A resonant boundary value problem for the fractional p-Laplacian equation

Bo Zhang*

Correspondence:
zhbahhb@chnu.edu.cn
School of Mathematical Sciences, Huaibei Normal University, Huaibei, 235000, PR China Information College, Huaibei Normal University, Huaibei, 235000, PR China

Abstract

The purpose of this paper is to study the solvability of a resonant boundary value problem for the fractional p-Laplacian equation. By using the continuation theorem of coincidence degree theory, we obtain a new result on the existence of solutions for the considered problem.

MSC: 34A08; 34B15 Keywords: resonant boundary value problem; fractional p-Laplacian equation; continuation theorem

1 Introduction

In this paper, we establish an existence theorem of solutions for the following resonant boundary value problem with p-Laplacian operator:

$$
\left\{\begin{array}{l}
{ }_{0}^{c} D_{t}^{\beta} \phi_{p}\left({ }_{0}^{c} D_{t}^{\alpha} x\right)=f\left(t, x,{ }_{0}^{c} D_{t}^{\alpha} x\right), \quad t \in[0,1], \tag{1.1}\\
x(0)=0, \quad{ }_{0}^{c} D_{t}^{\alpha} x(0)={ }_{0}^{c} D_{t}^{\alpha} x(1),
\end{array}\right.
$$

where $0<\alpha, \beta \leq 1$ are constants, ${ }_{0}^{c} D_{t}^{\alpha}$ is a Caputo fractional derivative, $f:[0,1] \times \mathbb{R}^{2} \rightarrow \mathbb{R}$ is a continuous function, $\phi_{p}: \mathbb{R} \rightarrow \mathbb{R}$ is a p-Laplacian operator defined by

$$
\phi_{p}(s)=|s|^{p-2} s \quad(s \neq 0), \quad \phi_{p}(0)=0, \quad p>1 .
$$

Obviously, ϕ_{p} is invertible and its inverse operator is ϕ_{q}, where $q>1$ is a constant such that $1 / p+1 / q=1$.

Fractional calculus is a generalization of ordinary differentiation and integration, and fractional differential equations appear in various fields (see [1-4]). Recently, because of the intensive development of fractional calculus theory and its applications, the initial and boundary value problems (BVPs for short) of fractional differential equations have gained popularity (see [5-15] and the references therein).

In [11], by using the coincidence degree theory for Fredholm operators, the authors considered the existence of solutions for BVP (1.1). Notice that ${ }_{0}^{c} D_{t}^{\beta} \phi_{p}\left({ }_{0}^{c} D_{t}^{\alpha}\right)$ is nonlinear, and so it is not a Fredholm operator. Thus there is a gap in the proof of the main result, and we fix this gap in the present paper.

2 Preliminaries

For convenience of the reader, we will introduce some necessary basic knowledge about fractional calculus theory (see $[2,4]$).

Definition 2.1 The Riemann-Liouville fractional integral operator of order $\alpha>0$ of a function $u:(0,+\infty) \rightarrow \mathbb{R}$ is given by

$$
{ }_{0} I_{t}^{\alpha} u=\frac{1}{\Gamma(\alpha)} \int_{0}^{t}(t-s)^{\alpha-1} u(s) d s
$$

provided that the right-hand side integral is pointwise defined in $(0,+\infty)$.

Definition 2.2 The Caputo fractional derivative of order $\alpha>0$ of a continuous function $u:(0,+\infty) \rightarrow \mathbb{R}$ is given by

$$
\begin{aligned}
{ }_{0}^{c} D_{t}^{\alpha} u & ={ }_{0} I_{t}^{n-\alpha} \frac{\mathrm{d}^{n} u}{\mathrm{~d} t^{n}} \\
& =\frac{1}{\Gamma(n-\alpha)} \int_{0}^{t}(t-s)^{n-\alpha-1} u^{(n)}(s) d s,
\end{aligned}
$$

where n is the smallest integer greater than or equal to α, provided that the right-hand side integral is pointwise defined in $(0,+\infty)$.

