s, x(s)

)
ds = ηDγ

+ A(x),

B
(
η–y

)
=

�(ν – β)
�(ν)

k
(
η–y()

)
tν– ≥ η

�(ν – β)
�(ν)

k
(
y()

)
tν– = ηB(y),

Dγ

+ B
(
η–y

)
=

�(ν – β)
�(ν – γ )

k
(
η–y()

)
tν–γ – ≥ η

�(ν – β)
�(ν – γ )

k
(
y()

)
tν–γ – = ηDγ

+ B(y),



Zhang and Tian Advances in Difference Equations  (2017) 2017:114 Page 15 of 19

C
(
ηx,η–y

)
=

∫ 


G(t, s)f

(
s,ηx(s),η–Dγ

+ y(s)
)

ds

≥ η

∫ 


G(t, s)f

(
s, x(s), Dγ

+ y(s)
)

ds = ηC(x, y),

Dγ

+ C
(
ηx,η–y

)
=

∫ 


Dγ

+ G(t, s)f
(
s,η(s),η–Dγ

+ y(s)
)

ds

≥ η

∫ 


Dγ

+ G(t, s)f
(
s, x(s), Dγ

+ y(s)
)

ds = ηDγ

+ C(x, y).

That is, A(tx) � tαAx, B(t–y) � tBy and C(x, y) � tC(x, y). Then A is a α-concave operator.
From (H), (H ′′

 ), we obtain c ≥ c >  and c ≥ c > , where c, c, c, c are defined by
(.), (.). It is evident that C(h, h) ∈ Ph and A(h) ∈ Ph. From the proof of Theorem .,
we get B(h) ∈ Ph. Therefore, the condition (A′′

 ) in Lemma . is proved.
Next, we present the assumption (A′′

). From (H ′′
 ) and Lemma ., for t ∈ (, ), x, y ∈

[, +∞), we obtain

C(x, y) =
∫ 


G(t, s)f

(
s, x(s), Dγ

+ y(s)
)

ds

≤ δ

∫ 


G(t, s)g

(
s, x(s)

)
ds

= δAx,

Dγ

+ C(x, y) =
∫ 


Dγ

+ G(t, s)f (s, x(s), Dγ

+ y(s) ds

≤ δ

∫ 


Dγ

+ G(t, s)g
(
s, x(s)

)
ds

= δDγ

+ Ax.

On the other side, from (H ′′
 ) and Lemma .,

A(x) =
∫ 


G(t, s)g

(
s, x(s)

)
ds

≥
∫ 



tν–( – s)ν–β–[ – ( – s)β ]
�(ν)

g
(
s, x(s)

)
ds

≥ δ

∫ 



tν–( – s)ν–β–[ – ( – s)β ]
�(ν)

ds

≥ 
�(ν – β)

(


ν – β
–


ν

)
�(ν – β)

�(ν)
k
(
y()

)
tν–

≥ 
�(ν – β)

(


ν – β
–


ν – γ

)
�(ν – β)

�(ν)
k
(
y()

)
tν–

=


�(ν – β)

(


ν – β
–


ν – γ

)

By,

Dγ

+ A(x) = Dγ

+

∫ 


G(t, s)g

(
s, x(s)

)
ds

≥
∫ 



tν–γ –( – s)ν–β–[ – ( – s)β–γ )]
�(ν – γ )

g
(
s, x(s)

)
ds
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≥ δ

∫ 



tν–γ –( – s)ν–β–[ – ( – s)β–γ ]
�(ν – γ )

ds

≥ 
�(ν – β)

(


ν – β
–


ν – γ

)
�(ν – β)
�(ν – γ )

k
(
y()

)
tν–γ –

=


�(ν – β)

(


ν – β
–


ν – γ

)

Dγ

+ By.

That is, C(x, y) � δAx and By � (ν–γ )�(ν–β+)
β–γ

Ax. Let δ =  max{δ, (ν–γ )�(ν–β+)
β–γ

}. Then

By + C(x, y) � δAx.

Therefore, applying Lemma ., the results ()-() in Theorem . are tenable. �

Remark . Comparing Theorem ., Theorem . and Theorem . with the main re-
sults in [], we provide some alternative approaches to the study of the same type of prob-
lems (when the parameter k(x) =  and γ = ) under different conditions. Our results
cannot only guarantee the existence of a unique positive solution but also we obtain two
sequences approximating the solution.

4 Examples
As applications, three examples are presented to illustrate our main results.

4.1 Example 1
Consider the following fractional differential equation:

⎧
⎪⎪⎨

⎪⎪⎩

D


+ x(t) + (x(t)) 

 + t + (x′(t) + )– 
 +  = , t ∈ (, ),

x() = x′() = x′′() = x′′′() = ,
D



+ x(t) = 

+x() .

(.)

