RESEARCH

Open Access

A resonant boundary value problem for the fractional *p*-Laplacian equation

Bo Zhang^{*}

*Correspondence: zhbahhb@chnu.edu.cn School of Mathematical Sciences, Huaibei Normal University, Huaibei, 235000, PR China Information College, Huaibei Normal University, Huaibei, 235000, PR China

Abstract

The purpose of this paper is to study the solvability of a resonant boundary value problem for the fractional *p*-Laplacian equation. By using the continuation theorem of coincidence degree theory, we obtain a new result on the existence of solutions for the considered problem.

MSC: 34A08; 34B15

Keywords: resonant boundary value problem; fractional *p*-Laplacian equation; continuation theorem

1 Introduction

In this paper, we establish an existence theorem of solutions for the following resonant boundary value problem with *p*-Laplacian operator:

$$\begin{cases} {}_{0}^{c}D_{t}^{\beta}\phi_{p}({}_{0}^{c}D_{t}^{\alpha}x) = f(t,x,{}_{0}^{c}D_{t}^{\alpha}x), & t \in [0,1], \\ x(0) = 0, & {}_{0}^{c}D_{t}^{\alpha}x(0) = {}_{0}^{c}D_{t}^{\alpha}x(1), \end{cases}$$
(1.1)

where $0 < \alpha, \beta \le 1$ are constants, ${}_{0}^{c}D_{t}^{\alpha}$ is a Caputo fractional derivative, $f : [0,1] \times \mathbb{R}^{2} \to \mathbb{R}$ is a continuous function, $\phi_{p} : \mathbb{R} \to \mathbb{R}$ is a *p*-Laplacian operator defined by

 $\phi_p(s) = |s|^{p-2}s$ $(s \neq 0),$ $\phi_p(0) = 0,$ p > 1.

Obviously, ϕ_p is invertible and its inverse operator is ϕ_q , where q > 1 is a constant such that 1/p + 1/q = 1.

Fractional calculus is a generalization of ordinary differentiation and integration, and fractional differential equations appear in various fields (see [1-4]). Recently, because of the intensive development of fractional calculus theory and its applications, the initial and boundary value problems (BVPs for short) of fractional differential equations have gained popularity (see [5-15] and the references therein).

In [11], by using the coincidence degree theory for Fredholm operators, the authors considered the existence of solutions for BVP (1.1). Notice that ${}_{0}^{c}D_{t}^{\beta}\phi_{p}({}_{0}^{c}D_{t}^{\alpha})$ is nonlinear, and so it is not a Fredholm operator. Thus there is a gap in the proof of the main result, and we fix this gap in the present paper.

© The Author(s) 2017. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

2 Preliminaries

For convenience of the reader, we will introduce some necessary basic knowledge about fractional calculus theory (see [2, 4]).

Definition 2.1 The Riemann-Liouville fractional integral operator of order $\alpha > 0$ of a function $u : (0, +\infty) \rightarrow \mathbb{R}$ is given by

$${}_0I_t^{\alpha}u=\frac{1}{\Gamma(\alpha)}\int_0^t(t-s)^{\alpha-1}u(s)\,ds,$$

provided that the right-hand side integral is pointwise defined in $(0, +\infty)$.

Definition 2.2 The Caputo fractional derivative of order $\alpha > 0$ of a continuous function $u : (0, +\infty) \rightarrow \mathbb{R}$ is given by

$$\begin{split} & \int_{0}^{c} D_{t}^{\alpha} u = {}_{0} I_{t}^{n-\alpha} \frac{\mathrm{d}^{n} u}{\mathrm{d} t^{n}} \\ & = \frac{1}{\Gamma(n-\alpha)} \int_{0}^{t} (t-s)^{n-\alpha-1} u^{(n)}(s) \, ds, \end{split}$$

where *n* is the smallest integer greater than or equal to α , provided that the right-hand side integral is pointwise defined in $(0, +\infty)$.

Lemma 2.1 (See [1]) Let $\alpha > 0$. Assume that $u, {}_{0}^{c}D_{t}^{\alpha}u \in L([0, T], \mathbb{R})$. Then the following equality holds:

$${}_{0}I_{t\ 0}^{\alpha c}D_{t}^{\alpha}u(t)=u(t)+c_{0}+c_{1}t+\cdots+c_{n-1}t^{n-1},$$

where $c_i \in \mathbb{R}$, i = 0, 1, ..., n - 1, here *n* is the smallest integer greater than or equal to α .

