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Abstract
The purpose of this paper is to study the solvability of a resonant boundary value
problem for the fractional p-Laplacian equation. By using the continuation theorem
of coincidence degree theory, we obtain a new result on the existence of solutions for
the considered problem.
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1 Introduction
In this paper, we establish an existence theorem of solutions for the following resonant
boundary value problem with p-Laplacian operator:

{
c
Dβ

t φp(c
Dα

t x) = f (t, x, c
Dα

t x), t ∈ [, ],
x() = , c

Dα
t x() = c

Dα
t x(),

(.)

where  < α,β ≤  are constants, c
Dα

t is a Caputo fractional derivative, f : [, ] ×R
 →R

is a continuous function, φp : R→ R is a p-Laplacian operator defined by

φp(s) = |s|p–s (s �= ), φp() = , p > .

Obviously, φp is invertible and its inverse operator is φq, where q >  is a constant such that
/p + /q = .

Fractional calculus is a generalization of ordinary differentiation and integration, and
fractional differential equations appear in various fields (see [–]). Recently, because of
the intensive development of fractional calculus theory and its applications, the initial and
boundary value problems (BVPs for short) of fractional differential equations have gained
popularity (see [–] and the references therein).

In [], by using the coincidence degree theory for Fredholm operators, the authors con-
sidered the existence of solutions for BVP (.). Notice that c

Dβ
t φp(c

Dα
t ) is nonlinear, and

so it is not a Fredholm operator. Thus there is a gap in the proof of the main result, and
we fix this gap in the present paper.
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2 Preliminaries
For convenience of the reader, we will introduce some necessary basic knowledge about
fractional calculus theory (see [, ]).

Definition . The Riemann-Liouville fractional integral operator of order α >  of a
function u : (, +∞) →R is given by

Iα
t u =


�(α)

∫ t


(t – s)α–u(s) ds,

provided that the right-hand side integral is pointwise defined in (, +∞).

Definition . The Caputo fractional derivative of order α >  of a continuous function
u : (, +∞) →R is given by

c
Dα

t u = In–α
t

dnu
dtn

=


�(n – α)

∫ t


(t – s)n–α–u(n)(s) ds,

where n is the smallest integer greater than or equal to α, provided that the right-hand
side integral is pointwise defined in (, +∞).

Lemma . (See []) Let α > . Assume that u, c
Dα

t u ∈ L([, T],R). Then the following
equality holds:

Iα
t

c
Dα

t u(t) = u(t) + c + ct + · · · + cn–tn–,

where ci ∈R, i = , , . . . , n – , here n is the smallest integer greater than or equal to α.

Next we present some notations and an abstract existence result (see []).
Let X, Y be real Banach spaces, L : dom L ⊂ X → Y be a Fredholm operator with index

zero, and P : X → X, Q : Y → Y be projectors such that

Im P = Ker L, Ker Q = Im L,

X = Ker L ⊕ Ker P, Y = Im L ⊕ Im Q.

It follows that

L|dom L∩Ker P : dom L ∩ Ker P → Im L

is invertible. We denote the inverse by KP .
If � is an open bounded subset of X such that dom L ∩ � �= ∅, then the map N : X → Y

will be called L-compact on � if QN(�) is bounded and KP(I – Q)N : � → X is compact.

Lemma . (See []) Let L : dom L ⊂ X → Y be a Fredholm operator of index zero and
N : X → Y be L-compact on �. Assume that the following conditions are satisfied:
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() Lx �= λNx for every (x,λ) ∈ [(dom L \ Ker L) ∩ ∂�] × (, ),
() Nx /∈ Im L for every x ∈ Ker L ∩ ∂�,
() deg(QN |Ker L,� ∩ Ker L, ) �= , where Q : Y → Y is a projection such that

Im L = Ker Q.
Then the equation Lx = Nx has at least one solution in dom L ∩ �.

In this paper, we let Z = C([, ],R) with the norm ‖z‖∞ = maxt∈[,] |z(t)| and take

X =
{

x = (x, x)�|x, x ∈ Z
}

with the norm

‖x‖X = max
{‖x‖∞,‖x‖∞

}
.

