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Abstract

Synchronization of chaotic systems which is defined based on the exponential
stability for encrypts of signals is presented in this paper. An adaptive control scheme
is proposed, and the convergence of the synchronized error is guaranteed. Masking
and modulation methods are applied for encryption. To verify the effectiveness of the
proposed schemes, numerical simulation was applied on a well-known system
without linear term chaotic using MatLab software. The comparison of the proposed
chaotic synchronization in the case of the synchronization rate and in the decryption
precision of sent signal and image are shown.

Keywords: synchronization; chaos; exponential; stability; encryption

1 Introduction

Chaotic systems are nonlinearly deterministic and sensitive to initial conditions, they have
been studied since the two most recent decades [1-4]. Chaotic systems have a lot of appli-
cations in different sciences such as laser, secure communication, biology sciences, non-
linear circuits, neural and computer networks [5-10].

The control of chaos is one of the main issues in the study of chaotic systems. The
synchronization is one of the main control methods of these systems, which were intro-
duced in a paper by Pecorra and Carrol in 1990 [3]. In recent years, synchronization of
chaotic systems has become very attractive and has been applied in vast area of engineer-
ing, physic, computer networks, and so on which aroused increasing interest as regards
use in new areas such as cryptography [11-15].

Up to now, many synchronization methods such as adaptive control, nonlinear feed-
back control and sliding mode control were proposed and applied successfully on chaotic
systems [16—21]. But almost all of them used Lyapunov stability theorems to guarantee
asymptotically synchronization and convergence is slow to the origin.

The exponential synchronization is another proposed method in this field, which has
certain precision and stability in error systems. This method is robust and faster than the
Lyapunov stability one. Tong et al. [22] applied exponential synchronization for stochas-
tic neural networks with multi-delayed and Markovian switching via adaptive feedback
control, Yan and Yu [23], Lio and Yu [18] studied exponential synchronization for some
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well-known classical dynamical systems. Yang used exponential stability in synchroniza-
tion of a higher order chaotic system [17] etc.

So far, to the best of the authors’ knowledge, the problem of adaptive exponential syn-
chronization and its applications for chaotic dynamical systems have received very little
research attention.

In the recent work, the authors have proposed the adaptive based on exponential stabil-
ity methods to secure chaos communication through the method of chaos masking and
modulation. The general idea in the utilization of chaotic systems in using a transition of
the desired signal is integration of it with a chaotic system and production of a chaotic
signal. This signal is recoverable after synchronization. There are two major issues in this
case; one includes how to produce the chaotic signal; this is usually conducted by both
masking and modulation methods [24, 25].

The other most important issue is the time of transmittance and reception of the signal.
The signal is produced and transmitted after synchronization of both slave and master
systems. Thus, as the synchronization rate is high, the signal, with regard to its dependency
on synchronization error, could be transmitted faster with better approximation.

This paper was conducted by introducing theorems related to the exponential stability
and comparison of results in the encryption of signals based on Lyapunov stability and
exponential stability.

The main contributions of this paper can be highlighted as follows. (1) A new adaptive
synchronization method is studied for a fully nonlinear chaotic dynamical system based
on the exponential stability theorem. (2) Application of the adaptive exponential synchro-
nization obtained in encryption using modulation and masking methods.

The paper was organized as follows. Section 2, the definitions and theorems related to
exponential and Lyapunov stability were provided. In Section 3, synchronization of a sys-
tem without linear term is provided. Transmission and reception of the signal text by the
modulation method was given for a well-known system using exponential and Lyapunov
stability in Section 4. Then the masking method and adaptive exponential stability were

utilized to transmit a pictorial signal. Concluding remarks were provided in Section 5.

2 Preliminaries
2.1 Stability of autonomous systems
Consider the autonomous system

x =f(x), @)
where f : D — R”" is the local Lipschitz map of domain D C R” to R".

Definition 2.1 Suppose x( = 0 is one of the fixed points of equation (1), in this case [26].
« It is stable if, for any €, there exists the value of § = §(¢) so that

Hx(0)||<8 = ||x(t)||<e, vVt > 0.

« Itis unstable if it is not stable.
« It is asymptotically stable, if it is stable and there exist § so that

Hx(O) ” <§ = tlirglox(t) =0.
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For studying stability, a practical way is finding a Lyapunov function in linear and non-
linear systems without obtaining the response of them.