Next we present some notations and an abstract existence result (see [16]).

Let *X*, *Y* be real Banach spaces, $L : \text{dom} L \subset X \to Y$ be a Fredholm operator with index zero, and $P : X \to X$, $Q : Y \to Y$ be projectors such that

$$Im P = Ker L, Ker Q = Im L,$$
$$X = Ker L \oplus Ker P, Y = Im L \oplus Im Q.$$

It follows that

 $L|_{\operatorname{dom} L \cap \operatorname{Ker} P} : \operatorname{dom} L \cap \operatorname{Ker} P \to \operatorname{Im} L$

is invertible. We denote the inverse by K_P .

If Ω is an open bounded subset of X such that dom $L \cap \overline{\Omega} \neq \emptyset$, then the map $N : X \to Y$ will be called L-compact on $\overline{\Omega}$ if $QN(\overline{\Omega})$ is bounded and $K_P(I-Q)N : \overline{\Omega} \to X$ is compact.

Lemma 2.2 (See [16]) Let L: dom $L \subset X \to Y$ be a Fredholm operator of index zero and $N: X \to Y$ be L-compact on $\overline{\Omega}$. Assume that the following conditions are satisfied:

- (1) $Lx \neq \lambda Nx$ for every $(x, \lambda) \in [(\operatorname{dom} L \setminus \operatorname{Ker} L) \cap \partial \Omega] \times (0, 1)$,
- (2) $Nx \notin \text{Im } L$ for every $x \in \text{Ker } L \cap \partial \Omega$,
- (3) deg($QN|_{\text{Ker}L}$, $\Omega \cap \text{Ker}L$, 0) \neq 0, where $Q: Y \rightarrow Y$ is a projection such that Im L = Ker Q.

Then the equation Lx = Nx *has at least one solution in* dom $L \cap \overline{\Omega}$.

In this paper, we let $Z = C([0,1], \mathbb{R})$ with the norm $||z||_{\infty} = \max_{t \in [0,1]} |z(t)|$ and take

 $X = \left\{ x = (x_1, x_2)^\top | x_1, x_2 \in Z \right\}$

with the norm

$$||x||_X = \max\{||x_1||_{\infty}, ||x_2||_{\infty}\}.$$

By means of the linear functional analysis theory, we can prove that X is a Banach space.

3 Main result

We will establish the existence theorem of solutions for BVP (1.1).

Theorem 3.1 Let $f : [0,1] \times \mathbb{R}^2 \to \mathbb{R}$ be continuous. Assume that

(*H*₁) there exist nonnegative functions $a, b, c \in Z$ such that

 $|f(t, u, v)| \le a(t) + b(t)|u|^{p-1} + c(t)|v|^{p-1}, \quad \forall (t, u, v) \in [0, 1] \times \mathbb{R}^2,$

 (H_2) there exists a constant B > 0 such that

 $vf(t,u,v)>0 \ (or < 0), \quad \forall t \in [0,1], u \in \mathbb{R}, |v|>B.$

Then BVP (1.1) has at least one solution provided that

$$\gamma:=\frac{2}{\Gamma(\beta+1)}\left(\frac{\|b\|_\infty}{(\Gamma(\alpha+1))^{p-1}}+\|c\|_\infty\right)<1.$$

Consider BVP of the linear differential system as follows:

$$\begin{cases} {}_{0}^{c}D_{t}^{\alpha}x_{1} = \phi_{q}(x_{2}), & t \in [0,1], \\ {}_{0}^{c}D_{t}^{\beta}x_{2} = f(t,x_{1},\phi_{q}(x_{2})), & t \in [0,1], \\ x_{1}(0) = 0, & x_{2}(0) = x_{2}(1). \end{cases}$$
(3.1)

