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Abstract
This paper focuses on a three-species food chain system which is formulated as
stochastic differential equations with regime switching represented by a hidden
Markov chain. Firstly, using the Wonham filter, we estimate the hidden Markov chain
through the observable solution of the Markov chain in Gaussian white noise. Then
two kinds of special dissipative control strategy are proposed to study the given
model. That is, under H∞ control and passive control, the sufficient conditions for
global asymptotic stability are established, respectively. Finally, numerical examples
are given to illustrate the effectiveness of the theoretical results.
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1 Introduction
The dynamic relationship between predator and prey has been considerably studied in
ecology and mathematical ecology. Because of its wide spread and importance, there is an
extensive literature concerned with three-species predator-prey systems (see, e.g., [–]).
In [], Freedman et al. discussed the following three-species food chain model:

⎧
⎪⎪⎨

⎪⎪⎩

ẋ(t) = x(t)[a – ax(t) – ax(t)],

ẋ(t) = x(t)[–a + ax(t) – ax(t)],

ẋ(t) = x(t)[–a + ax(t)],

(.)

where x(t), x(t), x(t) denote the densities of the prey, the predator and the top-predator
population at time t, respectively. The parameters are all positive, and a, a and a are
the intrinsic growth rate of the prey x(t), the death rate of the predator x(t), and the death
rate of the top-predator x(t), respectively. The coefficient a denotes the intra-specific
competition of species x(t), and a, a are the rates of consumption; a, a measure
the contribution of the victim to the growth of the consumer.

Recently, model (.) has been studied extensively. For example, Zhou et al. [] inves-
tigated the existence and global stability of the positive periodic solutions of the delayed
discrete food chains with omnivory. Krikorian [] considered the Volterra predator-prey
model in the three-species case and proves the global properties of its solution. Hsu et
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al. [] considered a three-species Lotka-Volterra food web model with omnivory, which is
defined as feeding on more than one trophic level. In addition, population systems are in-
evitably subject to environmental noise in the natural world. As far as we know, there are
various kinds of environmental noise. As a matter of fact, there are many papers which
focus on population systems perturbed by white noise; see [–]. Peculiarly, Mao []
showed that different structures of white noise may have different effects on the popula-
tion systems; Mao et al. [] revealed that the environmental noise can suppress a potential
population explosion. Different from the existing literature, we show all system parameters
which are disturbed by the white noise, so that the parameters of equation (.) become

a → a + aσω̇(t), a → a + aσω̇(t), a → a + aσω̇(t),

a → a + aσω̇(t), a → a + aσω̇(t), a → a + aσω̇(t),

a → a + aσω̇(t), a → a + aσω̇(t),

where ω̇i(t) is the white noise, and σi is a positive constant representing the intensity of the
white noise. Then the corresponding random version of equation (.) takes the following
form:

⎧
⎪⎪⎨

⎪⎪⎩

dx(t) = x(t)[a – ax(t) – ax(t)][dt + σ dω(t)],

dx(t) = x(t)[–a + ax(t) – ax(t)][dt + σ dω(t)],

dx(t) = x(t)[–a + ax(t)][dt + σ dω(t)],

(.)

where ωi(t) (i = , , ) are in mutually independent standard Brownian motion with
ωi() = . In [], if the noise intensity is sufficiently large, the population may become
extinct with probability one. In this paper, we assume that the noise is relatively small.

And in recent years, the stochastic population systems under regime switching have
received much attention [–]. In order to illustrate such sudden shift in different
regimes, we introduce the Markov chain into the underlying three-species food chain
stochastic model (.). Let α(t) be a right continuous Markov chain in a finite state space
S = {, , . . . , m}. The population system under regime switching can therefore be described
by the following model:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx(t) = x(t)[a(α(t)) – a(α(t))x(t) – a(α(t))x(t)]

× [dt + σ(α(t)) dω(t)],

dx(t) = x(t)[–a(α(t)) + a(α(t))x(t) – a(α(t))x(t)]

× [dt + σ(α(t)) dω(t)],

dx(t) = x(t)[–a(α(t)) + a(α(t))x(t)][dt + σ(α(t)) dω(t)].

(.)

We assume that the Markov chain α(t) is independent of the Brownian motion ωi(t). In
a large amount of literature, the Markov chain is observable. However, in practical prob-
lems, the Markov chain α(t) is unobservable, even in the case of two regime environments,
it may not be possible to identify the environment to be either the first or the second one.
Therefore, it is necessary to consider the hidden Markov chain. In the real world, we can-
not see α(t) directly but only can obtain a noise-corrupted (α(t) plus noise) observation.
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Motivated by the studies of Bercu [], and Tran [], we assume that the Markov chain is
unobservable.

On the other hand, few authors apply dissipative controls to explain biological phenom-
ena in the field of population systems. Dissipative theory of dynamical systems was in-
troduced by Willems [, ], which has been of particular interest to researchers in the
areas of physics, system theory, and control engineering. As two special cases of dissipa-
tive controls, passive control [, ] and H∞ control [, ] have been widely used in
these systems. Therefore, in this paper we use dissipative controls to study the dynamical
behavior of a three-species food chain model. Specifically speaking, in order to balance
the ecosystem, human beings need to manage and control the populations, thus we take
advantage of passive control and H∞ control to study the persistence of a three-species
food chain model.

Motivated by the above discussions, in this paper we investigate the global asymptotic
stability of equation (.) under H∞ control and passive control. For such partially ob-
servable systems, it is essential to convert them into completely observed ones, which can
be done by using a Wonham filter [–]. Of the Wonham filter we only give a sketch
in Section . In contrast to the existing results, the new contributions of this article are
summarized as follows:

(i) We use Wonham’s filter to build a stochastic three-species food chain system when
the Markov chain is only observable in white noise.

(ii) We study the global asymptotic stability of the three-species food chain model (.)
under H∞ control.

(iii) We prove the persistence of the three-species food chain model (.) under passive
control.

In order to obtain nice dynamic properties of equation (.), we arrange the content as
follows: In Section , we give some preliminaries, in which Wonham’s filter is introduced
and the partially observable models are converted into completely observed ones. Then in
Section , we show the global asymptotic stability of the given model under H∞ control.
In Section , we consider the global asymptotic stability of the given model under passive
control, and numerical examples are provided in Section . Finally, the paper is concluded
with some further remarks.