By means of the linear functional analysis theory, we can prove that X is a Banach
space.

3 Main result
We will establish the existence theorem of solutions for BVP (.).

Theorem . Let f : [, ] ×R
 →R be continuous. Assume that

(H) there exist nonnegative functions a, b, c ∈ Z such that

∣∣f (t, u, v)
∣∣ ≤ a(t) + b(t)|u|p– + c(t)|v|p–, ∀(t, u, v) ∈ [, ] ×R

,

(H) there exists a constant B >  such that

vf (t, u, v) >  (or < ), ∀t ∈ [, ], u ∈R, |v| > B.

Then BVP (.) has at least one solution provided that

γ :=


�(β + )

( ‖b‖∞
(�(α + ))p– + ‖c‖∞

)
< .

Consider BVP of the linear differential system as follows:

⎧⎪⎨
⎪⎩

c
Dα

t x = φq(x), t ∈ [, ],
c
Dβ

t x = f (t, x,φq(x)), t ∈ [, ],
x() = , x() = x().

(.)

Obviously, if x = (x, x)� is a solution of BVP (.), then x must be a solution of BVP (.).
Therefore, to prove BVP (.) has solutions, it suffices to show that BVP (.) has solutions.

Define the operator L : dom L ⊂ X → X by

Lx =
(c

Dα
t x

c
Dβ

t x

)
, (.)
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where

dom L =
{

x ∈ X|cDα
t x, c

Dβ
t x ∈ Z, x() = , x() = x()

}
.

Let N : X → X be the Nemytskii operator defined by

Nx(t) =
(

φq(x(t))
f (t, x(t),φq(x(t)))

)
, ∀t ∈ [, ]. (.)

Then BVP (.) is equivalent to the following operator equation:

Lx = Nx, x ∈ dom L.

Now, in order to prove Theorem ., we give some lemmas.

Lemma . Let L be defined by (.), then

Ker L =
{

x ∈ X|x(t) = , x(t) = c,∀t ∈ [, ], c ∈R
}

, (.)

Im L =
{

y ∈ X|Iβ
t y() = 

}
. (.)

Proof By Lemma ., the equation Lx =  has solutions

x(t) = c, x(t) = c, c, c ∈R.

Thus, from the boundary value condition x() = , one has that (.) holds.
Let y ∈ Im L, then there exists a function x ∈ dom L such that y = c

Dβ
t x. So, by

Lemma ., we have

x(t) = c + Iβ
t y(t), c ∈R.

Hence, from the boundary value condition x() = x(), we get (.).
On the other hand, suppose that y ∈ X satisfies Iβ

t y() = . Let x = Iα
t y, x = Iβ

t y(t),
then x = (x, x)� ∈ dom L and Lx = y. That is, y ∈ Im L. The proof is complete. �

Lemma . Let L be defined by (.), then L is a Fredholm operator of index zero. And the
projectors P : X → X, Q : X → X can be defined as

Px(t) =
(


x()

)
, ∀t ∈ [, ],

Qy(t) =
(


�(β + )Iβ

t y()

)
, ∀t ∈ [, ].

Furthermore, the operator KP : Im L → dom L ∩ Ker P can be written as

KPy =
(

Iα
t y

Iβ
t y

)
.
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Proof For any y ∈ X, one has

Qy = Q
(


�(β + )Iβ

t y()

)

=
(


�(β + )Iβ

t y() · �(β + )Iβ
t ()

)

= Qy. (.)

Let y∗ = y – Qy, then we get from (.) that

Iβ
t y∗

() = Iβ
t y() – Iβ

t (Qy)()

=


�(β + )
(
(Qy)(t) –

(
Qy

)
(t)

)
= ,

which yields y∗ ∈ Im L. So X = Im L + Im Q. Since Im L ∩ Im Q = {(, )�}, we have X =
Im L ⊕ Im Q. Hence

dim Ker L = dim Im Q = codim Im L = .