Obviously, if $x = (x_1, x_2)^{\top}$ is a solution of BVP (3.1), then x_1 must be a solution of BVP (1.1). Therefore, to prove BVP (1.1) has solutions, it suffices to show that BVP (3.1) has solutions. Define the operator $L : \operatorname{dom} L \subset X \to X$ by

$$Lx = \begin{pmatrix} {}^{c}_{0}D^{\alpha}_{t}x_{1} \\ {}^{c}_{0}D^{\beta}_{t}x_{2} \end{pmatrix},$$
(3.2)

where

dom
$$L = \{x \in X | {}_{0}^{c} D_{t}^{\alpha} x_{1}, {}_{0}^{c} D_{t}^{\rho} x_{2} \in Z, x_{1}(0) = 0, x_{2}(0) = x_{2}(1) \}.$$

Let $N: X \to X$ be the Nemytskii operator defined by

$$Nx(t) = \begin{pmatrix} \phi_q(x_2(t)) \\ f(t, x_1(t), \phi_q(x_2(t))) \end{pmatrix}, \quad \forall t \in [0, 1].$$
(3.3)

Then BVP (3.1) is equivalent to the following operator equation:

$$Lx = Nx$$
, $x \in \text{dom } L$.

Now, in order to prove Theorem 3.1, we give some lemmas.

Lemma 3.1 Let L be defined by (3.2), then

$$\operatorname{Ker} L = \left\{ x \in X | x_1(t) = 0, x_2(t) = c, \forall t \in [0, 1], c \in \mathbb{R} \right\},$$
(3.4)

$$\operatorname{Im} L = \left\{ y \in X|_0 I_t^{\beta} y_2(1) = 0 \right\}.$$
(3.5)

Proof By Lemma 2.1, the equation Lx = 0 has solutions

$$x_1(t) = c_1, \qquad x_2(t) = c_2, \quad c_1, c_2 \in \mathbb{R}.$$

Thus, from the boundary value condition $x_1(0) = 0$, one has that (3.4) holds.

Let $y \in \text{Im } L$, then there exists a function $x \in \text{dom } L$ such that $y_2 = {}^c_0 D_t^\beta x_2$. So, by Lemma 2.1, we have

$$x_2(t) = c + {}_0I_t^\beta y_2(t), \quad c \in \mathbb{R}.$$

Hence, from the boundary value condition $x_2(0) = x_2(1)$, we get (3.5).

On the other hand, suppose that $y \in X$ satisfies ${}_{0}I_{t}^{\beta}y_{2}(1) = 0$. Let $x_{1} = {}_{0}I_{t}^{\alpha}y_{1}, x_{2} = {}_{0}I_{t}^{\beta}y_{2}(t)$, then $x = (x_{1}, x_{2})^{\top} \in \text{dom } L$ and Lx = y. That is, $y \in \text{Im } L$. The proof is complete. \Box

Lemma 3.2 Let *L* be defined by (3.2), then *L* is a Fredholm operator of index zero. And the projectors $P: X \to X$, $Q: X \to X$ can be defined as

$$Px(t) = \begin{pmatrix} 0\\ x_2(0) \end{pmatrix}, \quad \forall t \in [0,1],$$
$$Qy(t) = \begin{pmatrix} 0\\ \Gamma(\beta+1)_0 I_t^{\beta} y_2(1) \end{pmatrix}, \quad \forall t \in [0,1].$$

Furthermore, the operator K_P : Im $L \to \text{dom } L \cap \text{Ker } P$ *can be written as*

$$K_P y = \begin{pmatrix} 0 I_t^{\alpha} y_1 \\ 0 I_t^{\beta} y_2 \end{pmatrix}.$$

(3.6)

Proof For any $y \in X$, one has

$$Q^{2}y = Q\begin{pmatrix}0\\\Gamma(\beta+1)_{0}I_{t}^{\beta}y_{2}(1)\end{pmatrix}$$
$$= \begin{pmatrix}0\\\Gamma(\beta+1)_{0}I_{t}^{\beta}y_{2}(1)\cdot\Gamma(\beta+1)_{0}I_{t}^{\beta}1(1)\end{pmatrix}$$
$$= Qy.$$

Let $y^* = y - Qy$, then we get from (3.6) that

$${}_{0}I_{t}^{\beta}y_{2}^{*}(1) = {}_{0}I_{t}^{\beta}y_{2}(1) - {}_{0}I_{t}^{\beta}(Qy_{2})(1)$$
$$= \frac{1}{\Gamma(\beta+1)} ((Qy_{2})(t) - (Q^{2}y_{2})(t))$$
$$= 0,$$

which yields $y^* \in \text{Im } L$. So X = Im L + Im Q. Since $\text{Im } L \cap \text{Im } Q = \{(0, 0)^{\top}\}$, we have $X = \text{Im } L \oplus \text{Im } Q$. Hence

 $\dim \operatorname{Ker} L = \dim \operatorname{Im} Q = \operatorname{codim} \operatorname{Im} L = 1.$

Thus *L* is a Fredholm operator of index zero.