2 Preliminaries
In this section, we introduce notations and some results which are necessary for obtaining
the main results in the paper. Let α(t) denote a finite state Markov chain taking values in
S = {, , . . . , m} with the generator Q = (qij) ∈ Rm×m. E denotes the indicator function of
the event E. Assume that both the standard Brownian motion ωi and the Markov chain
α(t) are defined on a complete filtered probability space (�,F , P) with an associated non-
decreasing family of σ -algebras {Ft}. Throughout the paper we need the following nota-
tion:

R
+ :=

{
x = (x, x, x)′ : xi > , i = , , 

}
,

pk(t) := {α(t)=k}, k = , , . . . , m,

p(t) :=
(
p(t), . . . , pm(t)

)′ ∈ Rm,

F
y
t := σ

{
y(s),  ≤ s ≤ t

}
,
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ϕk(t) := P
(
α(t) = k

∣
∣F

y
t
)

= E
[
pk(t)

∣
∣F

y
t
]
, k = , . . . , m,

ϕ(t) :=
(
ϕ(t), . . . ,ϕm(t)

)′ ∈ Rm,

Sm :=

{

ϕ = (ϕ, . . . ,ϕm)′ ∈ Rm : ϕk ≥ ,
m∑

k=

ϕk = 

}

,

f̄ (ϕ) =
m∑

k=

f (k)ϕk , ϕ ∈ Sm.

Next we recall some results on Wonham’s filter. As suggested in [], the Markov chain
α(t) is observed through the following differential equation. That is,

dy(t) = f
(
α(t)

)
dt + β(t) dB(t), y() = , (.)

where f : M �→ R is a real-valued function, β(t) : [,∞) �→ R is a continuously differen-
tiable function satisfying inft≥ β(t) > , and B(t) is a standard Brownian motion being
independent of ωi. In (.), the Markov chain can only be observed in Gaussian white
noise. It has been proved in [] that the posterior probability α(·) satisfies the following
stochastic differential equations:

dϕj(t) =

[ m∑

k=

qkjϕk(t) – β–(t)
(
f (j) – f̄

(
ϕ(t)

))
f̄
(
ϕ(t)

)
ϕj(t)

]

dt

+ β–(t)
(
f (j) – f̄

(
ϕ(t)

))
ϕj(t) dy(t), j = , . . . , m, (.)

where the initial distribution of α(t) is ϕ = (ϕ(), . . . ,ϕm()). Introduce the one dimen-
sional innovation process dω̄(t) = β–(t)(dy(t) – f̄ (ϕ(t)) dt), ω̄() = , and then equation
(.) can be rewritten as

dϕj(t) =
m∑

k=

qkjϕk(t) dt + β–(t)
(
f (j) – f̄

(
ϕ(t)

))
ϕj(t) dω̄(t), j = , . . . , m.

The above equation is equivalent to

dϕ(t) = Q′ϕ(t) dt + β–(t)C(t)ϕ(t) dω̄(t), (.)

where C(t) = diag(f (), . . . , f (m)) – f̄ (ϕ(t))Im and Im is the m × m identity matrix.
In addition, it should be noticed that equation (.) can be written as the following form:

⎧
⎪⎪⎨

⎪⎪⎩

dx = x
∑m

k= pk(t)[(a(k) – a(k)x – a(k)x)(dt + σ(k) dω(t))],

dx = x
∑m

k= pk(t)[(–a(k) + a(k)x – a(k)x)(dt + σ(k) dω(t))],

dx = x
∑m

k= pk(t)[(–a(k) + a(k)x)(dt + σ(k) dω(t))].

(.)
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The solution of equation (.) is the well-known Wonham filter ϕ(t), which is an estimate
of the hidden state p(t). Replacing p(t) with ϕ(t) in equation (.), we get

⎧
⎪⎪⎨

⎪⎪⎩

dx = x
∑m

k= ϕk(t)[(a(k) – a(k)x – a(k)x)(dt + σ(k) dω(t))],

dx = x
∑m

k= ϕk(t)[(–a(k) + a(k)x – a(k)x)(dt + σ(k) dω(t))],

dx = x
∑m

k= ϕk(t)[(–a(k) + a(k)x)(dt + σ(k) dω(t))].

(.)

Hence, equations (.) and (.) are merged into a completely observable stochastic three-
species food chain system. For convenience, we further express it in the following matrix
form:

⎧
⎪⎪⎨

⎪⎪⎩

dx(t) = diag(x(t))
∑m

k= ϕk(t)Ak(x) dt

+ diag(x(t))
∑m

k= ϕk(t)[Bk(x)Ξ (k)] dω(t),

dϕ(t) = Q′ϕ(t) dt + β–(t)C(t)ϕ(t) dω̄(t),

(.)

where

A(k)
 (x) = a(k) – a(k)x – a(k)x, A(k)

 (x) = –a(k) + a(k)x – a(k)x,

A(k)
 (x) = –a(k) + a(k)x, Ak(x) =

[
A(k)

 (x), A(k)
 (x), A(k)

 (x)
]T ,

Bk(x) =

⎛

⎜
⎝

A(k)
 (x)  
 A(k)

 (x) 
  A(k)

 (x)

⎞

⎟
⎠ , Ξ (k) =

⎛

⎜
⎝

σ(k)  
 σ(k) 
  σ(k)

⎞

⎟
⎠ .

Let

μ = a –
a

a
a –

a

a
a.

When μ > , equation (.) has a positive equilibrium point x∗ = (x∗
 , x∗

, x∗
), where

x∗
 =

aa – aa

aa
, x∗

 =
a

a
, x∗

 =
aaa – aaa – aaa

aaa
.

Because the equilibrium point (see [], for the definition of the equilibrium point or the
trivial solution) requires both the drift and the diffusion coefficients are zero at this point,
equation (.) has non-zero equilibrium position. The equilibrium point of equation (.)
is easily obtained by the definition of the equilibrium point.

The completely observable equation (.) can be viewed as a diffusion equation, in which
the usual diffusion term is replaced by

(
diag(x(t))

∑m
k= ϕk(t)[Bk(x)Ξ (k)] O

O β–(t)C(t)ϕ(t)

)

and driven by (ω(t), ω̄(t))′.
Let

(
diag(x(t))

∑m
k= ϕk(t)[Bk(x)Ξ (k)] O

O β–(t)C(t)ϕ(t)

)

=

(
A O
O A

)

,
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where

A = diag

{

x


[ m∑

k=

ϕk(t)A(k)
 (x)σ(ϕ)

]

, x


[ m∑

k=

ϕk(t)A(k)
 (x)σ(ϕ)

]

,

x


[ m∑

k=

ϕk(t)A(k)
 (x)σ(ϕ)

]}

,

A = β–(t)Cϕ(Cϕ)′.