Theorem 2.1 (Lyapunov stability theorem) Suppose x = f(x), x € D € R" to have a fixed
point in the origin. If there exists a real function V' in a neighborhood of N at the origin [27]

where:
. %, i=1,2,...,n, exists and is continuous;
« V is positive definite,

then:

o If V is semi negative definite, then the origin is a stable fixed point of the system.
o If V is negative definite, then the origin is a fixed point and asymptotically stable.
o If V is positive definite, then the origin is an unstable fixed point.

2.2 Stability of non-autonomous systems
Consider the following non-autonomous system:

x :f(t’ x), (2)

where the function f : [0,00) x D — R" is piecewise continuous with respect to ¢ and is
local Lipschitz with respect to x on [0, 00) x D, which includes the origin. In this case x = 0
is the fixed point of equation (2) on ¢ = 0 if

£(t0)=0, Vt>0.

It could be interpreted as follows: the fixed point is located on the origin as a non-zero
fixed point or in a more general case, as the non-zero response of system.

The concepts of stability and asymptotically stability of a fixed point in non-autonomous
systems correspond to Definition 2.1 in autonomous systems unless there is a new case,
in that the response of autonomous system only depends on (¢ — t), and the response of
the non-autonomous system also depends on both ¢ and ;. Thus, in the general state, the
stability of fixed point depends on £y.

Definition 2.2 Fixed point x = 0 related to equation (2):
« It is stable if, for any € > 0, the value of § = §(¢, tp) is such that

|xto)| <8 = |x®)|<e VE=ty=0. (3)

« It is uniformly stable if, for any € > 0, the value of § = §(¢) (independent of #;) is such
that equation (3) holds.

« It is unstable, if is not stable.

« It is asymptotically stable if is stable and there is a value such as ¢ = ¢(#y) > 0 so that,
for all values of ||x(¢y)|| < ¢, we have lim;_, o, x(¢) = 0.

« It is uniform asymptotically stable if it is uniformly stable and there is a value such as
¢ > 0 (independent of £) so that, for all values of ||x(fo)|| < ¢, as £, tends to infinity, ()
monotonically tends to zero with respect to £, in other words, for any € > 0, there
exists a value such as ¢ = T'(¢) so that

Hx(t)” <€, Vt>ty+ T(e),VHx(to)H <c.
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« It is globally uniform asymptotically stable, if it is uniformly stable and, for any pair of
positive numbers € and ¢, there is a value £ = T'(¢, ¢) > 0 so that

Hx(t)” <€, Vt>ty+ T(e,c),V”x(to)” <c.

The uniform stability and uniform asymptotical stability could also be indicated based
on specific numerical functions, i.e. class « and class «: functions [28].

Definition 2.3 The continuous function « : [0,4) — [0, 00) belongs to class « if it strictly
is increasing and «(0) = 0. This function belongs to k, if 2 = co and with r increasing to
infinity, a(r) also tends to infinity.

Definition 2.4 The continuous function g : [0,a) x [0, 00) — [0, 00) belongs to class k.t if
for any specific value s, the mapping B(r, s) with respect to r belongs to class x and also for
any specific value r, the mapping B(r, s) is decreasing with respect to s, and by increasing
s to infinity, B(r,s) tends to zero.

Example 2.1 The function a(r) = arctanr is increasing strictly because é(r) = 1/(1+r%) > 0.
This function belongs to class «, but it does not belong to class k., because lim,_, o () =
/2 < oo.

The following lemma indicates some of explicit features of functions, class « and «t.

Lemma 2.2 Suppose o1(-) and ay(-) in the interval [0,a) are class k functions and os(-)
and a4 () to be class k ones. If we show the converse of a;(-) with a7 (-), then we have [29]
o a7}(:) is defined in the interval [0, a1 (a)] belongs to class k.
o a31(") is defined in the interval [0, 00) and belongs to class k.
o o100 belongs to class Koo .
o azoay belongs to class koo.

o a(r,s) = a1(B(ax(r),s)) belongs to class keo.

The following lemma explains the equivalence definitions for uniform stability and uni-
formly asymptotically stability based on class « and k¢ functions.