For $y \in \text{Im } L$, by the definition of operator K_P , we have

$$LK_{P}y = \begin{pmatrix} {}^{c}_{0}D^{\alpha}_{t}{}_{0}I^{\alpha}_{t}y_{1} \\ {}^{c}_{0}D^{\beta}_{t}{}_{0}I^{\beta}_{t}y_{2} \end{pmatrix}$$
$$= y.$$
(3.7)

On the other hand, for $x \in \text{dom } L \cap \text{Ker } P$, one has

$$x_1(0) = x_2(0) = x_2(1) = 0.$$

Thus, from Lemma 2.1, we get

$$K_{P}Lx(t) = \begin{pmatrix} 0I_{t}^{\alpha} {}_{0}^{\alpha} D_{t}^{\alpha} x_{1}(t) \\ 0I_{t}^{\beta} {}_{0}^{\alpha} D_{t}^{\beta} x_{2}(t) \end{pmatrix}$$
$$= \begin{pmatrix} x_{1}(t) - x_{1}(0) \\ x_{2}(t) - x_{2}(0) \end{pmatrix}$$
$$= x(t).$$
(3.8)

Hence, combining (3.7) with (3.8), we know $K_P = (L|_{\text{dom } L \cap \text{Ker } P})^{-1}$. The proof is complete. \Box

Lemma 3.3 Let N be defined by (3.3). Assume $\Omega \subset X$ is an open bounded subset such that dom $L \cap \overline{\Omega} \neq \emptyset$, then N is L-compact on $\overline{\Omega}$.

Proof From the continuity of ϕ_q and f, we obtain $K_P(I - Q)N$ is continuous in X and $QN(\overline{\Omega})$, $K_P(I - Q)N(\overline{\Omega})$ are bounded. Moreover, there exists a constant T > 0 such that

$$\left\| (I-Q)Nx \right\|_{X} \le T, \quad \forall x \in \overline{\Omega}.$$

$$(3.9)$$

Thus, in view of the Arzelà-Ascoli theorem, we need only to prove $K_P(I - Q)N(\overline{\Omega}) \subset X$ is equicontinuous.

For $0 \le t_1 < t_2 \le 1$, $x \in \overline{\Omega}$, one has

$$\begin{aligned} \left| K_P(I-Q)Nx(t_2) - K_P(I-Q)Nx(t_1) \right| \\ &= \binom{{}_0I_t^{\alpha}\left((I-Q)Nx \right)_1(t_2) - {}_0I_t^{\alpha}\left((I-Q)Nx \right)_1(t_1)}{{}_0I_t^{\beta}((I-Q)Nx)_2(t_2) - {}_0I_t^{\beta}\left((I-Q)Nx \right)_2(t_1)} \right). \end{aligned}$$

From (3.9), we have

$$\begin{split} {}_{0}I_{t}^{\alpha}\left((I-Q)Nx\right)_{1}(t_{2}) - {}_{0}I_{t}^{\alpha}\left((I-Q)Nx\right)_{1}(t_{1})\Big| \\ &= \frac{1}{\Gamma(\alpha)} \left| \int_{0}^{t_{2}} (t_{2}-s)^{\alpha-1} \big((I-Q)Nx\big)_{1}(s) \, ds \right. \\ &- \int_{0}^{t_{1}} (t_{1}-s)^{\alpha-1} \big((I-Q)Nx\big)_{1}(s) \, ds \Big| \\ &\leq \frac{T}{\Gamma(\alpha)} \left\{ \int_{0}^{t_{1}} \big[(t_{1}-s)^{\alpha-1} - (t_{2}-s)^{\alpha-1} \big] \, ds + \int_{t_{1}}^{t_{2}} (t_{2}-s)^{\alpha-1} \, ds \right\} \\ &= \frac{T}{\Gamma(\alpha+1)} \big[t_{1}^{\alpha} - t_{2}^{\alpha} + 2(t_{2}-t_{1})^{\alpha} \big]. \end{split}$$