Lemma 2.1 (See [1]) Let $\alpha>0$. Assume that $u,{ }_{0}^{c} D_{t}^{\alpha} u \in L([0, T], \mathbb{R})$. Then the following equality holds:

$$
{ }_{0} I_{t}^{\alpha c} D_{t}^{\alpha} u(t)=u(t)+c_{0}+c_{1} t+\cdots+c_{n-1} t^{n-1}
$$

where $c_{i} \in \mathbb{R}, i=0,1, \ldots, n-1$, here n is the smallest integer greater than or equal to α.

Next we present some notations and an abstract existence result (see [16]).
Let X, Y be real Banach spaces, $L: \operatorname{dom} L \subset X \rightarrow Y$ be a Fredholm operator with index zero, and $P: X \rightarrow X, Q: Y \rightarrow Y$ be projectors such that

$$
\begin{aligned}
& \operatorname{Im} P=\operatorname{Ker} L, \quad \operatorname{Ker} Q=\operatorname{Im} L, \\
& X=\operatorname{Ker} L \oplus \operatorname{Ker} P, \quad Y=\operatorname{Im} L \oplus \operatorname{Im} Q .
\end{aligned}
$$

It follows that

$$
\left.L\right|_{\operatorname{dom} L \cap \operatorname{Ker} P}: \operatorname{dom} L \cap \operatorname{Ker} P \rightarrow \operatorname{Im} L
$$

is invertible. We denote the inverse by K_{P}.
If Ω is an open bounded subset of X such that $\operatorname{dom} L \cap \bar{\Omega} \neq \varnothing$, then the map $N: X \rightarrow Y$ will be called L-compact on $\bar{\Omega}$ if $Q N(\bar{\Omega})$ is bounded and $K_{P}(I-Q) N: \bar{\Omega} \rightarrow X$ is compact.

Lemma 2.2 (See [16]) Let $L: \operatorname{dom} L \subset X \rightarrow Y$ be a Fredholm operator of index zero and $N: X \rightarrow Y$ be L-compact on $\bar{\Omega}$. Assume that the following conditions are satisfied:
(1) $L x \neq \lambda N x$ for every $(x, \lambda) \in[(\operatorname{dom} L \backslash \operatorname{Ker} L) \cap \partial \Omega] \times(0,1)$,
(2) $N x \notin \operatorname{Im} L$ for every $x \in \operatorname{Ker} L \cap \partial \Omega$,
(3) $\operatorname{deg}\left(\left.Q N\right|_{\operatorname{Ker} L}, \Omega \cap \operatorname{Ker} L, 0\right) \neq 0$, where $Q: Y \rightarrow Y$ is a projection such that $\operatorname{Im} L=\operatorname{Ker} Q$.
Then the equation $L x=N x$ has at least one solution in $\operatorname{dom} L \cap \bar{\Omega}$.

In this paper, we let $Z=C([0,1], \mathbb{R})$ with the norm $\|z\|_{\infty}=\max _{t \in[0,1]}|z(t)|$ and take

$$
X=\left\{x=\left(x_{1}, x_{2}\right)^{\top} \mid x_{1}, x_{2} \in Z\right\}
$$

with the norm

$$
\|x\|_{X}=\max \left\{\left\|x_{1}\right\|_{\infty},\left\|x_{2}\right\|_{\infty}\right\} .
$$

By means of the linear functional analysis theory, we can prove that X is a Banach space.

3 Main result

We will establish the existence theorem of solutions for BVP (1.1).

Theorem 3.1 Letf $:[0,1] \times \mathbb{R}^{2} \rightarrow \mathbb{R}$ be continuous. Assume that
$\left(H_{1}\right)$ there exist nonnegative functions $a, b, c \in Z$ such that

$$
|f(t, u, v)| \leq a(t)+b(t)|u|^{p-1}+c(t)|v|^{p-1}, \quad \forall(t, u, v) \in[0,1] \times \mathbb{R}^{2},
$$

$\left(H_{2}\right)$ there exists a constant $B>0$ such that

$$
v f(t, u, v)>0(\text { or }<0), \quad \forall t \in[0,1], u \in \mathbb{R},|v|>B .
$$