For a sufficiently smooth real-valued function h : Rn
+ × Sm �−→ R, the operator associated

with (.) is defined as follows:

L h(x,ϕ) =
∂h
∂x

diag
(
x(t)

)
m∑

k=

ϕk(t)Ak(x) +
∂h
∂x

Q′ϕ(t) +



tr

(
∂h
∂x A

)

+



tr

(
∂h
∂ϕ A

)

=
∑

i=

∂h
∂xi

xi

m∑

k=

ϕk(t)A(k)
ii +

∂h
∂x

Q′ϕ(t) +



tr

(
∂h
∂ϕ A

)

+



∑

i=

∂h
∂x

i
x

i

[ m∑

k=

ϕk(t)A(k)
ii (x)σi(k)

]

. (.)

If h(·) is independent of ϕ, from (.) we have

L h(x,ϕ) =
∑

i=

∂h
∂xi

xi

m∑

k=

ϕk(t)A(k)
ii +




∑

i=

∂h
∂x

i
x

i

[ m∑

k=

ϕk(t)A(k)
ii (x)σi(k)

]

. (.)

3 H∞ control
For equation (.), we implement the following transformation:

N = x – x∗
 , N = x – x∗

, N = x – x∗
, (.)

that is, substituting (.) into equation (.) yields

⎧
⎪⎪⎨

⎪⎪⎩

dN = (N + x∗
 )
∑m

k=[ϕk(t)(–a(k)N – a(k)N)(dt + σ(k) dω(t))],

dN = (N + x∗
)
∑m

k=[ϕk(t)(a(k)N – a(k)N)(dt + σ(k) dω(t))],

dN = (N + x∗
)
∑m

k=[ϕk(t)(a(k)N)(dt + σ(k) dω(t))],

(.)

where N ∈ {(N, N, N) : N + x∗
 > , N + x∗

 > , N + x∗
 > }. Obviously, the global asymp-

totic stability in probability of equation (.) at the positive equilibrium point x∗ is equiv-
alent to the global asymptotic stability in probability of equation (.) at the origin N∗ = .
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Next, we consider the following stochastic nonlinear system with external disturbance
input and control:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dN = (N + x∗
 )
∑m

k=[ϕk(t)(–a(k)N – a(k)N)(dt + σ(k) dω(t))]

+ g(N)u(N) dt + v(N) dt,

dN = (N + x∗
)
∑m

k=[ϕk(t)(a(k)N – a(k)N)(dt + σ(k) dω(t))]

+ g(N)u(N) dt + v(N) dt,

dN = (N + x∗
)
∑m

k=[ϕk(t)(a(k)N)(dt + σ(k) dω(t))]

+ g(N)u(N) dt + v(N) dt.

(.)

For convenience and simplicity in the following discussion, we introduce the following
notations:

f(N) =

⎛

⎜
⎝

(N + x∗
 )
∑m

k=[ϕk(t)(–a(k)N – a(k)N)]
(N + x∗

)
∑m

k=[ϕk(t)(a(k)N – a(k)N)]
(N + x∗

)
∑m

k=[ϕk(t)(a(k)N)]

⎞

⎟
⎠

�=

⎛

⎜
⎝

(N + x∗
 )F(k)

(N + x∗
)F(k)

(N + x∗
)F(k)

⎞

⎟
⎠ ,

l(N) =

⎛

⎜
⎝

(N + x∗
 )
∑m

k=[ϕk(t)(–a(k)N – a(k)N)σ(k)]
(N + x∗

)
∑m

k=[ϕk(t)(a(k)N – a(k)N)σ(k)]
(N + x∗

)
∑m

k=[ϕk(t)(a(k)N)σ(k)]

⎞

⎟
⎠

�=

⎛

⎜
⎝

(N + x∗
 )L(k)

(N + x∗
)L(k)

(N + x∗
)L(k)

⎞

⎟
⎠ ,

g(N) =

⎛

⎜
⎝

g(N)  
 g(N) 
  g(N)

⎞

⎟
⎠ , u(N) =

⎛

⎜
⎝

u(N)
u(N)
u(N)

⎞

⎟
⎠ ,

h(N) =

⎛

⎜
⎝

  
  
  

⎞

⎟
⎠ , v(N) =

⎛

⎜
⎝

v(N)
v(N)
v(N)

⎞

⎟
⎠ , C(N) =

⎛

⎜
⎝

N

N

N

⎞

⎟
⎠ , N =

⎛

⎜
⎝

N

N

N

⎞

⎟
⎠ .

Therefore, equation (.) can be expressed as the following affine system:

⎧
⎨

⎩

dN(t) = [f(N) + g(N)u + h(N)v] dt + l(N) dw,

z = (C(N), u)T ,
(.)

where f () = l() ≡ .
We first give several definitions about equation (.). Similar definitions have been given

in the literature [, ].

Definition . Let γ > , equation (.) is said to have L-gain less than or equal to γ . We
can find a state feedback control law u = u∗

 (t, x) which satisfies

E
∫ ∞



∥
∥C(N)

∥
∥ +

∥
∥u∗


∥
∥ dt ≤ γ E

∫ ∞


‖v‖ dt, ∀v ∈ LC

∞,

where ‖ · ‖ is the Euclidean norm of a vector, and LC∞ denotes bounded function set satis-
fying supt ‖ · ‖ ≤ C.
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Definition . Consider the following stochastic system:

dN(t) = f(N) dt + l(N) dw, N() = N ∈ R
+, f() = l() = . (.)

() The solution N(t) ≡  of equation (.) is said to be stable in probability if any ε > ,
and

lim
N→

P
(

sup
t≥

∥
∥N(t)

∥
∥ > ε

)
= . (.)

() The solution N(t) ≡  of equation (.) is said to be locally asymptotically stable in
probability if (.) holds and

lim
N→

P
(

lim
t→∞ N(t) = 

)
= . (.)

() The solution N(t) ≡  of equation (.) is said to be globally asymptotically stable in
probability if (.) holds and

P
(

lim
t→∞ N(t) = 

)
= . (.)

Consider the following stochastic system:

⎧
⎨

⎩

dN(t) = f(N) dt + l(N) dw,

y = C(N),
(.)

where N() = N ∈ R
+.

Definition . Equation (.) is locally zero-state detectable if there exists a neighbor-
hood U of , for all N ∈ U, we have

y(t) ≡ ,∀t ≥  ⇒ P
{

lim
t→∞ N(t) = , N() = N

}
= .