Thus L is a Fredholm operator of index zero.
For y ∈ Im L, by the definition of operator KP , we have

LKPy =
(c

Dα
t Iα

t y
c
Dβ

t Iβ
t y

)

= y. (.)

On the other hand, for x ∈ dom L ∩ Ker P, one has

x() = x() = x() = .

Thus, from Lemma ., we get

KPLx(t) =
(

Iα
t

c
Dα

t x(t)

Iβ
t

c
Dβ

t x(t)

)

=
(

x(t) – x()
x(t) – x()

)

= x(t). (.)

Hence, combining (.) with (.), we know KP = (L|dom L∩Ker P)–. The proof is complete. �

Lemma . Let N be defined by (.). Assume � ⊂ X is an open bounded subset such that
dom L ∩ � �= ∅, then N is L-compact on �.
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Proof From the continuity of φq and f , we obtain KP(I – Q)N is continuous in X and
QN(�), KP(I – Q)N(�) are bounded. Moreover, there exists a constant T >  such that

∥∥(I – Q)Nx
∥∥

X ≤ T , ∀x ∈ �. (.)

Thus, in view of the Arzelà-Ascoli theorem, we need only to prove KP(I – Q)N(�) ⊂ X is
equicontinuous.

For  ≤ t < t ≤ , x ∈ �, one has

∣∣KP(I – Q)Nx(t) – KP(I – Q)Nx(t)
∣∣

=
(

Iα
t ((I – Q)Nx)(t) – Iα

t ((I – Q)Nx)(t)

Iβ
t ((I – Q)Nx)(t) – Iβ

t ((I – Q)Nx)(t)

)
.

From (.), we have

∣∣Iα
t
(
(I – Q)Nx

)
(t) – Iα

t
(
(I – Q)Nx

)
(t)

∣∣
=


�(α)

∣∣∣∣
∫ t


(t – s)α–((I – Q)Nx

)
(s) ds

–
∫ t


(t – s)α–((I – Q)Nx

)
(s) ds

∣∣∣∣
≤ T

�(α)

{∫ t



[
(t – s)α– – (t – s)α–]ds +

∫ t

t

(t – s)α– ds
}

=
T

�(α + )
[
tα
 – tα

 + (t – t)α
]
.

Since tα is uniformly continuous on [, ], we get (KP(I – Q)N(�)) ⊂ Z is equicontinuous.
A similar proof can show that (KP(I – Q)N(�)) ⊂ Z is also equicontinuous. Hence, we
obtain KP(I – Q)N : � → X is compact. The proof is complete. �

Finally, we give the proof of Theorem ..

Proof of Theorem . Let

� =
{

x ∈ dom L\Ker L|Lx = λNx,λ ∈ (, )
}

.

For x ∈ �, we have x() =  and Nx ∈ Im L. So, by Lemma ., we get

x = Iα
t

c
Dα

t x.

Thus one has

∣∣x(t)
∣∣ ≤ 

�(α + )
∥∥c

Dα
t x

∥∥∞, ∀t ∈ [, ].

That is,

‖x‖∞ ≤ 
�(α + )

∥∥c
Dα

t x
∥∥∞. (.)
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From Nx ∈ Im L and (.), we obtain

 = Iβ
t (Nx)()

=


�(β)

∫ 


( – s)β–f

(
s, x(s),φq

(
x(s)

))
ds.

Then, by the integral mean value theorem, there exists a constant ξ ∈ (, ) such that

f
(
ξ , x(ξ ),φq

(
x(ξ )

))
= .

So, by (H), we have |x(ξ )| ≤ Bp–. From Lemma ., we get

x(t) = x(ξ ) – Iβ
t

c
Dβ

t x(ξ ) + Iβ
t

c
Dβ

t x(t),

which together with

∣∣Iβ
t

c
Dβ

t x(t)
∣∣ ≤ 

�(β + )
∥∥c

Dβ
t x

∥∥∞, ∀t ∈ [, ]

yields

‖x‖∞ ≤ Bp– +


�(β + )
∥∥c

Dβ
t x

∥∥∞. (.)