Then BVP (1.1) has at least one solution provided that

$$
\gamma:=\frac{2}{\Gamma(\beta+1)}\left(\frac{\|b\|_{\infty}}{(\Gamma(\alpha+1))^{p-1}}+\|c\|_{\infty}\right)<1 .
$$

Consider BVP of the linear differential system as follows:

$$
\left\{\begin{array}{l}
{ }_{0}^{c} D_{t}^{\alpha} x_{1}=\phi_{q}\left(x_{2}\right), \quad t \in[0,1], \tag{3.1}\\
{ }_{0}^{c} D_{t}^{\beta} x_{2}=f\left(t, x_{1}, \phi_{q}\left(x_{2}\right)\right), \quad t \in[0,1], \\
x_{1}(0)=0, \quad x_{2}(0)=x_{2}(1) .
\end{array}\right.
$$

Obviously, if $x=\left(x_{1}, x_{2}\right)^{\top}$ is a solution of BVP (3.1), then x_{1} must be a solution of BVP (1.1). Therefore, to prove BVP (1.1) has solutions, it suffices to show that BVP (3.1) has solutions.

Define the operator $L: \operatorname{dom} L \subset X \rightarrow X$ by

$$
\begin{equation*}
L x=\binom{{ }_{0}^{c} D_{t}^{\alpha} x_{1}}{{ }_{0}^{c} D_{t}^{\beta} x_{2}}, \tag{3.2}
\end{equation*}
$$

where

$$
\operatorname{dom} L=\left\{x \in X \mid{ }_{0}^{c} D_{t}^{\alpha} x_{1},{ }_{0}^{c} D_{t}^{\beta} x_{2} \in Z, x_{1}(0)=0, x_{2}(0)=x_{2}(1)\right\} .
$$

Let $N: X \rightarrow X$ be the Nemytskii operator defined by

$$
\begin{equation*}
N x(t)=\binom{\phi_{q}\left(x_{2}(t)\right)}{f\left(t, x_{1}(t), \phi_{q}\left(x_{2}(t)\right)\right)}, \quad \forall t \in[0,1] . \tag{3.3}
\end{equation*}
$$

Then BVP (3.1) is equivalent to the following operator equation:

$$
L x=N x, \quad x \in \operatorname{dom} L .
$$

Now, in order to prove Theorem 3.1, we give some lemmas.

Lemma 3.1 Let L be defined by (3.2), then

$$
\begin{align*}
& \operatorname{Ker} L=\left\{x \in X \mid x_{1}(t)=0, x_{2}(t)=c, \forall t \in[0,1], c \in \mathbb{R}\right\}, \tag{3.4}\\
& \operatorname{Im} L=\left\{\left.y \in X\right|_{0} I_{t}^{\beta} y_{2}(1)=0\right\} . \tag{3.5}
\end{align*}
$$

Proof By Lemma 2.1, the equation $L x=0$ has solutions

$$
x_{1}(t)=c_{1}, \quad x_{2}(t)=c_{2}, \quad c_{1}, c_{2} \in \mathbb{R} .
$$

Thus, from the boundary value condition $x_{1}(0)=0$, one has that (3.4) holds.
Let $y \in \operatorname{Im} L$, then there exists a function $x \in \operatorname{dom} L$ such that $y_{2}={ }_{0}^{c} D_{t}^{\beta} x_{2}$. So, by Lemma 2.1, we have

$$
x_{2}(t)=c+{ }_{0} I_{t}^{\beta} y_{2}(t), \quad c \in \mathbb{R} .
$$

Hence, from the boundary value condition $x_{2}(0)=x_{2}(1)$, we get (3.5).
On the other hand, suppose that $y \in X$ satisfies ${ }_{0} I_{t}^{\beta} y_{2}(1)=0$. Let $x_{1}={ }_{0} I_{t}^{\alpha} y_{1}, x_{2}={ }_{0} I_{t}^{\beta} y_{2}(t)$, then $x=\left(x_{1}, x_{2}\right)^{\top} \in \operatorname{dom} L$ and $L x=y$. That is, $y \in \operatorname{Im} L$. The proof is complete.

