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Abstract
In this paper, we study the third-order functional dynamic equation

{
r2(t)φα2(

[
r1(t)φα1(x

�(t))
]�

)
}�

+ q(t)φα(x(g(t))) = 0,

on an upper-unbounded time scale T. We will extend the so-called Hille and Nehari
type criteria to third-order dynamic equations on time scales. This work extends and
improves some known results in the literature on third-order nonlinear dynamic
equations and the results are established for a time scale T without assuming certain
restrictive conditions on T. Some examples are given to illustrate the main results.
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1 Introduction
We are concerned with the oscillatory behavior of the third-order half-linear functional
dynamic equation

{
r(t)φα

([
r(t)φα

(
x�(t)

)]�)}� + q(t)φα

(
x
(
g(t)

))
=  (.)

on an upper-unbounded time scale T, where φα(u) := |u|α–u, α, α, α := αα > ; ri,
i = , , are positive rd-continuous functions on T such that, for t ∈ T,

∫ ∞

t

r
– 

αi
i (t)�t = ∞; (.)

q is a positive rd-continuous function on T; and g : T → T is a rd-continuous function
such that limt→∞ g(t) = ∞. Throughout this paper, we let

x[i] := riφαi

([
x[i–]]�)

, i = , , with x[] = x. (.)

We will assume that the reader is familiar with the basic facts of time scales and time
scale notation, for an excellent introduction to the calculus on time scales, see Bohner
and Peterson [, ]. By a solution of equation (.) we mean a nontrivial real-valued
function x ∈ C

rd[Tx,∞)T for some Tx ≥ t for a positive constant t ∈ T such that
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x[](t), x[](t) ∈ C
rd[Tx,∞)T and x(t) satisfies equation (.) on [Tx,∞)T, where Crd is the

space of right-dense continuous functions.
In the following, we state some oscillation results for differential equations that will be

related to our oscillation results for (.) on time scales and explain the important contri-
butions of this paper. In , Fite [] studied the oscillatory behavior of solutions of the
second-order linear differential equation

x′′(t) + q(t)x(t) = , (.)

and showed that if
∫ ∞

t

q(s) ds = ∞, (.)

then every solution of equation (.) is oscillatory. Hille [] improved the condition (.)
and showed that if

lim inf
t→∞ t

∫ ∞

t
q(s) ds >




, (.)

then every solution of (.) is oscillatory. Nehari [] proved that if

lim inf
t→∞


t

∫ t

t

sq(s) ds >



, (.)

then every solution of (.) is oscillatory. Wong [] generalized the Hille-type condition
(.) for the delay equation

x′′(t) + q(t)x
(
g(t)

)
= , (.)

where g(t) ≥ kt with  < k < , and proved that if

lim inf
t→∞ t

∫ ∞

t
q(s) ds >


k

, (.)

then every solution of (.) is oscillatory. Erbe [] improved the condition (.) and proved
that if

lim inf
t→∞ t

∫ ∞

t
q(s)

g(s)
s

ds >



, (.)

then every solution of (.) is oscillatory where g(t) ≤ t. Ohriska [] proved that, if

lim sup
t→∞

t
∫ ∞

t
q(s)

g(s)
s

ds > , (.)

then every solution of (.) is oscillatory.
Erbe, Peterson and Saker [] established Hille and Nehari oscillation criteria for the

third-order dynamic equation

x���(t) + q(t)x(t) = , (.)
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where q is a positive real-valued rd-continuous function on T, we list the main results of
[] as follows.

Theorem . ([]) Every solution of equation (.) is either oscillatory or tends to zero
eventually provided that

∫ ∞

t

∫ ∞

z

∫ ∞

u
q(s)�s�u�z = ∞ (.)

holds and one of the following conditions is satisfied:
(a)

lim inf
t→∞ t

∫ ∞

t

h(s, t)
σ (s)

q(s)�s >



; (.)

(b)

lim inf
t→∞


t

∫ t

t

h(s, t)σ (s)q(s)�s >
l∗

 + l∗
,

where l∗ := lim supt→∞
σ (t)

t and h(t, s) is the Taylor monomial of degree ; see [],
Section ..

Erbe, Hassan and Peterson [] studied the third-order dynamic equation

(
r(t)

[(
r(t)x�(t)

)�]α)� + q(t)xα
(
g(t)

)
= , (.)

where α is a quotient of odd positive integers, one of which we give below.

Theorem . ([]) Every solution of equation (.) is either oscillatory or tends to zero
eventually provided that

g(t) ≥ t, r�
 (t) ≥ , (.)

and

∫ ∞

t


r(z)

∫ ∞

z

[


r(u)

∫ ∞

u
q(s)�s

]/α

�u�z = ∞,

hold, and one of the following conditions is satisfied:
(a)

lim inf
t→∞

tα

rα
 (t)

∫ ∞

σ (t)
q(s)�s >

αα

lα (α + )α+
;

(b)

lim inf
t→∞

tα

rα
 (t)

∫ ∞

σ (t)
q(s)�s + lim inf

t→∞

t

∫ t

t

sα+

rα
 (s)

q(s)�s >


lα(α+) ,

where l := lim inft→∞ t
σ (t) .
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Saker [] considered dynamic equation (.) with α = r =  and α = α is a quotient of
odd positive integers when g(t) ≤ t, namely,

{
r(t)

[
x��(t)

]α}� + q(t)xα
(
g(t)

)
= . (.)