If U = R
+, then equation (.) is called zero-state detectable. Equation (.) is locally (or

globally) zero-state detectable if there is a neighborhood U of , for all N ∈ U (or R
+),

where y(t) ≡  implies N ≡ .

Lemma . ([]) Consider the equation (.). Let γ > , suppose there exists a smooth
solution V ≥  satisfying the Hamilton-Jacobi inequality

VN f(N) +



VN

[

γ  h(N)hT

 (N) – g(N)gT
 (N)

]

V T
N

+


CT

 (N)C(N) +



Tr
(
lT
 (N)VNN l(N)

)≤ , (.)

then the closed-loop system (.) with the feedback control u = –gT (N)V T
N has L-gain from

d to z less than or equal to γ .
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Lemma . Suppose there exists a solution V ≥  to equation (.), the system

⎧
⎨

⎩

dN(t) = f(N) dt + l(N) dw,

z = (C(N), –gT
 (N)V T

N )T ,

is zero-state observable. Then, for V (N) > , N �= , the closed-loop system dN(t) =
f(N) dt + l(N) dw – g(N)gT

 (N)V T
N dt is locally asymptotically stable in probability. Ad-

ditionally, if V is also proper, then the closed-loop system dN(t) = f(N) dt + l(N) dw –
g(N)gT

 (N)V T
N dt is globally asymptotically stable in probability.

About the proof of Lemma ., in the literature [] (P-), the corresponding de-
terministic model is described in detail. Therefore, the process of proof is some simple
modification of the corresponding deterministic model. So the proof is omitted here.

Next, our goal is to design a suitable and simple control so that equation (.) is the
globally asymptotically stable in probability.

Theorem . For equation (.), let γ > , choose

g =

√
(

N + x∗


N

)[
x∗

L


 (k) + NF(k)
]

+  +
(
N + x∗


),

g =

√
(

N + x∗


N

)[
x∗

L


 (k) + NF(k)
]

+  +
(
N + x∗


),

g =

√
(

N + x∗


N

)[
x∗

L


 (k) + NF(k)
]

+  +
(
N + x∗


).

The corresponding control is

u(N) = –gT
 V T

N (N) =

⎛

⎜
⎜
⎝

– γ (N+x∗
 )

N
[x∗

L


 (k) + NF(k)] – γ N
N+x∗


– γ N(N + x∗

 )

– γ (N+x∗
)

N
[x∗

L


 (k) + NF(k)] – γ N
N+x∗


– γ N(N + x∗

)

– γ (N+x∗
)

N
[x∗

L


 (k) + NF(k)] – γ N
N+x∗


– γ N(N + x∗

)

⎞

⎟
⎟
⎠ .

Under this control, the L gain of equation (.) from v to z is less than γ .

Proof Let VN = (V, V, V), substituting f(N), g(N),C(N), h(N), l(N), VN , VNN into in-
equality (.) yield

VN f(N) +



VN

[

γ  h(N)hT

 (N) – g(N)gT
 (N)

]

V T
N

+


CT

 (N)C(N) +



Tr
(
lT
 (N)VNN l(N)

)≤ . (.)

Define V = γ N
N+x∗


, V = γ N

N+x∗


, V = γ N
N+x∗


, then VNN = (Vij)×, i, j = , , ,

V =
γ x∗


(N + x∗

 ) , V =
γ x∗


(N + x∗

) , V =
γ x∗


(N + x∗

) , Vij = , i �= j.
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Therefore, inequality (.) is converted to the following form:

γ NF(k) + γ NF(k) + γ NF(k) +



(

γ  – g



)

V 
 +




(

γ  – g



)

V 


+



(

γ  – g



)

V 
 +



(
N

 + N
 + N


)

+


[
γ x∗

L


 (k) + γ x∗
L


 (k) + γ x∗

L


 (k)
]≤ , (.)

where

F(k) =
m∑

k=

[
ϕk(t)

(
–a(k)N – a(k)N

)]
,

L(k) =
m∑

k=

[
ϕk(t)

(
–a(k)N – a(k)N

)
σ(k)

]
,

F(k) =
m∑

k=

[
ϕk(t)

(
a(k)N – a(k)N

)]
,

L(k) =
m∑

k=

[
ϕk(t)

(
a(k)N – a(k)N

)
σ(k)

]
,

F(k) =
m∑

k=

[
ϕk(t)

(
a(k)N

)]
, L(k) =

m∑

k=

[
ϕk(t)

(
a(k)N

)
σ(k)

]
.

Further, inequality (.) is equivalent to the following inequality:

γ NF(k) + γ NF(k) + γ NF(k) +



N


(N + x∗
 ) –



γ g


N


(N + x∗

 )

+



N


(N + x∗
) –



γ g


N


(N + x∗

) +



N


(N + x∗
) –



γ g


N


(N + x∗

)

+


(
N

 + N
 + N


)

+


[
γ x∗

L


 (k) + γ x∗
L


 (k) + γ x∗

L


 (k)
]≤ . (.)

If the following inequality is established, then inequality (.) is also established:

–



g


N


(N + x∗
 ) γ  +

[

NF(k) +


γ x∗

L


 (k)
]

γ +



N


(N + x∗
 ) +




N
 ≤ ,

–



g


N


(N + x∗
) γ  +

[

NF(k) +


γ x∗

L


 (k)
]

γ +



N


(N + x∗
) +




N
 ≤ ,

–



g


N


(N + x∗
) γ  +

[

NF(k) +


γ x∗

L


 (k)
]

γ +



N


(N + x∗
) +




N
 ≤ .

(.)

That is,

g
N

 γ  –
(
N + x∗


)[NF(k) + x∗

L


 (k)
]
γ – N


[
 +

(
N + x∗


)]≥ ,

g
N

 γ  –
(
N + x∗


)[NF(k) + x∗

L


 (k)
]
γ – N


[
 +

(
N + x∗


)]≥ ,

g
N

 γ  –
(
N + x∗


)[NF(k) + x∗

L


 (k)
]
γ – N


[
 +

(
N + x∗


)]≥ .