From Lx = λNx, one has

c
Dα

t x = λφq(x), (.)
c
Dβ

t x = λf
(
t, x,φq(x)

)
. (.)

By (.), we have

∥∥c
Dα

t x
∥∥∞ ≤ ‖x‖q–

∞ ,

which together with (.) yields

‖x‖∞ ≤ 
�(α + )

‖x‖q–
∞ . (.)

By (.) and (H), we obtain

∥∥c
Dβ

t x
∥∥∞ ≤ ‖a‖∞ + ‖b‖∞‖x‖p–

∞ + ‖c‖∞‖x‖∞,

which together with (.) and (.) yields

∥∥c
Dβ

t x
∥∥∞ ≤ ‖a‖∞ +

�(β + )γ


‖x‖∞

≤ ‖a‖∞ +
�(β + )γ Bp–


+ γ

∥∥c
Dβ

t x
∥∥∞. (.)
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Since γ < , we get from (.) that there exists a constant M >  such that

∥∥c
Dβ

t x
∥∥∞ ≤ M.

Thus, combining (.) with (.), we have

‖x‖∞ ≤ Bp– +
M

�(β + )
:= M,

‖x‖∞ ≤ Mq–


�(α + )
:= M.

Hence

‖x‖X ≤ max{M, M} := M,

which means � is bounded.
Let

� = {x ∈ Ker L|Nx ∈ Im L}.

For x ∈ �, we have Iβ
t (Nx)() =  and x(t) = , x(t) = c, c ∈R. Thus one has

∫ 


( – s)β–f

(
s, ,φq(c)

)
ds = ,

which together with (H) yields |c| ≤ Bp–. Hence

‖x‖X ≤ max
{

, Bp–} = Bp–,

which means � is bounded.
By (H), one has

φp(v)f (t, u, v) > , ∀t ∈ [, ], u ∈R, |v| > B (.)

or

φp(v)f (t, u, v) < , ∀t ∈ [, ], u ∈R, |v| > B. (.)

When (.) is true, let

� =
{

x ∈ Ker L|λx + ( – λ)QNx = ,λ ∈ [, ]
}

.

For x ∈ �, we have x(t) = , x(t) = c, c ∈R and

λc + ( – λ)β
∫ 


( – s)β–f

(
s, ,φq(c)

)
ds = . (.)
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If λ = , we get from (.) that |c| ≤ Bp–. If λ ∈ (, ], we assume |c| > Bp–. Thus, by (.),
we obtain

λc + ( – λ)β
∫ 


( – s)β–φp

(
φq(c)

)
f
(
s, ,φq(c)

)
ds > ,

which contradicts (.). Hence, � is bounded.
When (.) is true, let

�′
 =

{
x ∈ Ker L|–λx + ( – λ)QNx = ,λ ∈ [, ]

}
.

A similar proof can show �′
 is also bounded.

Set

� =
{

x ∈ X|‖x‖X < max
{

M, Bp–} + 
}

.

Clearly, � ∪ � ∪ � ⊂ � (or � ∪ � ∪ �′
 ⊂ �). It follows from Lemma . and .

that L (defined by (.)) is a Fredholm operator of index zero and N (defined by (.))
is L-compact on �. Moreover, based on the above proof, the conditions () and () of
Lemma . are satisfied. Define the operator H : � × [, ] → X by

H(x,λ) = ±λx + ( – λ)QNx.

Then, from the above proof, we have

H(x,λ) �= , ∀x ∈ ∂� ∩ Ker L.

Thus, by the homotopy property of degree, we get

deg(QN |Ker L,� ∩ Ker L, ) = deg
(
H(·, ),� ∩ Ker L, 

)
= deg

(
H(·, ),� ∩ Ker L, 

)
= deg(±I,� ∩ Ker L, )

�= .

Hence, condition () of Lemma . is also satisfied.
Therefore, by using Lemma ., the operator equation Lx = Nx has at least one solution

in dom L ∩ �. Namely, BVP (.) has at least one solution in X. The proof is complete. �
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