He established some Hille and Nehari type oscillation criteria for (.), one of which we
give below.

Theorem . ([], Theorem . and Corollaries ., .) Every solution of equation (.)
is either oscillatory or tends to zero eventually provided that

g(t) ≤ t, r�
 (t) ≥  (.)

and

∫ ∞

t

∫ ∞

z

[


r(u)

∫ ∞

u
q(s)�s

]/α

�u�z = ∞, (.)

hold, and one of the following conditions is satisfied:
(a)

lim inf
t→∞

tα

r(t)

∫ ∞

σ (t)
A(s)�s >

αα

lα (α + )α+
;

(b)

lim inf
t→∞

tα

r(t)

∫ ∞

σ (t)
A(s)�s + lim inf

t→∞

t

∫ t

t

sα+

r(s)
A(s)�s >


lα(α+) ;

(c)

lim inf
t→∞


t

∫ t

t

sα+

r(s)
A(s)�s >


lα(α+) ;

(d)

lim inf
t→∞

tα

r(t)

∫ ∞

σ (t)
A(s)�s >


lα(α+) ,

where A(s) := q(s)( h(g(s),t)
σ (s) )α and l := lim inft→∞ t

σ (t) .

Theorem . ([], Corollary .) Assume that (.) holds with r(t) =  and α = α = .
Assume

lim inf
t→∞ t

∫ ∞

σ (t)
q(s)

(
h(g(s), t)

σ (s)

)α

�s >

l

. (.)

Every solution of the equation

x���(t) + q(t)x
(
g(t)

)
= ,

is either oscillatory or tends to zero eventually.
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As a special case when g(t) = t, (.) reduces to

lim inf
t→∞ t

∫ ∞

σ (t)
q(s)

(
h(s, t)

σ (s)

)α

�s >

l

. (.)

Comparing (.) with (.) reveals that the results in [] improve that of [] for equation
(.).

Wang and Xu in [] considered the third-order dynamic equation

(
r(t)

[(
r(t)x�(t)

)�]α)� + q(t)x(t) = ,

where α ≥  is a quotient of odd positive integers and with the condition

lim
t→∞

R̄(σ (t))
R̄(t)

= , (.)

where

R(t, t) :=
∫ t

t

r– 
α

 (s)�s, R(t, t) :=
∫ t

t

R(s, t)
r(s)

�s,

r(t) :=
α

r(t)
R(t, t)Rα–

 (t, t) and R̄(t) :=
∫ t

t

r(s)�s.

Note that (.) depends on a concrete time scale. Very recently, Agarwal, Bohner, Li,
and Zhang [] extended the Hille and Nehari oscillation criteria to the third-order delay
dynamic equation

(
r(t)

(
r(t)x�(t)

)�)� + q(t)x
(
g(t)

)
= ,

where g(t) ≤ t on [t,∞)T. The results in [] included the results which were established
in [] and without condition (.). For more results on dynamic equations, we refer the
reader to [, –].

The purpose of this paper is to derive some Hille and Nehari oscillation criteria to the
more general third-order dynamic equation (.) with Laplacians and deviating argument
on a general time scale and without assuming the conditions (.), (.) and (.). The
results in this paper improve the results in [–] for third-order dynamic equations and
for both cases g(t) ≤ t or g(t) ≥ t.

This paper is organized as follows: After this Introduction, we present our main results
in Section , followed by demonstrating examples. All the proofs of the main results are
given in Sections  and .

2 Main results
In this section we present the following oscillation criteria of (.). The first result is a
Fite-Wintner type oscillation criterion.

Theorem . Assume that (.) and
∫ ∞

t

q(s)�s = ∞. (.)

Then every solution of equation (.) is either oscillatory or tends to zero eventually.
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From Theorem ., we can assume in the next theorems that
∫ ∞

t
q(s)�s < ∞.

In the following, we introduce the following notations:

L := lim sup
t→∞

[
R(σ (t))

R(t)

]α

and Ri(t) :=
∫ t

t

r
– 

αi
i (s)�s, i = , ,

and

ϕ(t) :=

{
, g(t) ≥ t,
[ R(g(t))

R(t) ]
α

, g(t) ≤ t,

with

R(t) := R–/α
 (t)R(t) and R(t) :=

∫ t

t

[
R(s)
r(s)

] 
α

�s.

Note that  ≤ L ≤ ∞. Throughout this paper we assume that L < ∞.