Since t^{α} is uniformly continuous on [0,1], we get $(K_P(I-Q)N(\overline{\Omega}))_1 \subset Z$ is equicontinuous. A similar proof can show that $(K_P(I-Q)N(\overline{\Omega}))_2 \subset Z$ is also equicontinuous. Hence, we obtain $K_P(I-Q)N:\overline{\Omega} \to X$ is compact. The proof is complete.

Finally, we give the proof of Theorem 3.1.

Proof of Theorem 3.1 Let

$$\Omega_1 = \left\{ x \in \operatorname{dom} L \setminus \operatorname{Ker} L | Lx = \lambda N x, \lambda \in (0, 1) \right\}.$$

For $x \in \Omega_1$, we have $x_1(0) = 0$ and $Nx \in \text{Im } L$. So, by Lemma 2.1, we get

$$x_1 = {}_0I_t^{\alpha c} D_t^{\alpha} x_1.$$

Thus one has

$$\left|x_{1}(t)\right| \leq rac{1}{\Gamma(lpha+1)}\left\|{}_{0}^{c}D_{t}^{lpha}x_{1}\right\|_{\infty}, \quad \forall t \in [0,1].$$

That is,

$$\|x_1\|_{\infty} \le \frac{1}{\Gamma(\alpha+1)} \|_0^c D_t^{\alpha} x_1\|_{\infty}.$$
(3.10)

From $Nx \in \text{Im } L$ and (3.5), we obtain

$$\begin{aligned} 0 &= {}_0I_t^\beta(Nx)_2(1) \\ &= \frac{1}{\Gamma(\beta)} \int_0^1 (1-s)^{\beta-1} f\left(s, x_1(s), \phi_q(x_2(s))\right) ds. \end{aligned}$$

Then, by the integral mean value theorem, there exists a constant $\xi \in (0,1)$ such that

$$f(\xi, x_1(\xi), \phi_q(x_2(\xi))) = 0.$$

So, by (H_2) , we have $|x_2(\xi)| \le B^{p-1}$. From Lemma 2.1, we get

$$x_2(t) = x_2(\xi) - {}_0I_t^{\beta c} D_t^{\beta} x_2(\xi) + {}_0I_t^{\beta c} D_t^{\beta} x_2(t),$$

which together with

$$\left|_{0}I_{t\ 0}^{\beta}D_{t}^{\beta}x_{2}(t)\right| \leq \frac{1}{\Gamma(\beta+1)}\left\|_{0}^{c}D_{t}^{\beta}x_{2}\right\|_{\infty}, \quad \forall t \in [0,1]$$

yields

$$\|x_2\|_{\infty} \le B^{p-1} + \frac{2}{\Gamma(\beta+1)} \|_0^c D_t^\beta x_2\|_{\infty}.$$
(3.11)

From $Lx = \lambda Nx$, one has

$${}_{0}^{c}D_{t}^{\alpha}x_{1}=\lambda\phi_{q}(x_{2}), \qquad (3.12)$$

$${}_{0}^{c}D_{t}^{\beta}x_{2} = \lambda f(t, x_{1}, \phi_{q}(x_{2})).$$
(3.13)

By (3.12), we have

$$\|{}_{0}^{c}D_{t}^{\alpha}x_{1}\|_{\infty} \leq \|x_{2}\|_{\infty}^{q-1}$$
,

which together with (3.10) yields

$$\|x_1\|_{\infty} \le \frac{1}{\Gamma(\alpha+1)} \|x_2\|_{\infty}^{q-1}.$$
(3.14)