(.)
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We have γ > , and g, g, g satisfy

γ >  ≥ (N + x∗
 )[NF(k) + x∗

L


 (k)] +
√

�

g
N


,

γ >  ≥ (N + x∗
)[NF(k) + x∗

L


 (k)] +
√

�

g
N


,

γ >  ≥ (N + x∗
)[NF(k) + x∗

L


 (k)] +
√

�

g
N


,

(.)

where

� =
(
N + x∗


)[NF(k) + x∗

L


 (k)
] + g

N

[
 +

(
N + x∗


)],

� =
(
N + x∗


)[NF(k) + x∗

L


 (k)
] + g

N

[
 +

(
N + x∗


)],

� =
(
N + x∗


)[NF(k) + x∗

L


 (k)
] + g

N

[
 +

(
N + x∗


)].

Therefore inequality (.) is established. In the above each step of the derivation process
is reversible, so we only need g, g, g to satisfy inequality (.); eventually inequality
(.) is true. We choose

g =

√


N


(
N + x∗


)[NF(k) + x∗

L


 (k)
]

+  +
(
N + x∗


),

g =

√


N


(
N + x∗


)[NF(k) + x∗

L


 (k)
]

+  +
(
N + x∗


),

g =

√


N


(
N + x∗


)[NF(k) + x∗

L


 (k)
]

+  +
(
N + x∗


).

(.)

By V = γ N
N+x∗


, V = γ N

N+x∗


, V = γ N
N+x∗


, we can get

V (N) = γ

[
(
N + x∗

 – x∗
 ln

(
N + x∗


))

+
(
N + x∗

 – x∗
 ln

(
N + x∗


))

+
(
N + x∗

 – x∗
 ln

(
N + x∗


))

– ln

(
e

x∗


)x∗

(

e
x∗



)x∗

(

e
x∗



)x∗

]

; (.)

for γ > , we seek out a V which satisfies inequality (.). According to Lemma ., the
conclusion is established. �

Remark . It is worth noting that if g, g, g meet equation (.), the solution V > 
of inequality (.) is obtained. As a result, the control law depends on the corresponding
form of g, g, g.

Then we show that the zero point of equation (.) is globally asymptotically stable in
probability without external interference signal.
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Theorem . For γ > , equation (.) without exogenous disturbance signal is of the fol-
lowing form:

⎧
⎨

⎩

dN(t) = [f(N) + g(N)u] dt + l(N) dw,

z = (C(N), u)T .
(.)

Under the control u(N) = –gT
 (N)V T

N (N), the closed-loop system

dN(t) =
[
f(N) – g(N)gT

 (N)V T
N (N)

]
dt + l(N) dw (.)

is globally asymptotically stable in probability at the point N∗ = .

Proof For the following equations:

dN(t) = f(N) dt + l(N) dw, (.)

it is easy to verify that it is zero-state detectable. By V (N) > ,∀N �= , V () = , and V is
proper, according to Lemma ., the conclusion is established. �

The following theorem can be obtained by using the original variable instead of the
transformed system variable.

Theorem . For γ > , equation (.) with control is of the following form:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx = x
∑m

k= ϕk(t)[(a(k) – a(k)x – a(k)x)(dt + σ(k) dω(t))]

+ ĝ(x)û(x) dt,

dx = x
∑m

k= ϕk(t)[(–a(k) + a(k)x – a(k)x)(dt + σ(k) dω(t))]

+ ĝ(x)û(x) dt,

dx = x
∑m

k= ϕk(t)[(–a(k) + a(k)x)(dt + σ(k) dω(t))]

+ ĝ(x)û(x) dt,

(.)

where û(x) = u(x – x∗), û(x) = u(x – x∗), û(x) = u(x – x∗), û = (û(x), û(x),
û(x))T .

Select

ĝ(x) = g
(
x – x∗) =

√
x


(x – x∗

 )

[

(
x – x∗


)
F̂(k) + x∗

L̂


 (k)
]

+  + x
 ,

ĝ(x) = g
(
x – x∗) =

√
x


(x – x∗

)

[

(
x – x∗


)
F̂(k) + x∗

L̂


 (k)
]

+  + x
,

ĝ(x) = g
(
x – x∗) =

√
x


(x – x∗

)

[

(
x – x∗


)
F̂(k) + x∗

L̂


 (k)
]

+  + x
,

where

F̂(k) =
m∑

k=

[
ϕk(t)

(
a(k) – a(k)x – a(k)x

)]
,
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L̂(k) =
m∑

k=

[
ϕk(t)

(
a(k) – a(k)x – a(k)x

)
σ(k)

]
,

F̂(k) =
m∑

k=

[
ϕk(t)

(
–a(k) + a(k)x – a(k)x

)]
,

L̂(k) =
m∑

k=

[
ϕk(t)

(
–a(k) + a(k)x – a(k)x

)
σ(k)

]
,

F̂(k) =
m∑

k=

[
ϕk(t)

(
–a(k) + a(k)x

)]
,

L̂(k) =
m∑

k=

[
ϕk(t)

(
–a(k) + a(k)x

)
σ(k)

]
.

Under the control

û(x) = u
(
x – x∗) = –gT


(
x – x∗)V T

x
(
x – x∗)

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

–γ

√

(x – x∗
 )F̂(k) + x∗

L̂


 (k) + (x–x∗
 )

x


+ (x – x∗
 )

–γ

√

(x – x∗
)F̂(k) + x∗

L̂


 (k) + (x–x∗
)

x


+ (x – x∗
)

–γ

√

(x – x∗
)F̂(k) + x∗

L̂


 (k) + (x–x∗
)

x


+ (x – x∗
)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

therefore, the populations continue to survive.

Remark . From the above discussion we can know that, in the case of a disturbance in-
put, by applying a certain control, originally persistent populations eventually remain per-
sistent. This provides a theoretical basis for the rational exploitation of natural resources
and not destroying ecological balance.

4 Passive control
Equation (.) has a positive equilibrium point x∗ = (x∗

 , x∗
, x∗

), so equation (.) is equiv-
alent to the following equation:

⎧
⎪⎪⎨

⎪⎪⎩

dx = x
∑m

k= ϕk(t)[(–a(k)(x – x∗
 ) – a(k)(x – x∗

))(dt + σ(k) dω(t))],

dx = x
∑m

k= ϕk(t)[(a(k)(x – x∗
 ) – a(k)(x – x∗

))(dt + σ(k) dω(t))],

dx = x
∑m

k= ϕk(t)[(a(k)(x – x∗
))(dt + σ(k) dω(t))].

(.)