Theorem . Assume that (.) and

∫ ∞

t

r
– 

α
 (u)

{∫ ∞

u
r

– 
α

 (v)
[∫ ∞

v
q(s)�s

] 
α

�v
} 

α
�u = ∞. (.)

If

∫ ∞

t

ϕ(s)q(s)�s = ∞, (.)

then every solution of equation (.) is either oscillatory or tends to zero eventually.

Example . Consider the nonlinear third-order advanced dynamic equation

{
tα–φα

([
tα–φα

(
x�(t)

)]�)}� +


t–β
φα

(
x
(
g(t)

))
= , g(t) ≥ t, (.)

where β is a positive constant. Here ri(t) = tαi–, i = ,  and q(t) = 
t–β , then the conditions

(.) and (.) hold since

∫ ∞

t

r
– 

αi
i (t)�t =

∫ ∞

t

�t

t– 
αi

= ∞, i = , ,

and
∫ ∞

t

ϕ(s)q(s)�s =
∫ ∞

t

�s
s–β

= ∞,

by Example . in []. Then by Theorem ., every solution of (.) is oscillatory or tends
to zero eventually.

From Theorem ., we can assume in the next theorems that
∫ ∞

t
ϕ(s)q(s)�s < ∞.
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Theorem . Assume that (.) and (.) hold. If

lim inf
t→∞ Rα

 (t)
∫ ∞

σ (t)
ϕ(s)q(s)�s >

(αL)α

(α + )α+ , (.)

then every solution of equation (.) is either oscillatory or tends to zero eventually.

Example . Consider the nonlinear third-order advanced dynamic equation

{
tα–φα

([
φα

(
x�(t)

)]�)}� +
ηα

ltα+ φα

(
x
(
g(t)

))
= , g(t) ≥ t, (.)

where η is a positive constant and l = lim inft→∞( t
σ (t) )α > . Here r(t) = , r(t) = tα and

q(t) = ηα

ltα+ , then the condition (.) and (.) hold since

∫ ∞

t

r
– 

α
 (t)�t =

∫ ∞

t

�t = ∞ and
∫ ∞

t

r
– 

α
 (t)�t =

∫ ∞

t

�t
t

= ∞,

by Example . in [] and

∫ ∞

t

r
– 

α
 (u)

{∫ ∞

u
r

– 
α

 (v)
[∫ ∞

v
q(s)�s

] 
α

�v
} 

α
�u

=
(

η

l

) 
α

∫ ∞

t

{∫ ∞

u


v

[∫ ∞

v

α

sα+ �s
] 

α
�v

} 
α

�u

≥
(

η

l

) 
α

∫ ∞

t

{∫ ∞

u


v

[∫ ∞

v

(
–
sα

)�

�s
] 

α
�v

} 
α

�u

=
(

η

l

) 
α

∫ ∞

t

{∫ ∞

u


vα+ �v

} 
α

�u

≥
(

η

l

) 
α

∫ ∞

t

{

α

∫ ∞

u

(
–
vα

)�

�v
} 

α
�u

≥
(

η

l

) 
α 
α

α


∫ ∞

t

�u
u

= ∞.

Also

lim inf
t→∞ Rα

 (t)
∫ ∞

σ (t)
ϕ(s)q(s)�s =

η

l
lim inf

t→∞ Rα
 (t)

∫ ∞

σ (t)

α�s
sα+

≥ η

l
lim inf

t→∞ Rα
 (t)

∫ ∞

σ (t)

(
–
sα

)�

�s

=
η

l
lim inf

t→∞

(
t

σ (t)
–

t

σ (t)

)α

>
(αL)α

(α + )α+

if η > (αL)α
(α+)α+ . Then, by Theorem ., every solution of (.) is oscillatory or tends to zero

eventually if η > (αL)α
(α+)α+ .
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Theorem . Assume that (.) and (.) hold. If for sufficiently large T ∈ [t,∞)T,

lim inf
t→∞


R(t)

∫ t

T
Rα+

 (s)ϕ(s)q(s)�s > Lα+
(

 –


(α + )L

)
, (.)

then every solution of equation (.) is either oscillatory or tends to zero eventually.

Remark . If the assumption (.) is not satisfied, we have some sufficient conditions
which ensure that every solution x(t) of (.) oscillates or limt→∞ x(t) exists (finite).

Example . Consider the nonlinear third-order delay dynamic equation

{
r(t)φα

([
r(t)φα

(
x�(t)

)]�)}� +
ηr–/α

 (t)
ϕ(t)Rα+

 (t)
φα

(
x
(
g(t)

))
= , g(t) ≤ t, (.)

where η is a positive constant. Choose ri and αi, i = , , satisfying (.). To see that (.)
holds note that

lim inf
t→∞


R(t)

∫ t

T
Rα+

 (s)ϕ(s)q(s)�s = η lim inf
t→∞


R(t)

∫ t

T
r–/α

 (t)�s

= η lim inf
t→∞

(
 –

R(T)
R(t)

)
= η.