Lemma 3.2 Let L be defined by (3.2), then L is a Fredholm operator of index zero. And the projectors $P: X \rightarrow X, Q: X \rightarrow X$ can be defined as

$$
\begin{aligned}
& P x(t)=\binom{0}{x_{2}(0)}, \quad \forall t \in[0,1], \\
& Q y(t)=\binom{0}{\Gamma(\beta+1)_{0} I_{t}^{\beta} y_{2}(1)}, \quad \forall t \in[0,1] .
\end{aligned}
$$

Furthermore, the operator $K_{P}: \operatorname{Im} L \rightarrow \operatorname{dom} L \cap \operatorname{Ker} P$ can be written as

$$
K_{P} y=\binom{{ }_{0} I_{t}^{\alpha} y_{1}}{{ }_{0} I_{t}^{\beta} y_{2}} .
$$

Proof For any $y \in X$, one has

$$
\begin{align*}
Q^{2} y & =Q\binom{0}{\Gamma(\beta+1)_{0} I_{t}^{\beta} y_{2}(1)} \\
& =\binom{0}{\Gamma(\beta+1)_{0} I_{t}^{\beta} y_{2}(1) \cdot \Gamma(\beta+1)_{0} I_{t}^{\beta} 1(1)} \\
& =Q y . \tag{3.6}
\end{align*}
$$

Let $y^{*}=y-Q y$, then we get from (3.6) that

$$
\begin{aligned}
{ }_{0} I_{t}^{\beta} y_{2}^{*}(1) & ={ }_{0} I_{t}^{\beta} y_{2}(1)-{ }_{0} I_{t}^{\beta}\left(Q y_{2}\right)(1) \\
& =\frac{1}{\Gamma(\beta+1)}\left(\left(Q y_{2}\right)(t)-\left(Q^{2} y_{2}\right)(t)\right) \\
& =0
\end{aligned}
$$

which yields $y^{*} \in \operatorname{Im} L$. So $X=\operatorname{Im} L+\operatorname{Im} Q$. Since $\operatorname{Im} L \cap \operatorname{Im} Q=\left\{(0,0)^{\top}\right\}$, we have $X=$ $\operatorname{Im} L \oplus \operatorname{Im} Q$. Hence

$$
\operatorname{dim} \operatorname{Ker} L=\operatorname{dim} \operatorname{Im} Q=\operatorname{codim} \operatorname{Im} L=1 .
$$

Thus L is a Fredholm operator of index zero.
For $y \in \operatorname{Im} L$, by the definition of operator K_{P}, we have

$$
\begin{align*}
L K_{P} y & =\binom{{ }_{0}^{c} D_{t 0}^{\alpha} I_{t}^{\alpha} y_{1}}{{ }_{0}^{c} D_{t 0}^{\beta} I_{t}^{\beta} y_{2}} \\
& =y . \tag{3.7}
\end{align*}
$$

On the other hand, for $x \in \operatorname{dom} L \cap \operatorname{Ker} P$, one has

$$
x_{1}(0)=x_{2}(0)=x_{2}(1)=0 .
$$

Thus, from Lemma 2.1, we get

$$
\begin{align*}
K_{P} L x(t) & =\binom{{ }_{0} I_{t}^{\alpha c} D_{t}^{\alpha} x_{1}(t)}{{ }_{0} I_{t}^{\beta}{ }_{0} D_{t}^{\beta} x_{2}(t)} \\
& =\binom{x_{1}(t)-x_{1}(0)}{x_{2}(t)-x_{2}(0)} \\
& =x(t) . \tag{3.8}
\end{align*}
$$

Hence, combining (3.7) with (3.8), we know $K_{P}=\left(\left.L\right|_{\text {dom } L \cap \operatorname{Ker} P}\right)^{-1}$. The proof is complete.

Lemma 3.3 Let N be defined by (3.3). Assume $\Omega \subset X$ is an open bounded subset such that $\operatorname{dom} L \cap \bar{\Omega} \neq \varnothing$, then N is L-compact on $\bar{\Omega}$.