Lemma 2.3 ([30]) For the fixed point x = 0 related to equation (2):
o It is uniformly stable, if and only if function a(-) belongs to class k and there is a
positive constant c (independent of ty) so that

[« = a(]lx(z0)

), VE=t6>0,Y|x(to)| <c (4)

« It is uniformly asymptotically stable, if and only if function B(-,-) belongs to class k.t
and there is a positive constant c (independent of ty) so that

[x@] = B(x(0)]

), Vt=to> 0,V||x(t0)|| <c. (5)

o It is globally uniform asymptotically stable if and only if inequality (5) holds for any
initial state of x(t).
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2.3 Exponential stability
As one of Lemma 2.3 results, it could be considered that in the case of non-autonomous
systems, the stability and asymptotical stability based on definition (1) mean that there
are functions of class x and k¢ so that inequality (4) and (5) hold. Because in the non-
autonomous systems, the stability and asymptotically stability of origin are uniform with
respect to the initial time #.

One particular case of uniform asymptotically stability occurs when, in equation (5), the
function 8 belongs to class k¢ as 8(r,s) = kre"*. This case is very important and could be
considered one of distinctive features of fixed point stability.

Definition 2.5 The fixed point x = 0 related to equation (2) is exponentially stable, if in-
equality (5) holds for any of the following values:

B(r,s) =kre™”*, k>0,y >0.

In addition, it is globally exponentially stable if the above condition holds for all initial
values.

Now, we explain the main theorem.

Theorem 2.4 Suppose x = 0 to be one of the fixed points of equation (2) and D C R" to bea
domain including the origin. In addition, suppose V(x) : [0,00) x D — R to be a continuous
and derivable function where for all values of t > 0 and x € D the following relations are

satisfied:
w1(x) < V(t,%) < wr(x), (6)
) = o), 7)

where wi(x), wy(x) and ws(x) are positive definite and continuous functions on D. Then the
point x = 0 is uniformly asymptotically stable [31].

If the class « functions are of the particular form «;(r) = k;r¢, its application is easy in
the proof of Theorem 2.4. In this case, it could be shown that the origin is exponentially
stable.

Theorem 2.5 Suppose all hypotheses of Theorem 2.4 are satisfied along with the following
conditions:

w1(®) = kallxl® w2(x) <kellxll® ws(x) = ksllx]l®

when ki, ky, ks and c are positive constants, then x = 0 is exponentially stable. Also, if all
globally hypotheses hold, x = 0 is globally exponentially stable [29].

Proof The functions V and V satisfy the following inequalities:

killxll® = V(%) < kel

. ks ®)
VS —ks|lx] = —k—V(t,x)-
2
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By using the deduction lemma, we could write

V(tx(8)) < V(8 x(tp)) e e/k0),

Therefore,
[ V(%) T
[+0] = | —— ©
< [V (t, x(to))e ks k2)le~t0) Y 1e
= k.
_ [Rellatto) e oo 7 e
= A
kz 1/c
= (k—> ”x(to)”e_(kB/kZC)(t—tO)‘ (10)
1

As a result, the origin is exponentially stable, so that all hypotheses are satisfied globally,
the above inequality would hold for all values of x(y) € R". O

3 Synchronization based on the exponential stability
In this section, the synchronization system without linear term is introduced based on
exponential and Lyapunov stability using nonlinear control functions.

Consider the nonlinear chaotic system [32]

X = ln(a + eyl_"l),
9 =x121, (11)
Z1=b- X1)15
where x1, y1 and z; are the state variables and a, b are real parameters. Figures 1 and 2
show the Lyapunov exponent and the chaotic behavior of the system (11) for a = 0.1 and
b=0.25.
For synchronization, let system (11) be the drive system and the corresponding response
system be written as follows:
Xy = ln(a + eyz”‘z) + Ui,
Y2 = %22 + Ua, 12)
Zy = b —xy2 + us,
where u;, u; and u3 are the input nonlinear control functions. By defining the synchro-

nization error as e; = Xy —x1, €2 = y2 — y1, €3 = 2z — 21, and using equation (12), the synchro-

nization error dynamics can be written as

a+ e el ™
ér=In| ——— | +uy,

a+ e

. (13)
ey =ejes3 +e1z;1 + esx; + Uy,

ég = —(6261 + 1€ + xlez) + Us.
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Dynamics of Lyapunov Exponents

Figure 1 Lyapunov exponent of system without 04
linear term chaotic.

Lyapunov Exponents

Figure 2 System without linear term chaotic.

4 2

Definition 3.1 The response system (12) will synchronize exponentially with the drive

system (11) for any initial values if the error system satisfies the following estimation:
E@)TE(@t) < ae @), (14)

where ET = [e;(t), e5(t), e3(t)] and «, o are positive constants, respectively, dependent and
independent from E(ty), which is called the convergence rate. In this case the zero solution

of error system (13) is stable and the two systems (11) and (12) are called synchronized [17].