By Theorem . and Remark ., every solution x(t) of (.) is oscillatory or limt→∞ x(t)
exists if η > Lα+( – 

(α+)L ) ≥ α
α+ .

Remark . The important point to note here is that the recent results due to [–] and
others do not apply to equations (.), (.) and (.).

Theorem . Assume that  < α ≤  and (.), and (.) hold. If for sufficiently large T ∈
[t,∞)T,

lim inf
t→∞


R(t)

∫ t

T
Rα+

 (s)ϕ(s)q(s)�s > Lα+
(

 –


α + L

)
, (.)

then every solution of equation (.) is either oscillatory or tends to zero eventually.

Theorem . Assume that α ≥  and (.), and (.) hold. If for sufficiently large T ∈
[t,∞)T,

lim inf
t→∞


R(t)

∫ t

T
Rα+

 (s)ϕ(s)q(s)�s >
αLα+

 + αL
, (.)

then every solution of equation (.) is either oscillatory or tends to zero eventually.

The next result is an Ohriskais type oscillation criterion.

Theorem . Assume that (.) and (.) hold. If

lim sup
t→∞

Rα
 (t)

∫ ∞

t
ϕ(s)q(s)�s > , (.)

then every solution of equation (.) is either oscillatory or tends to zero eventually.
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In the following we state further oscillation criteria for equation (.).

Theorem . Every solution of equation (.) is either oscillatory or tends to zero eventu-
ally provided that (.) and (.) hold and one of the following conditions is satisfied:

(a)

∫ ∞

t

ϕ̄(s)q(s)�s = ∞;

(b)

lim inf
t→∞ Rα

 (t)
∫ ∞

σ (t)
ϕ̄(s)q(s)�s >

(αL)α

(α + )α+ ;

(c)

lim inf
t→∞


R(t)

∫ t

T
Rα+

 (s)ϕ̄(s)q(s)�s > Lα+
(

 –


(α + )L

)
;

(d)

lim inf
t→∞


R(t)

∫ t

T
Rα+

 (s)ϕ̄(s)q(s)�s > Lα+
(

 –


α + L

)
if  < α ≤ ,

lim inf
t→∞


R(t)

∫ t

T
Rα+

 (s)ϕ̄(s)q(s)�s >
αLα+

 + αL
if α ≥ ,

for sufficiently large T ∈ [t,∞)T, where

ϕ̄(t) :=

{
, g(t) ≥ σ (t),
[ R(g(t))

R(σ (t)) ]
α

, g(t) ≤ σ (t).

Theorem . Every solution of equation (.) is either oscillatory or tends to zero eventu-
ally provided hat (.) and (.) hold and one of the following conditions is satisfied:

(a)

∫ ∞

t

ϕ̂(s)q(s)�s = ∞;

(b)

lim inf
t→∞ Rα

 (t)
∫ ∞

σ (t)
ϕ̂(s)q(s)�s >

(αL̂)α

(α + )α+ ;

(c)

lim inf
t→∞


R(t)

∫ t

T
Rα+

 (s)ϕ̂(s)q(s)�s > L̂α+
(

 –


(α + )L̂

)
;
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(d)

lim inf
t→∞


R(t)

∫ t

T
Rα+

 (s)ϕ̂(s)q(s)�s > L̂α+
(

 –


α + L̂

)
if  < α ≤ ,

lim inf
t→∞


R(t)

∫ t

T
Rα+

 (s)ϕ̂(s)q(s)�s >
αL̂α+

 + αL̂
if α ≥ ,

for sufficiently large T ∈ [t,∞)T, where

ϕ̂(t) :=

{
Rα(t), g(t) ≥ t,
Rα(g(t)), g(t) ≤ t.

and assume that L̂ := lim supt→∞[ R(σ (t))
R(t) ]α < ∞.

3 Technical lemmas
In this section we prove the following lemmas which will play an important role in the
proof of our main results.

Lemma . Let (.) holds. If x(t) is an eventually positive solution of equation (.), then
we only have the following two cases:

(I) x[](t) > , x[](t) > , (x[](t))� < ;
(II) x[](t) < , x[](t) > , (x[](t))� < ,

eventually.

Lemma . Let x(t) be an eventually positive solution of (.) satisfying (II) of Lemma ..
If (.) holds, then limt→∞ x(t) = .

Lemma . Let x(t) be an eventually positive solution of (.) satisfying (I) of Lemma ..
Then

∫ ∞

t

q(s)�s < ∞. (.)

Proof Without loss of generality, assume that

x
(
g(t)

)
> , x[](t) > , x[](t) > ,

[
x[](t)

]� <  on [t,∞)T.

Integrating both sides of the dynamic equation (.) from t to t ∈ [t,∞)T, we obtain

x[](t) ≥ x[](t) – x[](t) =
∫ t

t

q(s)xα
(
g(s)

)
�s.