Proof From the continuity of ϕ_{q} and f, we obtain $K_{P}(I-Q) N$ is continuous in X and $Q N(\bar{\Omega}), K_{P}(I-Q) N(\bar{\Omega})$ are bounded. Moreover, there exists a constant $T>0$ such that

$$
\begin{equation*}
\|(I-Q) N x\|_{X} \leq T, \quad \forall x \in \bar{\Omega} . \tag{3.9}
\end{equation*}
$$

Thus, in view of the Arzelà-Ascoli theorem, we need only to prove $K_{P}(I-Q) N(\bar{\Omega}) \subset X$ is equicontinuous.

For $0 \leq t_{1}<t_{2} \leq 1, x \in \bar{\Omega}$, one has

$$
\begin{aligned}
& \left|K_{P}(I-Q) N x\left(t_{2}\right)-K_{P}(I-Q) N x\left(t_{1}\right)\right| \\
& \quad=\binom{{ }_{0} I_{t}^{\alpha}((I-Q) N x)_{1}\left(t_{2}\right)-{ }_{0} I_{t}^{\alpha}((I-Q) N x)_{1}\left(t_{1}\right)}{{ }_{0}^{\beta} I_{t}^{\beta}((I-Q) N x)_{2}\left(t_{2}\right)-{ }_{0} I_{t}^{\beta}((I-Q) N x)_{2}\left(t_{1}\right)} .
\end{aligned}
$$

From (3.9), we have

$$
\begin{aligned}
&\left|{ }_{0} I_{t}^{\alpha}((I-Q) N x)_{1}\left(t_{2}\right)-{ }_{0} I_{t}^{\alpha}((I-Q) N x)_{1}\left(t_{1}\right)\right| \\
&= \left.\frac{1}{\Gamma(\alpha)} \right\rvert\, \int_{0}^{t_{2}}\left(t_{2}-s\right)^{\alpha-1}((I-Q) N x)_{1}(s) d s \\
&-\int_{0}^{t_{1}}\left(t_{1}-s\right)^{\alpha-1}((I-Q) N x)_{1}(s) d s \mid \\
& \leq \frac{T}{\Gamma(\alpha)}\left\{\int_{0}^{t_{1}}\left[\left(t_{1}-s\right)^{\alpha-1}-\left(t_{2}-s\right)^{\alpha-1}\right] d s+\int_{t_{1}}^{t_{2}}\left(t_{2}-s\right)^{\alpha-1} d s\right\} \\
&= \frac{T}{\Gamma(\alpha+1)}\left[t_{1}^{\alpha}-t_{2}^{\alpha}+2\left(t_{2}-t_{1}\right)^{\alpha}\right] .
\end{aligned}
$$

Since t^{α} is uniformly continuous on $[0,1]$, we get $\left(K_{P}(I-Q) N(\bar{\Omega})\right)_{1} \subset Z$ is equicontinuous. A similar proof can show that $\left(K_{P}(I-Q) N(\bar{\Omega})\right)_{2} \subset Z$ is also equicontinuous. Hence, we obtain $K_{P}(I-Q) N: \bar{\Omega} \rightarrow X$ is compact. The proof is complete.

Finally, we give the proof of Theorem 3.1.

Proof of Theorem 3.1 Let

$$
\Omega_{1}=\{x \in \operatorname{dom} L \backslash \operatorname{Ker} L \mid L x=\lambda N x, \lambda \in(0,1)\} .
$$

For $x \in \Omega_{1}$, we have $x_{1}(0)=0$ and $N x \in \operatorname{Im} L$. So, by Lemma 2.1, we get

$$
x_{1}={ }_{0} I_{t}^{\alpha}{ }_{0}^{\alpha} D_{t}^{\alpha} x_{1} .
$$

Thus one has

$$
\left|x_{1}(t)\right| \leq \frac{1}{\Gamma(\alpha+1)}\left\|_{0}^{c} D_{t}^{\alpha} x_{1}\right\|_{\infty}, \quad \forall t \in[0,1] .
$$

That is,

$$
\begin{equation*}
\left\|x_{1}\right\|_{\infty} \leq \frac{1}{\Gamma(\alpha+1)}\left\|_{0}^{c} D_{t}^{\alpha} x_{1}\right\|_{\infty} . \tag{3.10}
\end{equation*}
$$