Lemma 3.1 The system (13) can be exponentially stabilized at the origin if there exists a
positive definite function V(t) such that

KET(0)E(®) < V() < ET(H)E(®), (15)

V(t) < -k:ET(t)E(t), (16)

where ki, ky and ks are positive constants, V(t) = V(E(t)) and ky < ky. Therefore, the drive
system (11) and the response system (12) are exponentially synchronized [17].

Proof Let V(t) = E(t)PE” (t) where P is a symmetric positive definite matrix. Choose k; =
Amin(P) > 0 and ky = Amax(p) > 0 where k; and k; are minimum and maximum eigenvalues

of the matrix P. Then the time derivative of V(¢) satisfies the inequality

V) < -ﬁwt) =—V({), o= ks > 0. 17)
k2 k2
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It can be concluded that

V(t) < V(tp)eE1), (18)
Hence
Er@Ew) < 28 < Y ot Ko g pg oo, (19)
kl /(1 kl

From Definition 3.1, « = %ET(tO)E(tO). Therefore, in this case, system (13) is exponen-
tially stable and the synchronization of the drive system (12) and the response system (11)
sufficiently achieved. O

Lemma 3.2 Forany k € R* and x,y € R the following inequality holds:
20x|ly| < kx® + k712 (20)

Theorem 3.3 The drive system (11) and response system (12) are exponentially synchro-
nized if the nonlinear feedback controls are chosen as

uy =-C—-wey,
Uy = —w1 €y, (21)

Us = —wses,

and

a + Exp(e; — e1) Exp(y; — 1)
C > ln )
a + Exp(y; —x1)

1 (kg kz)
w>=——=+—=),
2 P1 P2 (22)
1
Z(k ,
wy > 2((3/01)
~ (fa)
w3 > =(ky02),
3 5 202
where wy, wy, w3 > 0, |x1| < ki, [y1]| < ky and |z1| < ks and p, and p, are positive constants.
Proof Let
T Ly, o, 2
V(t)=E'PE = Eel +e; +e;, (23)

where P = diag(1/4,1/2,1/2) is diagonal positive definite matrix. The time derivative of the
function (23) for the error system (13) and control laws (21) are

V() = é1e1 + x5 + €363

o1 ® + Exp(ex — e1) Exp(y1 — 1)
! a+Exp(y; —x1)

+ ul)) +ex(eres + e1z) + e3xy + Uo)

+e3(—(erer + ey + e2x1) + u3). (24)
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Substituting (22) in (24) yields
2

V(t) < —(wlef +wye; + a)geﬁ) +exe1z) — y1€e3e;

2 2 2
< —(a)lel +woe; + a)3€3) + ksles|ler] + kalesller. (25)

From Lemma 3.2, for any p; and p,, we obtain

V(t) < —(wi€] + o€ + wsel) + 3

NS

k
(,ole% + pflef) + Ez(pzeg + pz_lef)

ks ko ks p1 ka 02
Y . TU.o T WEPCY (SN T2 BT RS T A | 26
“ (w1 2010 2p2 ) 2 <w2 2 S\ 2

For w;, w2, w3 > 0, then

k k:
W > I —2, (27)
201 202
ksp1
wy > ———,
2
ka2
w3z > ——
2
Therefore,
V(t) < —aETE, (28)
where o = min{w; — 2% - 2%, Wy — ]%,a)g - kz%}. According to Lemma 3.1 and inequality
(28), the systems (11) and (12) are exponentially synchronized. O

Simulation results: to show the validity of the proposed method, MatLab software is
applied for synchronization of the drive system (11) and the response system (12) using
control laws (21). The initial conditions for drive and response systems, respectively, are
chosen as (x1(0),y1(0),21(0)) = (1, -1,2) and (x2(0),¥>(0),2(0)) = (3,1, -1). Figures 3 and 4
show the simulation results for the drive-response and error system, which confirms that
the error system converges to zero and the two systems are exponentially synchronized.

To show the advantage of our applied exponential synchronization method using a non-
linear control function, the results are compared with synchronization based on the Lya-
punov stability theorem. For the same system and initial conditions as shown in Figure 5,
it is obvious that our methods have the advantage by compression synchronization times
in Figure 3 of almost 0.1 second over approximately 4 second in Figure 5.