Since x�(t) > , then x(t) ≥ x(t) := c >  for t ≥ t and so there exists t ∈ [t,∞)T such
that g(t) ∈ [t,∞)T and x(g(t)) ≥ c for t ≥ t. It follows that

x[](t) ≥ cα

∫ t

t

q(s)�s,

which implies (.). �
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Lemma . Let x(t) be an eventually positive solution of (.) satisfying (I) of Lemma ..
Then

x(t) ≥ φ–
α

[
x[](t)

]
R(t) for t ∈ [t,∞)T

and

[
x(t)
R(t)

]�

<  for t ∈ (t,∞)T.

Proof Without loss of generality, assume that

x
(
g(t)

)
> , x[](t) > , x[](t) > ,

[
x[](t)

]� <  on [t,∞)T.

By using the fact that x[] is strictly decreasing on [t,∞)T. Then, for t ∈ [t,∞)T,

x[](t) ≥ x[](t) – x[](t) =
∫ t

t

φ–
α

[
x[](s)

]
r

– 
α

 (s)�s

≥ φ–
α

[
x[](t)

] ∫ t

t

r
– 

α
 (s)�s = φ–

α

[
x[](t)

]
R(t), (.)

which implies that

x�(t) ≥ φ–
α

[
x[](t)

][R(t)
r(t)

] 
α

,

where α = αα. In the same way, we have

x(t) ≥ φ–
α

[
x[](t)

] ∫ t

t

[
R(s)
r(s)

] 
α

�s

= φ–
α

[
x[](t)

]
R(t).

From (.), we note that

[
x[](t)
R(t)

]�

=
r–/α

 (t)
R(t)R(σ (t))

[
φ–

α

[
x[](t)

]
R(t) – x[](t)

]
,

we have

[
x[](t)
R(t)

]�

<  for t ∈ (t,∞)T.

Then

x(t) ≥ x(t) – x(t) =
∫ t

t

φ–
α

[
x[](s)

]
r

– 
α

 (s)�s

=
∫ t

t

φ–
α

[
x[](s)
R(s)

][
R(s)
r(s)

] 
α

�s
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≥ φ–
α

[
x[](t)
R(t)

]∫ t

t

[
R(s)
r(s)

] 
α

�s

= φ–
α

[
x[](t)

]
R(t),

which yields

[
x(t)
R(t)

]�

<  for t ∈ (t,∞)T.

This completes the proof. �

Lemma . Let x(t) be an eventually positive solution of (.) satisfying (I) of Lemma ..
Then

∫ ∞

t

ϕ(s)q(s)�s < ∞. (.)

Proof Without loss of generality, assume

x(t) > , x
(
g(t)

)
> ,

x[](t) > , x[](t) > ,
(
x[](t)

)� <  on [t,∞)T.

Let t ∈ [t,∞)T be fixed. If g(t) ≥ t, then x(g(t)) ≥ x(t) by the fact that x is strictly in-
creasing. Now we consider the case when g(t) ≤ t. In view of Lemma . there exists
t ∈ [t,∞)T such that g(t) > t and

x
(
g(t)

) ≥ R(g(t))
R(t)

x(t) for t ≥ t.

In both cases, from the definition of ϕ(t), equation (.) becomes

[
x[](t)

]� + ϕ(t)q(t)φα

(
x(t)

) ≤ .

Integrating both sides of the above inequality from t to t ∈ [t,∞)T, we obtain

x[](t) ≥ x[](t) – x[](t) =
∫ t

t

ϕ(s)q(s)xα(s)�s.

Since x�(t) > , then x(t) ≥ x(t) := c >  for t ≥ t, then

x[](t) ≥ cα

∫ t

t

ϕ(s)q(s)�s,

which implies (.). This completes the proof. �

Lemma . Let x(t) be an eventually positive solution of (.) satisfying (I) of Lemma ..
Then, for t ≥ T ,

w�(t) ≤ –ϕ(t)q(t) – αr–/α
 (t)w+ 

α
(
σ (t)

)
, (.)
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and

w�(t) ≤ –ϕ̄(t)q(t) – αr–/α
 (t)w+ 

α
(
σ (t)

)
,

for sufficiently large T ∈ [t,∞)T, where

w(t) :=
x[](t)
xα(t)

. (.)

Proof Without loss of generality, assume that

x
(
g(t)

)
> , x[](t) > , x[](t) > ,

[
x[](t)

]� <  on [t,∞)T.

Using the product rule and the quotient rule, we get

w�(t) =
(

x[](t)
xα(t)

)�

=


xα(t)
[
x[](t)

]� +
(


xα(t)

)�

x[](σ (t)
)

=
[x[](t)]�

xα(t)
–

(xα(t))�

xα(t)xα(σ (t))
x[](σ (t)

)
. (.)