It is obvious that the global asymptotic stability in probability of equation (.) is equiva-
lent to the global asymptotic stability in probability of equation (.) at the positive equi-
librium point x∗.
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Equation (.) with control term is expressed as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx = x
∑m

k= ϕk(t)[(–a(k)(x – x∗
 ) – a(k)(x – x∗

))(dt + σ(k) dω(t))]

+ g(x)u(x),

dx = x
∑m

k= ϕk(t)[(a(k)(x – x∗
 ) – a(k)(x – x∗

))(dt + σ(k) dω(t))]

+ g(x)u(x),

dx = x
∑m

k= ϕk(t)[(a(k)(x – x∗
))(dt + σ(k) dω(t))] + g(x)u(x),

(.)

furthermore, equation (.) can be expressed as the following matrix:

⎧
⎨

⎩

dx(t) = [f(x) + g(x)u(x)] dt + l(x) dw,

y = h(x),
(.)

where

f(x) =

⎛

⎜
⎝

x
∑m

k=[ϕk(t)(–a(k)(x – x∗
 ) – a(k)(x – x∗

))]
x
∑m

k=[ϕk(t)(a(k)(x – x∗
 ) – a(k)(x – x∗

))]
x
∑m

k=[ϕk(t)(a(k)(x – x∗
))]

⎞

⎟
⎠ ,

l(x) =

⎛

⎜
⎝

x
∑m

k=[ϕk(t)(–a(k)(x – x∗
 ) – a(k)(x – x∗

))σ(k)]
x
∑m

k=[ϕk(t)(a(k)(x – x∗
 ) – a(k)(x – x∗

))σ(k)]
x
∑m

k=[ϕk(t)(a(k)(x – x∗
))σ(k)]

⎞

⎟
⎠ ,

g(N) =

⎛

⎜
⎝

g(N)  
 g(N) 
  g(N)

⎞

⎟
⎠ , h(x) =

⎛

⎜
⎝

x – x∗





⎞

⎟
⎠ , u(x) =

⎛

⎜
⎝

u(x)
u(x)
u(x)

⎞

⎟
⎠ .

A function s(u, y) : R × R → R is called a supply rate if it is locally integrable for all
input-output pairs satisfying equation (.). Then we introduce the notion of passivity to
equation (.) as follows.

Definition . Equation (.) with the supply rate s(u, y) is called a dissipative system
if there exists a Lyapunov function V defined on R, called the storage function, for all
x, t ≥ t ≥ , and the following dissipative inequality holds:

E
[
V
(
x(t)

)]
– V

(
x(t)

)≤ E
[∫ t

t

s(u, y) dt
]

, (.)

where x(t) = x.

Definition . Equation (.) is called passive if it is dissipative with respect to the supply
rate s(u, y) = uT

 y.

Lemma . ([]) For the stochastic nonlinear system

dx = f(x) dt + g(x)u(x) dt + l(x) dw, f() = u() = l() = . (.)
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Assume that equilibrium point x∗ =  of the equation dx = f(x) dt + l(x) dw is asymptotic
stable in probability and there is a function V (x) ≥ , for any ε > , it is positive semi-
definite and satisfies

Vx
[
f(x) + g(x)u(x)

]
+




Tr
(
lT
 (x)Vxxl(x)

)≤ –ε
∥
∥u(x)

∥
∥, (.)

at x∗ = . Then equilibrium point x∗ =  of equation (.) is also asymptotically stable in
probability.

Lemma . ([]) Assuming that there exists a solution V ≥  to the inequality

Vxf(x) +



Tr
(
lT
 (x)Vxxl(x)

)≤ –εhT
 (x)h(x),

Vxg(x) = hT
 (x),

(.)

and V () = , V (x) > , x �= , and equation (.) is zero-state detectable, then the equilib-
rium point x∗ =  of the equation dx = f(x) dt + l(x) dw is asymptotically stable in proba-
bility. If V is proper, then the zero point is globally asymptotically stable in probability.

Theorem . In equation (.), taking g(x) = x, g(x) = g(x) ≡ , equation (.) is a
strictly passive output.

Proof In equation (.), define the storage function

V (x) =
(
x – x∗

 ln x
)

+
â

ǎ

(
x – x∗

 ln x
)

+
ââ

ǎǎ

(
x – x∗

 ln x
)
, (.)

where â = min{a(k)}, ǎ = max{a(k)}, â = min{a(k)}, ǎ = max{a(k)}, k = , , . . . ,
m. Then we prove that equation (.) is dissipative about the strict output supply rate
s(u, y) = uT

 y – ε‖y‖. By Lemma ., we only need the following formula to be estab-
lished:

Vxf(x) +



Tr
(
lT
 (x)Vxxl(x)

)≤ –εhT
 (x)h(x),

Vxg(x) = hT
 (x),

(.)

where Vx = (Vx , Vx , Vx ). For convenience, let Vx = (V, V, V), and we substitute
Vx, f(x), h(x), l(x) into the first inequality in equation (.), to obtain

(
x – x∗


)

m∑

k=

[
ϕk(t)

(
–a(k)

(
x – x∗


)

– a(k)
(
x – x∗


))]

+
â

ǎ

(
x – x∗


)

m∑

k=

[
ϕk(t)

(
a(k)

(
x – x∗


)

– a(k)
(
x – x∗


))]

+
ââ

ǎǎ

(
x – x∗


)

m∑

k=

[
ϕk(t)

(
a(k)

(
x – x∗


))

σ(k)
]

+



x∗


{ m∑

k=

[
ϕk(t)

(
–a(k)

(
x – x∗


)

– a(k)
(
x – x∗


))

σ(k)
]
}
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+



x∗


{ m∑

k=

[
ϕk(t)

(
a(k)

(
x – x∗


)

– a(k)
(
x – x∗


))

σ(k)
]
}

+



x∗


{ m∑

k=

[
ϕk(t)

(
a(k)

(
x – x∗


))

σ(k)
]
}

≤ –ε
(
x – x∗


). (.)

Simplify this as

–
m∑

k=

[
ϕk(t)a(k)

](
x – x∗


) ≤ –ε

(
x – x∗


). (.)