The main benefit of the exponential synchronization method is the fast convergence.
But there is a disadvantage in that, in practice, for some systems it is impossible or very
difficult to obtain the exponential synchronization conditions. In this case, the exponential
synchronization will change to synchronization based on the Lyapunov stability theorem.
In simple terms, we can say exponential stability is Lyapunov stability, but the reverse is
not true.
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Figure 3 Solution of the two active identical 4
Wang systems with nonlinear control. (a) Signal
x1 and yy, (b) signal x; and y,, (c) signal x3 and y3.

L L
0 0.5 1 15 2

4 Application of chaos to secure communication
Encryption of information is carried out when two persons want to communicate with
each other by an insecure communicative channel that can be a telephone or network but
the third person could not identify the exchanged information by listening to them. What
the first person wants to send to the second person is called the context text; it can be an
image or a text by any language that is completely optional. Before sending the message, the
transmitter of information should encrypt the information by a specific key. In this case,
the context text is converted into the encrypted text. The encrypted text passes through a
communicative channel of two individuals and the second person could decrypt the text
by using the key and the text is converted into a context text.

Our goal is to use chaotic systems for encryption. Since aperiodic waves of the chaotic
systems cannot be predicted, these systems are important in secure communication. Also
chaotic systems are sensitive to initial conditions, which is another advantage for using

Page 10 of 21
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Figure 4 Evaluation difference of variables two 1
drive and response systems. or

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

these systems in different applications of secure communication. Here encryption using
modulation and the masking method is studied.

4.1 Text modulation via adaptive exponential stability

In chaos modulation the information signal is injected into the transmitter. First we intro-
duce some definitions, then we propose a fast mechanism for synchronization the chaotic
systems without linear term (11) based on the drive-response approach. Using exponential

synchronization, the secure communication scheme is studied.

Definition 4.1 ([33]) Consider the smooth system that is described by a variables vector
X = {x;}7 € R! where the output vector is presented by Y = {y;}/" € R%:

X =f(Xr C)) Y= h(X)r (29)
where the function 4(-) is a smooth vector and the vector C € R! is for constant parameters.

Let Y7, denote the jth time derivative of the vector Y. It is said that the vector state X is
observable algebraically, if it is expressed uniquely by

X=¢(v,YD,...,Y"), (30)
for integer j and for smooth function ¢.

Definition 4.2 ([33]) With the same conditions of Definition 4.2, if the vector of param-
eters, C, satisfies the following equation:

(Y, YD, YD) =y (G,6Y,...,GY)C, (31)

where ¥ (-) and v (-) are, respectively, # x 1 and n x n smooth parameters matrices, then
C is said to be identifiable algebraically with respect to the output vector Y.

Now, assume the second differential equation of system (11) to be

B!
=
21

x1 (32)
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Figure 5 Solution of the two active identical
Wang systems with nonlinear control. (a) Signal

x2

x1 and yy, (b) signal x; and yy, (c) signal x3 and y3. 1
0.5
0 ‘ ‘
4 o—=s% 10
t

_0.5,

-1

_1.5,

— vyl —

z2

zl

then substituting equation (32) into the third differential variables of system (11) leads to
2121 + );1_)/1 = bZl. (33)
According to Definitions 4.1 and 4.2 the system (11) is observable algebraically with re-

spect to the two outputs y; and z;. The parameter b in equations (33) and (11) is identifiable
algebraically with respect to the two other available outputs. Therefore, the non-available
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state variable x; and the parameter b can be recovered simultaneously from the two other
available outputs.
In the transmitter system, the parameter b is considered to transmit the message signal

and the following drive system is defined:

%1 =In(a+e"™),
Y1 = X121, (34)

z1 = b(t) - x1y1,
where x1, y1, z1 are the state variables of chaotic system (11) with the modulation law
b(t) =o(t) + b, (35)

where o(¢) is the input message signal, which needs to be transmitted. In the receiver sys-
tem, the response system is assumed to be the partly uncertain system (11) where the avail-
able outputs variables are y; and z;. Hence, the response system is defined with controllers

as follows:
%) =1In(a+€"7?) + uy,
Yo = X221 + Uy, (36)

~

Zy = b(t) = xoy1 + U3,
where x5, ¥, and z; are the state variables of system (11) with the modulation laws

b(t) = o(¢) + b, (37)
where 0(t) is the recovered signal and b is the approximation of the unknown parameter b.
U = [uy1,uy,u3]" is the input nonlinear control to achieve synchronization of the systems

(34) and (36).