Let g(t, x) = (x(t)) 
 + t and g(t, ) = t 	≡ , f (t, x, y) = (x(t)) 

 +(y(t)+)– 
 + and k(y) = 

+y .
Clearly, g : [, ] × [, +∞) → [, +∞), f : [, ] × [, +∞) × [, +∞) → [, +∞) and k :
[, +∞) → [, +∞) are continuous. It is easy to see that g(t, x) is increasing in x ∈ [, +∞)
for fixed t ∈ (, ), k(y) is decreasing in y ∈ [, +∞) and f (t, x, y) is increasing in x ∈ [, +∞)
for fixed t ∈ (, ) and y ∈ [, +∞), decreasing in y ∈ [, +∞) for fixed t ∈ (, ) and x ∈
[, +∞). In addition, ∀η ∈ (, ) we get

g(t,ηx) =
(
ηx(t)

) 
 + t ≥ η



(
x(t)

) 
 + ηt ≥ η

((
x(t)

) 
 + t)g(t, x) = ηg(t, x),

f
(
t,ηx,η–y

) ≥ η


(
x(t)

) 
 + η



(
y(t) + 

)– 
 +  ≥ η



((

x(t)
) 

 + η


(
y(t) + 

)– 
 + 

)

= η

 f (t, x, y),

k
(
η–y

)
=


 + η–x

≥ ηk(y).

Moreover, set δ = δ = ,

f (t, x, y) =
(
x(t)

) 
 +

(
y(t) + 

)– 
 +  ≥ δ ≥ 

 + y
= k(y),

f (t, x, y) =
(
x(t)

) 
 +

(
y(t) + 

)– 
 +  ≥ (

x(t)
) 

 + t = δg(t, x).
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Hence, all the conditions of Theorem . are satisfied. Then the problem (.) has a unique
positive solution x∗ in Ph , where h = t 

 .

4.2 Example 2
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

D



+ x(t) + t + t + x
+x + 

D


+ x(t)+

= , t ∈ (, ),

x() = x′() = x′′() = ,

x′′() = (x())– 
 + .

(.)

Let g(t, x) = t + x
+x , f (t, x, y) = t + x

+x + 
y+ and k(y) = y– 

 + . Obviously, g : [, ] ×
[, +∞) → [, +∞), f : [, ] × [, +∞) × [, +∞) → [, +∞) and k : [, +∞) → [, +∞)
are continuous. It is clear that g(t, x) is increasing in x ∈ [, +∞) for fixed t ∈ (, ), k(y)
is decreasing in y ∈ [, +∞) for fixed t ∈ (, ) and f (t, x, y) is increasing in x ∈ [, +∞) for
fixed t ∈ (, ) and y ∈ [, +∞), decreasing in y ∈ [, +∞) for fixed t ∈ (, ) and x ∈ [, +∞).
In addition, ∀η ∈ (, ) we get

g(t,ηx) = t +
ηx

 + ηx
≥ ηt + η

x
 + x

= ηg(t, x),

f
(
t,ηx,η–y

)
= t +

ηx
 + ηx

+


η–y + 
≥ t +

ηx
 + x

+
η

y + 
≥ ηf (t, x, y),

k
(
η–y

)
=

(
η–y

)– 
 +  ≥ η


 k(y).

Besides, g(t, ) = t 	≡  and f (t, , �(ν)
�(ν–β) ) = t + 

�(ν)
�(ν–β) +

	≡ , set δ = ,

f (t, x, y) + g(t, x) = t + t +
x

 + x
+


y(t) + 

≤ δ ≤ (
y(t)

)– 
 +  = k(y).

Therefore, we proved all hypotheses of Theorem .. Then we deduce that (.) has a
unique positive solution x∗ in Ph , where h = t 

 .

4.3 Example 3
Consider the following fractional differential equation:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

D


+ x(t) +  + (x(t)) 

 + cos t + 

D


+ x(t)+

= , t ∈ (, ),

x() = x′() = ,

[D


+ x(t)]t= = 

+x()



.

(.)

Let g(t, x) =  + (x(t)) 
 , f (t, x, y) = cos t + (x(t)) 

 + 
y+ and k(y) = 

+y



. Evidently, g : [, ]×
[, +∞) → [, +∞), f : [, ] × [, +∞) × [, +∞) → [, +∞) and k : [, +∞) → [, +∞)
are continuous. It is not difficult to verify that g(t, x) is increasing in x ∈ [, +∞) for fixed
t ∈ (, ), k(y) is decreasing in y ∈ [, +∞) and f (t, x, y) is increasing in x ∈ [, +∞) for fixed
t ∈ (, ) and y ∈ [, +∞), decreasing in y ∈ [, +∞) for fixed t ∈ (, ) and x ∈ [, +∞).
Moreover, we get

g(t,ηx) =  +
(
ηx(t)

) 
 ≥ η


  + η



(
x(t)

) 
 = η


 g(t, x),
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f
(
t,ηx,η–y

)
= cos t +

(
x(t)

) 
 +


η–y + 

≥ η cos t + η
(
x(t)

) 
 +

η

y + 
≥ ηf (t, x, y),

k
(
η–y

)
=


 + (η–y) 


≥ η




 + y 


≥ η

 + y 


= ηk(y).

Besides, f (t, , �(ν)
�(ν–β) ) = cos t + 

�(ν)
�(ν–β) +

	≡ , set δ = , δ = ,

k(y) =


 + y 


≤ δ ≤  +
(
x(t)

) 
 = g(t, x),

f (t, x, y) = cos t +
(
x(t)

) 
 +


y + 

≤  +
(
x(t)

) 
 = δg(t, x).

In consequence, an application of Theorem . means that (.) has a unique positive
solution x∗ in Ph , where h = t 

 .
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