In order to get (.), we only need to take  < ε <
∑m

k=[ϕk(t)a(k)]. So V (x) meets the
first inequality of (.). Moreover, Vx(x) and g = x, g = g ≡  is substituted into the
second equality of (.), the equation is clearly established. This implies that there exists
ε satisfying  < ε < a, and equation (.) is strictly dissipative relative to output supply
rate s(u, y). �

For equation (.), by the state feedback control u, the closed-loop system is globally
asymptotically stable in probability at the positive equilibrium point x∗ = (x∗

 , x∗
, x∗

), so u

must satisfy certain conditions. In order to find u, substituting (.) into equation (.)
yields

⎧
⎨

⎩

dN = [f̂(N) + ĝ(N)û(N)] dt + l̂(N) dw,

ŷ = ĥ(N),
(.)

where

f̂(N) =

⎛

⎜
⎝

(N + x∗
 )
∑m

k=[ϕk(t)(–a(k)N – a(k)N)]
(N + x∗

)
∑m

k=[ϕk(t)(a(k)N – a(k)N)]
(N + x∗

)
∑m

k=[ϕk(t)a(k)N]

⎞

⎟
⎠ ,

l̂(N) =

⎛

⎜
⎝

(N + x∗
 )
∑m

k=[ϕk(t)(–a(k)N – a(k)N)σ(k)]
(N + x∗

)
∑m

k=[ϕk(t)(a(k)N – a(k)N)σ(k)]
(N + x∗

)
∑m

k=[ϕk(t)a(k)Nσ(k)]

⎞

⎟
⎠ ,

ĝ(N) =

⎛

⎜
⎝

ĝ(N)  
  
  

⎞

⎟
⎠ , ĥ(N) =

⎛

⎜
⎝

N




⎞

⎟
⎠ , û(N) =

⎛

⎜
⎝

û(N)
û(N)
û(N)

⎞

⎟
⎠ ,

and ĝ(N) = g(N + x∗), û(N) = u(N + x∗), û(N) = u(N + x∗), û(N) = u(N + x∗).
It is obvious that the global asymptotic stability in probability of equation (.) at the pos-
itive equilibrium point x∗ is equivalent to the global asymptotic stability in probability of
equation (.) at the origin N∗ = . So the following theorem is obtained.



Ma et al. Advances in Difference Equations  (2017) 2017:102 Page 17 of 22

Theorem . In equation (.), suppose that  < ε < a, û(N) = û(N) ≡ , and
û()

 (N) < û(N) < û()
 (N), û() = , where

û()
 (N) =

–N +
√

�

ε
, û()

 (N) =
–N –

√
�

ε
.

Then equation (.) is asymptotic stability in probability at equilibrium point x∗. Further,
if ‖û(N)‖ �= , equation (.) is global asymptotic stability in probability at equilibrium
point x∗.

Proof Definite a storage function

V̂ (N) =
(
N + x∗

 – x∗
 ln

(
N + x∗


))

+
â

ǎ

(
N + x∗

 – x∗
 ln

(
N + x∗


))

+
ââ

ǎǎ

(
N + x∗

 – x∗
 ln

(
N + x∗


))

– ln

(
e

x∗


)x∗

(

e
x∗



)x∗

(

e
x∗



)x∗

. (.)

Obviously, V̂ (N) > , V̂ () = . Note that V̂N (N) = (V̂, V̂, V̂), û(N) = û, f̂(N) = f̂,
ĝ(N) = ĝ, l̂(N) = l̂ and plug this into inequality (.); we obtain

–
m∑

k=

[
ϕk(t)a(k)

]
N

 + Nû ≤ –εû
,  ≤ –εû

,  ≤ –εû
. (.)

By conditions û(N) = û(N) ≡ , the second and third inequalities of (.) were estab-
lished. The first inequality of (.) transforms the following inequality:

εû
 + Nû –

m∑

k=

[
ϕk(t)a(k)

]
N

 ≤ . (.)

Based on � = N
 + ε

∑m
k=[ϕk(t)a(k)]N

 ≥ , if the left side of inequality (.) is equal
to zero, we get

û()
 =

–N +
√

�

ε
, û()

 =
–N –

√
�

ε
. (.)

As long as û()
 < û < û()

 , and û() = , the inequality (.) is established. Moreover,
according to Lemma ., equation (.) is asymptotically stable at the origin N∗ = .

In addition, the control û of this theorem satisfies

VN
[
f̂(N) + ĝ(N)û(N)

]
+




Tr
(
l̂T
 (x)VNN l̂(N)

)≤ –ε
∥
∥û(N)

∥
∥. (.)

If ‖û(N)‖ �= , the storage function V̂ (N) is well-posed, the storage function V̂ (N) can
be used as Lyapunov function, which is used to determine the stability of the system, so
the closed-loop system is globally asymptotically stable in probability. �

Remark . Equation (.) is globally asymptotically stable in probability at equilibrium
point x∗. As can be seen from the g, as long as we control the primary producers, it can
achieve control of the entire system.
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5 Numerical examples
This section is devoted to a couple of examples which demonstrate the effectiveness of the
proposed theory. First, we consider a discrete-time approximation of the Wonham filter.
The method used here is similar to the literature [] (P-), so we only outline the
procedure. Note that we are mainly interested in sample path approximations of the fil-
ters. Using the approach based on Clark transformations [], we transform the stochastic
differential equations and design a numerical procedure for the transformed system.

Let uj(t) := lnϕj(t), t ≥ , j = , . . . , m, namely, ϕj(t) = euj(t). Applying the Itô formula to
equation (.), one has

duj(t) =
[

qjj +
∑

k �=j

qkj
ϕk(t)
ϕj(t)

– β–(t)
(
f (j) – f̄

(
ϕ(t)

))
f̄
(
ϕ(t)

)

–


β–(t)

(
f (j) – f̄

(
ϕ(t)

))
]

dt

+ β–(t)
(
f (j) – f̄

(
ϕ(t)

))
dy(t), j = , . . . , m, (.)

where uj() = lnϕj(). Then we use Euler-Maruyama type approximations of equations
(.) and (.) to simulate the dynamics of the population system.

Let ε >  be the step size, an Euler-Maruyama type approximation (see []) of equation
(.) is given by

⎧
⎨

⎩

yk+ = yk + εf ε
k (α) +

√
εσkξk ,

y = , w.p.l.,
(.)

where ξk = ω(ε(k+))–ω(εk)√
ε

, f ε
k (α) is a Markov chain with state space S.

Discretizing the transformed system (.) yields the following algorithm:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

uj
k+ = uj

k + εrj
k +

√
εβ–

k (f j
k – f̄k(ϕ))�yk , uj

 = logϕ
j
,

rj
k = qjj +

∑
i�=j qij ϕi

k
ϕ

j
k

– β–
k (f j

k – f̄k(ϕ))f̄k(ϕ) – 
β–

k (f j
k – f̄k(ϕ)),

ϕ
j
k+ = exp(uj

k+), ϕ
j
 = ϕj().

(.)