Subtracting the drive system (34) from the response system (36), the error system is

obtained:
a+e e ™
e = ln(4) + Uy,
a+en
. (38)

€y = €121 + Uy,

ég = 5(1’) + é(t) —e) +us,
where

0=6-0, b=b-b. (39)

Therefore, for chaos synchronization, we need to define the controller {/ and a parameter

approximation law to set the error system to converge to zero exponentially.
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Theorem 4.1 If the controller in the receiver system (36) is defined as follows:

bil =—C-— 260161,
biz = —Wwy€y, (40)

U3 = —w3e3,
with the law parameter and message signal, respectively, chosen as

(L) = —€3 — w55,
. 5 (41)
b= —e3 — a)4b,

and

a + Exp(—e;) Exp(y; — %1
c>1In )
a + Exp(y; —x1)

wy > z—pl, (42)

where w), w;, w3, Wa, P1, P2 are positive and |x;| < k;, i =1,2,3, then the response system
(36) will synchronize the drive system (34) exponentially. Moreover, the message signal s(t)
will recover by the receiver system (36), which is combined into the chaotic transmitter (34)
via the modulation laws (40) and (42).

Proof Assume E = [ey, ey, e3, b, ), by defining the quadratic Lyapunov function as

1 1 1 1-, 1.
V(t) = EPET = Ee% + 56% + Eeg + Ebz + 502, (43)

by the same proof as Theorem 3.3 exponentially stability can be achieved. O

To demonstrate and verify the validity of the modulation schemes, we confirmed our
analytical studies be numerical simulations via MatLab software. We solve the dynamical
systems using the fourth order Runge-Kutta numerical method. At the transmitter sys-
tem side, the system parameters are chosen as a — 0.1, b = 0.25, while the arbitrary initial
conditions are set as x;(0) = 1, x2(0) = 1, x3(0) = —3. At the receiver system side, we fix
the arbitrary initial conditions as y;(0) = -1, y2(0) = -2, y3(0) =1, a = 0.1, b(0) = 1 and

0(0) = 0.8. Suppose the message signal o(t) is a trigonometric signal such as

o(t) = 0.05sin(60mt).
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Figure 6 Error signal between systems (34) and ! '
. 0
(36) over the time. 5 (
1) 1 2 3 4 5 6 7 g 9 10
1 T
o
Q- 1
2 i
o 1 2 3 4 5 & 7 8 9 10
4
g 2 1
0
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Figure 8 The value of the unknown parameter b.

Figure 6 displays the synchronization difference (error) between systems (34) and (36).
It confirms that synchronized errors between system (34) and (36) converge exponentially
to zero. Figure 7 shows the error signal between the original message and the recovered
one that confirms the message signal o(¢) is recovered accurately. Figure 8 shows the value
of the unknown parameters b which converge exponentially to the exact value.

4.2 Modulation-based adaptive Lyapunov stability
Consider two drive and response systems, respectively, as drive system

% =In(a+e"™),
91 =x121, (44)

Z1=b- X1)15
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and

Xy = ln(a + eyz_"z) + U,
Y2 = X220 + U, (45)

Z'2 = b—xzyz + Us.

We have introduced the three control functions u1, #, and #3 and define the error variables
as

e =y1—Xx, e =Yy)—X, €3 =Y3 —X3. (46)
Subtracting (44) from (45) and using the notation (46), we obtain the error system as

é = ln(a + eyz_”) - 1n(a + eyl_xl) + U,
éz =X9Z9 — X121 + Uy, (47)

€3 = —)2X2 + Y1X1 + U3.

Theorem 4.2 For any initial conditions, if the controller functions u,, u, and us are de-

signed with

(48)
Uy =ese; +e1z; +x1e3 —éy,
Uz = —€16 — €2X1 —€1)1 — €3,
and the updating laws of the unknown parameters are chosen by
aW=a,  bw=by, (49)

where & = a —a and b = b — b are the estimates of the unknown parameters, a and b, then

the trajectory of the error system converge to zero exponentially.