From (.) and the definition of w(t) we have

w�(t) = –q(t)
(

x(g(t))
x(t)

)α

–
(xα(t))�

xα(t)
w

(
σ (t)

)
.

As shown in the proof of Lemma ., there exists t ∈ [t,∞)T such that g(t) > t and

(
x(g(t))

x(t)

)α

≥ ϕ(t) for t ∈ [t,∞)T.

Therefore

w�(t) ≤ –ϕ(t)q(t) –
(xα(t))�

xα(t)
w

(
σ (t)

)
. (.)

By the Pötzsche chain rule ([], Theorem .), we obtain

(
xα(t)

)� = α

(∫ 



[
x(t) + hμ(t)x�(t)

]α– dh
)

x�(t)

= α

(∫ 



[
( – h)x(t) + hxσ (t)

]α– dh
)

x�(t)

≥
{

α(xσ (t))α–x�(t),  < α ≤ ,
αxα–(t)x�(t), α ≥ .

If  < α ≤ , then

w�(t) < –ϕ(t)q(t) – α
x�(t)
xσ (t)

(
xσ (t)
x(t)

)α

w
(
σ (t)

)
;
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and if α ≥ , then

w�(t) ≤ –ϕ(t)q(t) – α
x�(t)
xσ (t)

xσ (t)
x(t)

w
(
σ (t)

)
.

Note that x(t) is strictly increasing on [t,∞)T we see that, for α > ,

w�(t) ≤ –ϕ(t)q(t) – α
x�(t)
xσ (t)

w
(
σ (t)

)
. (.)

Since x[](t) is strictly decreasing on [t,∞) we obtain

x[](t) ≥ x[](t) – x[](t) =
∫ t

t

φ–
α

[
x[](s)

]
r

– 
α

 (s)�s

≥ φ–
α

[
x[](t)

] ∫ t

t

r
– 

α
 (s)�s ≥ φ–

α

[
x[](σ (t)

)](
R(t) – R(t)

)
,

which implies

x�(t)
xσ (t)

≥ φ–
α [x[](σ (t))]

xσ (t)

[
R(t) – R(t)

r(t)

]/α

= w/α(
σ (t)

)[R(t) – R(t)
r(t)

]/α

. (.)

By (.), we can choose t ≥ t such that R(t) – R(t) ≥  for t ≥ t, then, from (.) and
(.), we have

w�(t) ≤ –ϕ(t)q(t) – αr–/α
 (t)w+ 

α
(
σ (t)

)
for t ≥ t.

Also by the quotient rule, we get

w�(t) =
(

x[](t)
xα(t)

)�

=
[x[](t)]�

xα(σ (t))
–

(xα(t))�x[](t)
xα(t)xα(σ (t))

≤ [x[](t)]�

xα(σ (t))
–

(xα(t))�x[](σ (t))
xα(t)xα(σ (t))

.

From (.) and the definition of w(t) we have

w�(t) ≤ –q(t)
(

x(g(t))
x(σ (t))

)α

–
(xα(t))�

xα(t)
w

(
σ (t)

)
.

Analogously as in the proof of Lemma ., there exists t ∈ [t,∞)T such that g(t) > t and

(
x(g(t))
x(σ (t))

)α

≥ ϕ̄(t) for t ∈ [t,∞)T.

Therefore

w�(t) ≤ –ϕ̄(t)q(t) –
(xα(t))�

xα(t)
w

(
σ (t)

)
.
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The rest of the argument is similar to that of previous results as ϕ is replaced by ϕ̄, and
hence it is omitted. �

We introduce the following notations:

r∗ := lim inf
t→∞ Rα

 (t)w
(
σ (t)

)
and R∗ := lim sup

t→∞
Rα

 (t)w
(
σ (t)

)
,

where w is defined by (.). So for ε > , then by the definitions of r∗, R∗ and L we can pick
T ∈ [t,∞)T, sufficiently large, so that

r∗ – ε ≤ Rα
 (t)w

(
σ (t)

) ≤ R∗ + ε and
[

R(σ (t))
R(t)

]α

≤ L + ε for t ∈ [T ,∞)T. (.)

Lemma . Let x(t) be an eventually positive solution of (.) satisfying (I) of Lemma ..
Then

lim inf
t→∞ Rα

 (t)
∫ ∞

σ (t)
ϕ(s)q(s)�s ≤ r∗ –

r+ 
α∗

L
.

Proof Integrating (.) from σ (t) ≥ T to v ∈ [t,∞)T and using the fact that w > , we have

–w
(
σ (t)

) ≤ w(v) – w
(
σ (t)

)

≤ –
∫ v

σ (t)
ϕ(s)q(s)�s – α

∫ v

σ (t)
r–/α

 (s)w+ 
α
(
σ (s)

)
�s.

Taking v → ∞ we get

–w
(
σ (t)

) ≤ –
∫ ∞

σ (t)
ϕ(s)q(s)�s – α

∫ ∞

σ (t)
r–/α

 (s)w+ 
α
(
σ (s)

)
�s. (.)