From $N x \in \operatorname{Im} L$ and (3.5), we obtain

$$
\begin{aligned}
0 & ={ }_{0} I_{t}^{\beta}(N x)_{2}(1) \\
& =\frac{1}{\Gamma(\beta)} \int_{0}^{1}(1-s)^{\beta-1} f\left(s, x_{1}(s), \phi_{q}\left(x_{2}(s)\right)\right) d s .
\end{aligned}
$$

Then, by the integral mean value theorem, there exists a constant $\xi \in(0,1)$ such that

$$
f\left(\xi, x_{1}(\xi), \phi_{q}\left(x_{2}(\xi)\right)\right)=0 .
$$

So, by $\left(H_{2}\right)$, we have $\left|x_{2}(\xi)\right| \leq B^{p-1}$. From Lemma 2.1, we get

$$
x_{2}(t)=x_{2}(\xi)-{ }_{0} I_{t}^{\beta c} D_{t}^{\beta} x_{2}(\xi)+{ }_{0} I_{t}^{\beta c} D_{t}^{\beta} x_{2}(t),
$$

which together with

$$
\left|{ }_{0} I_{t}^{\beta c} D_{t}^{\beta} x_{2}(t)\right| \leq \frac{1}{\Gamma(\beta+1)}\left\|_{0}^{c} D_{t}^{\beta} x_{2}\right\|_{\infty}, \quad \forall t \in[0,1]
$$

yields

$$
\begin{equation*}
\left\|x_{2}\right\|_{\infty} \leq B^{p-1}+\frac{2}{\Gamma(\beta+1)}\left\|_{0}^{c} D_{t}^{\beta} x_{2}\right\|_{\infty} \tag{3.11}
\end{equation*}
$$

From $L x=\lambda N x$, one has

$$
\begin{align*}
& { }_{0}^{c} D_{t}^{\alpha} x_{1}=\lambda \phi_{q}\left(x_{2}\right), \tag{3.12}\\
& { }_{0}^{c} D_{t}^{\beta} x_{2}=\lambda f\left(t, x_{1}, \phi_{q}\left(x_{2}\right)\right) . \tag{3.13}
\end{align*}
$$

By (3.12), we have

$$
\left\|{ }_{0}^{c} D_{t}^{\alpha} x_{1}\right\|_{\infty} \leq\left\|x_{2}\right\|_{\infty}^{q-1},
$$

which together with (3.10) yields

$$
\begin{equation*}
\left\|x_{1}\right\|_{\infty} \leq \frac{1}{\Gamma(\alpha+1)}\left\|x_{2}\right\|_{\infty}^{q-1} . \tag{3.14}
\end{equation*}
$$

By (3.13) and $\left(H_{1}\right)$, we obtain

$$
\left\|{ }_{0}^{c} D_{t}^{\beta} x_{2}\right\|_{\infty} \leq\|a\|_{\infty}+\|b\|_{\infty}\left\|x_{1}\right\|_{\infty}^{p-1}+\|c\|_{\infty}\left\|x_{2}\right\|_{\infty}
$$

which together with (3.11) and (3.14) yields

$$
\begin{align*}
\left\|{ }_{0}^{c} D_{t}^{\beta} x_{2}\right\|_{\infty} & \leq\|a\|_{\infty}+\frac{\Gamma(\beta+1) \gamma}{2}\left\|x_{2}\right\|_{\infty} \\
& \leq\|a\|_{\infty}+\frac{\Gamma(\beta+1) \gamma B^{p-1}}{2}+\gamma\left\|_{0}^{c} D_{t}^{\beta} x_{2}\right\|_{\infty} . \tag{3.15}
\end{align*}
$$

Since $\gamma<1$, we get from (3.15) that there exists a constant $M_{0}>0$ such that

$$
\left\|{ }_{0}^{c} D_{t}^{\beta} x_{2}\right\|_{\infty} \leq M_{0} .
$$

Thus, combining (3.11) with (3.14), we have

$$
\begin{aligned}
& \left\|x_{2}\right\|_{\infty} \leq B^{p-1}+\frac{2 M_{0}}{\Gamma(\beta+1)}:=M_{1} \\
& \left\|x_{1}\right\|_{\infty} \leq \frac{M_{1}^{q-1}}{\Gamma(\alpha+1)}:=M_{2} .
\end{aligned}
$$