By (3.13) and (H_1) , we obtain

$$\left\|{}_{0}^{c}D_{t}^{\beta}x_{2}\right\|_{\infty} \leq \|a\|_{\infty} + \|b\|_{\infty}\|x_{1}\|_{\infty}^{p-1} + \|c\|_{\infty}\|x_{2}\|_{\infty},$$

which together with (3.11) and (3.14) yields

$$\|{}_{0}^{c}D_{t}^{\beta}x_{2}\|_{\infty} \leq \|a\|_{\infty} + \frac{\Gamma(\beta+1)\gamma}{2}\|x_{2}\|_{\infty}$$
$$\leq \|a\|_{\infty} + \frac{\Gamma(\beta+1)\gamma B^{p-1}}{2} + \gamma \|{}_{0}^{c}D_{t}^{\beta}x_{2}\|_{\infty}.$$
(3.15)

Since $\gamma <$ 1, we get from (3.15) that there exists a constant $M_0 > 0$ such that

$$\left\| {}_{0}^{c}D_{t}^{\beta}x_{2}\right\|_{\infty}\leq M_{0}.$$

Thus, combining (3.11) with (3.14), we have

$$\|x_2\|_{\infty} \le B^{p-1} + \frac{2M_0}{\Gamma(\beta+1)} := M_1,$$

$$\|x_1\|_{\infty} \le \frac{M_1^{q-1}}{\Gamma(\alpha+1)} := M_2.$$

Hence

$$||x||_X \le \max\{M_1, M_2\} := M,$$

which means Ω_1 is bounded.

Let

$$\Omega_2 = \{ x \in \operatorname{Ker} L | Nx \in \operatorname{Im} L \}.$$

For $x \in \Omega_2$, we have ${}_0I_t^\beta(Nx)_2(1) = 0$ and $x_1(t) = 0$, $x_2(t) = c$, $c \in \mathbb{R}$. Thus one has

$$\int_0^1 (1-s)^{\beta-1} f(s,0,\phi_q(c)) \, ds = 0,$$

which together with (H_2) yields $|c| \le B^{p-1}$. Hence

$$||x||_X \le \max\{0, B^{p-1}\} = B^{p-1},$$

which means Ω_2 is bounded.

By (H_2) , one has

$$\phi_p(v)f(t, u, v) > 0, \quad \forall t \in [0, 1], u \in \mathbb{R}, |v| > B$$
(3.16)

or

$$\phi_p(v)f(t, u, v) < 0, \quad \forall t \in [0, 1], u \in \mathbb{R}, |v| > B.$$
(3.17)

When (3.16) is true, let

$$\Omega_3 = \left\{ x \in \operatorname{Ker} L | \lambda x + (1 - \lambda) Q N x = 0, \lambda \in [0, 1] \right\}.$$

For $x \in \Omega_3$, we have $x_1(t) = 0$, $x_2(t) = c$, $c \in \mathbb{R}$ and

$$\lambda c + (1 - \lambda)\beta \int_0^1 (1 - s)^{\beta - 1} f(s, 0, \phi_q(c)) \, ds = 0.$$
(3.18)

If $\lambda = 0$, we get from (3.16) that $|c| \le B^{p-1}$. If $\lambda \in (0,1]$, we assume $|c| > B^{p-1}$. Thus, by (3.16), we obtain

$$\lambda c^{2} + (1-\lambda)\beta \int_{0}^{1} (1-s)^{\beta-1} \phi_{p}(\phi_{q}(c)) f(s,0,\phi_{q}(c)) ds > 0,$$

which contradicts (3.18). Hence, Ω_3 is bounded.

When (3.17) is true, let

$$\Omega'_3 = \left\{ x \in \operatorname{Ker} L | -\lambda x + (1 - \lambda) Q N x = 0, \lambda \in [0, 1] \right\}.$$

A similar proof can show Ω'_3 is also bounded.

Set

$$\Omega = \left\{ x \in X | \|x\|_X < \max\{M, B^{p-1}\} + 1 \right\}.$$

Clearly, $\Omega_1 \cup \Omega_2 \cup \Omega_3 \subset \Omega$ (or $\Omega_1 \cup \Omega_2 \cup \Omega'_3 \subset \Omega$). It follows from Lemma 3.2 and 3.3 that *L* (defined by (3.2)) is a Fredholm operator of index zero and *N* (defined by (3.3)) is *L*-compact on $\overline{\Omega}$. Moreover, based on the above proof, the conditions (1) and (2) of Lemma 2.2 are satisfied. Define the operator $H: \overline{\Omega} \times [0,1] \to X$ by