Equivalently, we can write the above equations in terms of the white noise ξk as follows:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

uj
k+ = uj

k + εrj
k +

√
εβ–

k (f j
k – f̄k(ϕ))ξk , uj

 = logϕ
j
,

rj
k = qjj +

∑
i�=j qij ϕi

k
ϕ

j
k

– β–
k (f j

k – f̄k(ϕ))f̄k(ϕ) – β–
k (f j

k – f̄k(ϕ))fk(ϕ)

– 
β–

k (f j
k – f̄k(ϕ)),

ϕ
j
k+ = exp(uj

k+), ϕ
j
 = ϕj().

(.)

Now we will give three numerical examples to illustrate our results.

Example . Suppose we have the Markov chain α(t) on the state space S = {, } with the
generator Q =

( – 
 –

)
. The Markov chain can only be observed through dy = f (α(t)) dt +

dω, where f () = – and f () = . When α(t) = ,

a() = , a() = , a() = , σ() = .,
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a() = , a() = , a() = , σ() = ,

a() = , a() = , σ() = .

When α(t) = ,

a() = , a() = , a() = , σ() = .,

a() = , a() = , a() = , σ() = ,

a() = , a() = , σ() = ..

Then the species size xi(t), i = , , , and Wonham’s filter ϕ(t) satisfy

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx = x[( – x – x)ϕ + ( – x – x)ϕ] dt

+ x[.( – x – x)ϕ + .( – x – x)ϕ] dω,

dx = x[(– + x – x)ϕ + (– + x – x)ϕ] dt

+ x[(– + x – x)ϕ + (– + x – x)ϕ] dω,

dx = x[(– + x)ϕ + (– + x)ϕ] dt

+ x[(– + x)ϕ + .(– + x)ϕ] dω,

dϕ = [–ϕ + ϕ] dt + 
 (f () – f̄ (ϕ))ϕ dω̄,

dϕ = [ϕ – ϕ] dt + 
 (f () – f̄ (ϕ))ϕ dω̄,

(.)

where f̄ (ϕ) = –ϕ + ϕ.

By the method mentioned in [], a so-called Itô-Taylor expansion can be formed by ap-
plying Itô’s result, which is a fundamental tool of stochastic calculus. Truncating the Itô-
Taylor expansion at an appropriate point produces Milstein’s method for the first three
equations of equation (.):

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x,k+ = x,k + x,k[( – x,k – x,k)ϕ()
k + ( – x,k – x,k)ϕ()

k ]ε

+ x,k[.( – x,k – x,k)ϕ()
k + .( – x,k – x,k)ϕ()

k ]εξ,k

+ 
 x

,k[.( – x,k – x,k)ϕ()
k + .( – x,k – x,k)ϕ()

k ](εξ 
,k – ε),

x,k+ = x,k + x,k[(– + x,k – x,k)ϕ()
k + (– + x,k – x,k)ϕ()

k ]ε

+ x,k[(– + x,k – x,k)ϕ()
k + (– + x,k – x,k)ϕ()

k ]εξ,k

+ 
 x

,k[(– + x,k – x,k)ϕ()
k + (– + x,k – x,k)ϕ()

k ](εξ 
,k – ε),

x,k+ = x,k + x,k[(– + x,k)ϕ()
k + (– + x,k)ϕ()

k ]ε

+ x,k[(– + x,k)ϕ()
k + .(– + x,k)ϕ()

k ]εξ,k

+ 
 x

,k[(– + x,k)ϕ()
k + .(– + x,k)ϕ()

k ](εξ 
,k – ε),

ϕ
()
k = exp(u()

k ),

ϕ
()
k = exp(u()

k ),

(.)

where the initial condition x() = , x() = , x() = ,ϕ() = .,ϕ() = .. Taking
the step size ε = ., we perform a computer simulation of , iterations of a sam-
ple path of xi(t), i = , , . The sample paths of the population density xi(t) are shown in
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Figure 1 The sample paths of three-species densities. (a) The sample paths of xi(t), i = 1, 2, 3. The
parameter values used in Example 5.1; (b) Under the control û1 = (–

√
x2

2(x1–3)
x1

, –
√
x3

2(x2–1)
x2

, –
√
x1

2(x3–2)
x3

), the

sample paths of xi(t), i = 1, 2, 3. The parameter values used in Example 5.2; (c) Under the
û2 = (–

√
x2

2(x1–3)
x1

, 0, 0), the sample paths of xi(t), i = 1, 2, 3. the parameter values used in Example 5.3.

Figure 2 The probability density functions(PDFs) of three-species densities. (a) The probability density
function (PDF) of x1(t) in Example 5.1; (b) The probability density function (PDF) of x2(t) in Example 5.1; (c) The
probability density function (PDF) of x3(t) in Example 5.1.

Figure (a), and their corresponding probability density functions (PDFs) are shown in
Figure (a), (b) and (c), respectively.

Example . Based on Example ., applying it to Theorem ., select ĝ(x) = (√x,√x,√x), û(x) = (–√x
(x–)

x
, –√x

(x–)
x

, –√x
(x–)

x
), the other parameters are the same as

Example ..

The numerical algorithm is the same as above. The sample paths of the population den-
sity xi(t) are shown in (b), and their corresponding PDFs are shown in Figure (a), (b) and
(c), respectively.

Example . Based on Example ., similar to Theorem ., select ĝ(x) = (x, , ), û(x) =
(– x(x–)

x


, , ), the other parameters are the same as Example ..

Through the above numerical algorithm, the sample paths of the population density xi(t)
are shown in Figure (c), and their corresponding PDFs are shown in Figure (a), (b) and
(c), respectively.

6 Conclusion
In this paper, under a hidden Markov chain, the global asymptotical stability of the three-
species food chain with external disturbance is obtained. Under H∞ control and passive
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Figure 3 The probability density functions(PDFs) of three-species densities. (a) The probability density
function (PDF) of x1(t) in Example 5.2; (b) The probability density function (PDF) of x2(t) in Example 5.2; (c) The
probability density function (PDF) of x3(t) in Example 5.2.

Figure 4 The probability density functions(PDFs) of three-species densities. (a) The probability density
function (PDF) of x1(t) in Example 5.3; (b) The probability density function (PDF) of x2(t) in Example 5.3; (c) The
probability density function (PDF) of x3(t) in Example 5.3.

control, we prove that a suitable and simple control can sustain the original system’s per-
sistence though there is a disturbance input, which is the highlight of this paper. From a
practical point of view, a proper control helps to manage and reasonably develop the pop-
ulation systems. Moreover, the robust stability of the given system will be studied in the
near future.
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