Hence

$$
\|x\|_{X} \leq \max \left\{M_{1}, M_{2}\right\}:=M
$$

which means Ω_{1} is bounded.
Let

$$
\Omega_{2}=\{x \in \operatorname{Ker} L \mid N x \in \operatorname{Im} L\} .
$$

For $x \in \Omega_{2}$, we have ${ }_{0} I_{t}^{\beta}(N x)_{2}(1)=0$ and $x_{1}(t)=0, x_{2}(t)=c, c \in \mathbb{R}$. Thus one has

$$
\int_{0}^{1}(1-s)^{\beta-1} f\left(s, 0, \phi_{q}(c)\right) d s=0
$$

which together with $\left(H_{2}\right)$ yields $|c| \leq B^{p-1}$. Hence

$$
\|x\|_{X} \leq \max \left\{0, B^{p-1}\right\}=B^{p-1}
$$

which means Ω_{2} is bounded.
By $\left(H_{2}\right)$, one has

$$
\begin{equation*}
\phi_{p}(v) f(t, u, v)>0, \quad \forall t \in[0,1], u \in \mathbb{R},|v|>B \tag{3.16}
\end{equation*}
$$

or

$$
\begin{equation*}
\phi_{p}(v) f(t, u, v)<0, \quad \forall t \in[0,1], u \in \mathbb{R},|v|>B . \tag{3.17}
\end{equation*}
$$

When (3.16) is true, let

$$
\Omega_{3}=\{x \in \operatorname{Ker} L \mid \lambda x+(1-\lambda) Q N x=0, \lambda \in[0,1]\} .
$$

For $x \in \Omega_{3}$, we have $x_{1}(t)=0, x_{2}(t)=c, c \in \mathbb{R}$ and

$$
\begin{equation*}
\lambda c+(1-\lambda) \beta \int_{0}^{1}(1-s)^{\beta-1} f\left(s, 0, \phi_{q}(c)\right) d s=0 . \tag{3.18}
\end{equation*}
$$

If $\lambda=0$, we get from (3.16) that $|c| \leq B^{p-1}$. If $\lambda \in(0,1]$, we assume $|c|>B^{p-1}$. Thus, by (3.16), we obtain

$$
\lambda c^{2}+(1-\lambda) \beta \int_{0}^{1}(1-s)^{\beta-1} \phi_{p}\left(\phi_{q}(c)\right) f\left(s, 0, \phi_{q}(c)\right) d s>0,
$$

which contradicts (3.18). Hence, Ω_{3} is bounded.
When (3.17) is true, let

$$
\Omega_{3}^{\prime}=\{x \in \operatorname{Ker} L \mid-\lambda x+(1-\lambda) Q N x=0, \lambda \in[0,1]\} .
$$

A similar proof can show Ω_{3}^{\prime} is also bounded.
Set

$$
\Omega=\left\{x \in X \mid\|x\|_{X}<\max \left\{M, B^{p-1}\right\}+1\right\} .
$$

Clearly, $\Omega_{1} \cup \Omega_{2} \cup \Omega_{3} \subset \Omega$ (or $\Omega_{1} \cup \Omega_{2} \cup \Omega_{3}^{\prime} \subset \Omega$). It follows from Lemma 3.2 and 3.3 that L (defined by (3.2)) is a Fredholm operator of index zero and N (defined by (3.3)) is L-compact on $\bar{\Omega}$. Moreover, based on the above proof, the conditions (1) and (2) of Lemma 2.2 are satisfied. Define the operator $H: \bar{\Omega} \times[0,1] \rightarrow X$ by

$$
H(x, \lambda)= \pm \lambda x+(1-\lambda) Q N x .
$$

Then, from the above proof, we have

$$
H(x, \lambda) \neq 0, \quad \forall x \in \partial \Omega \cap \operatorname{Ker} L .
$$