 $H(x,\lambda) = \pm \lambda x + (1-\lambda)QNx.$

Then, from the above proof, we have

$$H(x,\lambda) \neq 0, \quad \forall x \in \partial \Omega \cap \operatorname{Ker} L.$$

Thus, by the homotopy property of degree, we get

$$deg(QN|_{KerL}, \Omega \cap KerL, 0) = deg(H(\cdot, 0), \Omega \cap KerL, 0)$$
$$= deg(H(\cdot, 1), \Omega \cap KerL, 0)$$
$$= deg(\pm I, \Omega \cap KerL, 0)$$
$$\neq 0.$$

Hence, condition (3) of Lemma 2.2 is also satisfied.

Therefore, by using Lemma 2.2, the operator equation Lx = Nx has at least one solution in dom $L \cap \overline{\Omega}$. Namely, BVP (1.1) has at least one solution in *X*. The proof is complete. \Box

Competing interests

The author declares that he has no competing interests.

Acknowledgements

This work was supported by the Natural Science Research Foundation of Colleges and Universities in Anhui Province (KJ2016A648).

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 17 February 2017 Accepted: 23 March 2017 Published online: 04 April 2017

References

- 1. Kilbas, AA, Srivastava, HM, Trujillo, JJ: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)
- 2. Podlubny, I: Fractional Differential Equation. Academic Press, San Diego (1999)
- Sabatier, J, Agrawal, OP, Machado, JAT (eds.): Advances in Fractional Calculus: Theoretical Developments and Applications in Physics and Engineering. Springer, Dordrecht (2007)
- 4. Samko, SG, Kilbas, AA, Marichev, OI: Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach, Yverdon (1993)
- Agarwal, RP, O'Regan, D, Stanek, S: Positive solutions for Dirichlet problems of singular nonlinear fractional differential equations. J. Math. Anal. Appl. 371, 57-68 (2010)
- 6. Bai, Z, Lü, H: Positive solutions for boundary value problem of nonlinear fractional differential equation. J. Math. Anal. Appl. **311**, 495-505 (2005)
- 7. Benchohra, M, Hamani, S, Ntouyas, SK: Boundary value problems for differential equations with fractional order and nonlocal conditions. Nonlinear Anal. TMA **71**, 2391-2396 (2009)
- 8. Chen, T, Liu, W, Yang, C: Antiperiodic solutions for Lienard-type differential equation with *p*-Laplacian operator. Bound. Value Probl. **2010**, 194824 (2010)
- Chen, T, Liu, W, Hu, Z: A boundary value problem for fractional differential equation with *p*-Laplacian operator at resonance. Nonlinear Anal. TMA 75, 3210-3217 (2012)
- Chen, T, Liu, W: An anti-periodic boundary value problem for the fractional differential equation with a *p*-Laplacian operator. Appl. Math. Lett. 25, 1671-1675 (2012)
- Chen, T, Liu, W, Liu, J: Existence of solutions for some boundary value problems of fractional *p*-Laplacian equation at resonance. Bull. Belg. Math. Soc. Simon Stevin 20, 503-517 (2013)
- 12. Darwish, MA, Ntouyas, SK: On initial and boundary value problems for fractional order mixed type functional differential inclusions. Comput. Math. Appl. **59**, 1253-1265 (2010)
- El-Shahed, M, Nieto, JJ: Nontrivial solutions for a nonlinear multi-point boundary value problem of fractional order. Comput. Math. Appl. 59, 3438-3443 (2010)
- Jiang, W: The existence of solutions to boundary value problems of fractional differential equations at resonance. Nonlinear Anal. TMA 74, 1987-1994 (2011)
- Su, X: Boundary value problem for a coupled system of nonlinear fractional differential equations. Appl. Math. Lett. 22, 64-69 (2009)
- 16. Mawhin, J: Topological Degree Methods in Nonlinear Boundary Value Problems. CBMS Regional Conference Series in Mathematics. American Mathematical Society, Providence (1979)

Submit your manuscript to a SpringerOpen[®] journal and benefit from:

- ► Convenient online submission
- ► Rigorous peer review
- Immediate publication on acceptance
- Open access: articles freely available online
- ► High visibility within the field
- ► Retaining the copyright to your article

Submit your next manuscript at > springeropen.com