Multiplying both sides of (.) by Rα
 (t), we obtain

–Rα
 (t)w

(
σ (t)

) ≤ –Rα
 (t)

∫ ∞

σ (t)
ϕ(s)q(s)�s

– αRα
 (t)

∫ ∞

σ (t)
r–/α

 (s)w+ 
α
(
σ (s)

)
�s

= –Rα
 (t)

∫ ∞

σ (t)
ϕ(s)q(s)�s

– αRα
 (t)

∫ ∞

σ (t)

R�
 (s)

Rα+
 (s)

(
Rα

 (s)w
(
σ (s)

))+ 
α �s.

Therefore, by using (.), we have

–Rα
 (t)w

(
σ (t)

) ≤ –Rα
 (t)

∫ ∞

σ (t)
ϕ(s)q(s)�s

– (r∗ – ε)+ 
α Rα

 (t)
∫ ∞

σ (t)
α

R�
 (s)

Rα+
 (s)

�s. (.)
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Using the Pötzsche chain rule ([], Theorem .), we get

(
–
Rα



)�

= α

∫ 




[R + hμ(s)R�

 ]α+ dhR�


≤ α
R�



Rα+


. (.)

Then from (.) and (.), we have

–Rα
 (t)w(t) ≤ –Rα

 (t)
∫ ∞

σ (t)
ϕ(s)q(s)�s – (r∗ – ε)+ 

α

[
R(t)

R(σ (t))

]α

≤ –Rα
 (t)

∫ ∞

σ (t)
ϕ(s)q(s)�s –

(r∗ – ε)+ 
α

L + ε
,

which yields

Rα
 (t)

∫ ∞

σ (t)
ϕ(s)q(s)�s ≤ Rα

 (t)w
(
σ (t)

)
–

(r∗ – ε)+ 
α

L + ε
.

Taking the lim inf of both sides as t → ∞ we get

lim inf
t→∞ Rα

 (t)
∫ ∞

σ (t)
ϕ(s)q(s)�s ≤ r∗ –

(r∗ – ε)+ 
α

L + ε
.

Since ε >  is arbitrary, we get the desired inequality:

lim inf
t→∞ Rα

 (t)
∫ ∞

σ (t)
ϕ(s)q(s)�s ≤ r∗ –

r+ 
α∗

L
.

This completes the proof. �

Lemma . Let x(t) be an eventually positive solution of (.) satisfying (I) of Lemma ..
Then

lim inf
t→∞


R(t)

∫ t

T
Rα+

 (s)ϕ(s)q(s)�s ≤ Lα+ – R∗,

for sufficiently large T ∈ [t,∞)T.

Proof Multiplying both sides of (.) by Rα+
 (t) and integrating from T to t ∈ [T ,∞)T, we

get

∫ t

T
Rα+

 (s)w�(s)�s ≤ –
∫ t

T
Rα+

 (s)ϕ(s)q(s)�s

– α

∫ t

T
r

– 
α

 (s)
(
Rα

 (s)w
(
σ (s)

)) α+
α �s.
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Using integration by parts, we obtain

Rα+
 (t)w(t) ≤ Rα+

 (T)w(T) +
∫ t

T

[
Rα+

 (s)
]�w

(
σ (s)

)
�s

–
∫ t

T
Rα+

 (s)ϕ(s)q(s)�s

– α

∫ t

T
r

– 
α

 (s)
(
Rα

 (s)w
(
σ (s)

)) α+
α �s.

By the Pötzsche chain rule, we get

[
Rα+

 (s)
]� = (α + )

∫ 



[
R(s) + hμ(s)R�

 (s)
]α dhr–/α

 (s)

= (α + )
∫ 



[
( – h)R(s) + hR

(
σ (s)

)]α dhr–/α
 (s)

≤ (α + )Rα

(
σ (s)

)
r–/α

 (s).

Hence

Rα+
 (t)w(t) ≤ Rα+

 (T)w(T)

+ (α + )
∫ t

T
r

– 
α

 (s)
[

R(σ (s))
R(s)

]α

Rα
 (s)w

(
σ (s)

)
�s

–
∫ t

T
Rα+

 (s)ϕ(s)q(s)�s – α

∫ t

T
r

– 
α

 (s)
(
Rα

 (s)w
(
σ (s)

)) α+
α �s.

By (.), we then get

Rα+
 (t)w(t) ≤ Rα+

 (T)w(T) –
∫ t

T
Rα+

 (s)ϕ(s)q(s)�s

+
∫ t

T
r–/α

 (s)
[
(α + )(L + ε)Rα

 (s)w
(
σ (s)

)

– α
(
Rα

 (s)w
(
σ (s)

)) α+
α

]
�s.