Thus, by the homotopy property of degree, we get

$$
\begin{aligned}
\operatorname{deg}\left(\left.Q N\right|_{\operatorname{Ker} L}, \Omega \cap \operatorname{Ker} L, 0\right) & =\operatorname{deg}(H(\cdot, 0), \Omega \cap \operatorname{Ker} L, 0) \\
& =\operatorname{deg}(H(\cdot, 1), \Omega \cap \operatorname{Ker} L, 0) \\
& =\operatorname{deg}(\pm I, \Omega \cap \operatorname{Ker} L, 0) \\
& \neq 0 .
\end{aligned}
$$

Hence, condition (3) of Lemma 2.2 is also satisfied.
Therefore, by using Lemma 2.2, the operator equation $L x=N x$ has at least one solution in $\operatorname{dom} L \cap \bar{\Omega}$. Namely, BVP (1.1) has at least one solution in X. The proof is complete.

Competing interests

The author declares that he has no competing interests.

Acknowledgements

This work was supported by the Natural Science Research Foundation of Colleges and Universities in Anhui Province (KJ2016A648).

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

1. Kilbas, AA, Srivastava, HM, Trujillo, JJ: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)
2. Podlubny, I: Fractional Differential Equation. Academic Press, San Diego (1999)
3. Sabatier, J, Agrawal, OP, Machado, JAT (eds.): Advances in Fractional Calculus: Theoretical Developments and Applications in Physics and Engineering. Springer, Dordrecht (2007)
4. Samko, SG, Kilbas, AA, Marichev, Ol: Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach, Yverdon (1993)
5. Agarwal, RP, O'Regan, D, Stanek, S: Positive solutions for Dirichlet problems of singular nonlinear fractional differential equations. J. Math. Anal. Appl. 371, 57-68 (2010)
6. Bai, Z, Lü, H: Positive solutions for boundary value problem of nonlinear fractional differential equation. J. Math. Anal. Appl. 311, 495-505 (2005)
7. Benchohra, M, Hamani, S, Ntouyas, SK: Boundary value problems for differential equations with fractional order and nonlocal conditions. Nonlinear Anal. TMA 71, 2391-2396 (2009)
8. Chen, T, Liu, W, Yang, C: Antiperiodic solutions for Lienard-type differential equation with p-Laplacian operator. Bound. Value Probl. 2010, 194824 (2010)
9. Chen, T, Liu, W, Hu, Z: A boundary value problem for fractional differential equation with p-Laplacian operator at resonance. Nonlinear Anal. TMA 75, 3210-3217 (2012)
10. Chen, T, Liu, W: An anti-periodic boundary value problem for the fractional differential equation with a p-Laplacian operator. Appl. Math. Lett. 25, 1671-1675 (2012)
11. Chen, T, Liu, W, Liu, J: Existence of solutions for some boundary value problems of fractional p-Laplacian equation at resonance. Bull. Belg. Math. Soc. Simon Stevin 20, 503-517 (2013)
12. Darwish, MA, Ntouyas, SK: On initial and boundary value problems for fractional order mixed type functional differential inclusions. Comput. Math. Appl. 59, 1253-1265 (2010)
13. El-Shahed, M, Nieto, JJ: Nontrivial solutions for a nonlinear multi-point boundary value problem of fractional order. Comput. Math. Appl. 59, 3438-3443 (2010)
14. Jiang, W: The existence of solutions to boundary value problems of fractional differential equations at resonance. Nonlinear Anal. TMA 74, 1987-1994 (2011)
15. Su, X: Boundary value problem for a coupled system of nonlinear fractional differential equations. Appl. Math. Lett. 22, 64-69 (2009)
16. Mawhin, J: Topological Degree Methods in Nonlinear Boundary Value Problems. CBMS Regional Conference Series in Mathematics. American Mathematical Society, Providence (1979)

Submit your manuscript to a SpringerOpen ${ }^{\bullet}$ journal and benefit from:

Convenient online submission

- Rigorous peer review
- Immediate publication on acceptance

Open access: articles freely available online
High visibility within the field

- Retaining the copyright to your article

Submit your next manuscript at $>$ springeropen.com