Proof If the positive Lyapunov function is chosen as
Lo, 2 -2 B2
V=§(1+82+ﬂ+ )

with the choice of the controller (48) and updating laws (49), then the time derivative of
V along the trajectory of the system (44) and (45) is negative definite. So, according to the
Lyapunov theorem, the synchronization of systems (44) and (45) is achieved under the

chosen controller # and parameters updating laws. 0

To demonstrate and verify the validity of the modulation schemes, we confirmed our
analytical studies be numerical simulations via MatLab software. We solve the dynamical
systems using the fourth order Runge-Kutta numerical method. At the transmitter system
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Figure 9 Synchronization drive and response 2 X
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side, the system parameters are chosen as a = 0.1, b = 0.25 while the arbitrary initial con-
ditions are set as x1(0) = 1, 1(0) =1, z;(0) = —3. At the receiver system side, we fix the arbi-
trary initial conditions as x,(0) = -1, y2(0) = -2, z,(0) =1, a = 0.1, Z)(O) =1and 0(0) =0.8.
Suppose the message signal o(t) is trigonometric signal such as o(¢) = 0.05sin(607x¢),
which is added on the second state variable of the drive system.

Figure 9 displays the synchronization difference (error) between systems (44) and (45).
Figure 10 shows the error signal between the original message and the recovered one that
confirms that the message signal o(¢) is recovered accurately. Figure 11 shows the value of
the unknown parameters a, b and the error between sent and received signal.

By compression of results, it is obvious that in exponential synchronization the error
system very fast tends to zero, which results in sending and receiving the signal faster
with a better accuracy.

4.3 Image encryption using exponential stability
Almost in all cases the image encryption is often conducted along with data compression
before be saved or transmitted. This is because of high volume of pictorial data and their
adjuncts. Thus, it is so important to combine security demands with compression systems.
In view of security, the pictorial data is not sensitive the same as the context data. In block
method of encryption, firstly, one encryption key with equal dimensions with designed
images one is produced by using of chaotic system and then the primary image encoded
by block cipher.

Here, we have only one block. The given method could be exercised by producing keys
with small sizes in a higher block number.

Page 17 of 21
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Figure 11 Parameter s, b and error between
signal.
10 15 20
t
2y
|
|
1.5 *“
\
|
1|
|
|
|
0.5 |
‘
\\ o
of | /
\\/
-0.5
-1 L
0 5 10 15 20
Difference between sent and received signal
6 T T T
15 20

In order to decode, the encrypted image is produced by applying the same chaotic sys-
tem and utilization of an equal initial value and by considering inversion methods in the
decoding key.

In the masking method for image encryption, the information signal is combined lin-

early and added to the drive system. Suppose o(¢) is the original image, the transmitted
message s(t) is assumed as

s(2) = o(2) + kw1 () + ko1 (2) + sz (2), (50)
where k; >0, i=1,2,3 and &1, y1, 2 are the state variables. The encrypted signal is masked
using an arbitrary function of master chaotic system variables to send and receive via a

public channel. The assumed 75 is the synchronization time and the image is added after
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Figure 12 Synchronization error. 1
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that time. The recovered image r(t) is obtained using the following relation:
r(t) = s(t) — kixa(t) = kaya (£) — ksza (). (51)
Because

r(t) = s(t) — kixy — koys — kszo
= o(t) + kyxy + koyy + kszy — kyxg —k =2y -2 — kszp
= O(t) + /(161 + k262 + k3€3

= o(t). (52)

That obviously depends on the synchronization time.

To show the validity of the proposed method, simulation results using Matlab software
and the Runge-Kutta method are applied for the initial condition (x;(0),y1(0),2z1(0)) =
(1,-1,2) and (x2(0),2(0),22(0)) = (3,1,-1) on the system (11) without linear term and a
digital image as a signal in Figure 12, Figure 13 and Figure 14.

5 Conclusion
In this paper, we showed that exponential stability method for the synchronization of
chaotic dynamical systems is faster than of the Lyapunov stability theorem which it con-

firmed by the results obtained for a system without linear term. By using presented syn-
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Figure 14 Image encryption using synchronization.

(a) Original picture

|

(b) Encrypted picture

(c) Received picture

chronization, cryptography of text and image were given through both modulation and
masking methods in both active and adaptive cases. The results confirm the rate and pre-
cision of reception and transmittance of the desired signal.

Further research topics include the applying optimal control in the exponential synchro-
nization of classical and fractional order chaotic systems and study of the other encryption
methods such as the Rivest-Shamir-Adlemen (RSA) and Data Encryption Standard (DES)

to compare them with the chaos-based encryption.
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