Using the inequality

Bu – Au
α+
α ≤ αα

(α + )α+
Bα+

Aα
, (.)

with A = α, B = (α + )(L + ε) and u = Rα
 (s)w(σ (s)), we get

Rα+
 (t)w(t) ≤ Rα+

 (T)w(T) –
∫ t

T
Rα+

 (s)ϕ(s)q(s)�s + (L + ε)α+R(t).

Dividing both sides by R(t), we obtain

Rα
 (t)w(t) ≤ Rα+

 (T)w(T)
R(t)

–


R(t)

∫ t

T
Rα+

 (s)ϕ(s)q(s)�s + (L + ε)α+.
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Since wσ (t) ≤ w(t), we get

Rα
 (t)w

(
σ (t)

) ≤ Rα+
 (T)w(T)

R(t)
–


R(t)

∫ t

T
Rα+

 (s)ϕ(s)q(s)�s + (L + ε)α+.

Taking the lim sup of both sides as t → ∞ we obtain

R∗ ≤ – lim inf
t→∞


R(t)

∫ t

T
Rα+

 (s)ϕ(s)q(s)�s + (L + ε)α+.

Since ε >  is arbitrary, we get

lim inf
t→∞


R(t)

∫ t

T
Rα+

 (s)ϕ(s)q(s)�s ≤ Lα+ – R∗. (.)

This completes the proof. �

Lemma . Let x(t) be an eventually positive solution of (.) satisfying (I) of Lemma ..
Then

lim inf
t→∞


R(t)

∫ t

T
Rα+

 (s)ϕ(s)q(s)�s ≤ [
(α + )L – 

]
R∗ – αr+ 

α∗ ,

for sufficiently large T ∈ [t,∞)T.

Proof Multiplying both sides (.) by Rα+
 (t), we get

Rα+
 (t)w�(t) ≤ –Rα+

 (t)ϕ(t)q(t) – αr–/α
 (t)Rα+

 (t)w+ 
α
(
σ (t)

)

= –Rα+
 (t)ϕ(t)q(t)

– αr–/α
 (t)Rα

 (t)w
(
σ (t)

)
R(t)w


α
(
σ (t)

)

≤ –Rα+
 (t)ϕ(t)q(t) – αr–/α

 (t)(r∗ – ε)+ 
α . (.)

Integrating the above inequality (.) from T to t ∈ [T ,∞)T, we obtain

∫ t

T
Rα+

 (s)w�(s)�s ≤ –
∫ t

T
Rα+

 (s)ϕ(s)q(s)�s – α(r∗ – ε)+ 
α

∫ t

T
r–/α

 (s)�s.

By integrating by parts, we obtain

Rα+
 (t)w(t) ≤ Rα+

 (T)w(T) +
∫ t

T

[
Rα+

 (s)
]�w

(
σ (s)

)
�s

–
∫ t

T
Rα+

 (s)ϕ(s)q(s)�s – α(r∗ – ε)+ 
α
[
R(t) – R(T)

]
. (.)

As seen in the proof of Lemma ., we have

[
Rα+

 (s)
]� ≤ (α + )Rα


(
σ (s)

)
r–/α

 (s).
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Therefore

Rα+
 (t)w(t) ≤ Rα+

 (T)w(T)

+ (α + )
∫ t

T

[
R(σ (s))

R(s)

]α

r–/α
 (s)Rα

 (s)w
(
σ (s)

)
�s

–
∫ t

T
Rα+

 (s)ϕ(s)q(s)�s – α(r∗ – ε)+ 
α
[
R(t) – R(T)

]

≤ Rα+
 (T)w(T) + (α + )(L + ε)(R∗ + ε)

[
R(t) – R(T)

]

–
∫ t

T
Rα+

 (s)ϕ(s)q(s)�s – α(r∗ – ε)+ 
α
[
R(t) – R(T)

]
.

Dividing both sides by R, we have

Rα
 (t)w(t) ≤ Rα+

 (T)w(T)
R(t)

+ (α + )(L + ε)(R∗ + ε)
[

 –
R(T)
R(t)

]

–


R(t)

∫ t

T
Rα+

 (s)ϕ(s)q(s)�s

– α(r∗ – ε)+ 
α

[
 –

R(T)
R(t)

]
.

Taking the lim sup of both sides as t → ∞ and using (.), we get

R∗ ≤ (α + )(L + ε)(R∗ + ε)

– lim inf
t→∞


R(t)

∫ t

T
Rα+

 (s)ϕ(s)q(s)�s – α(r∗ – ε)+ 
α .

Since ε >  is arbitrary, we have the desired inequality:

lim inf
t→∞


R(t)

∫ t

T
Rα+

 (s)ϕ(s)q(s)�s ≤ [
(α + )L – 

]
R∗ – αr+ 

α∗ .

This completes the proof. �

Lemma . Let  < α ≤  and x(t) be an eventually positive solution of (.) satisfying (I)
of Lemma .. Then

lim inf
t→∞


R(t)

∫ t

T
Rα+

 (s)ϕ(s)q(s)�s ≤ R∗(α + L – ) – αr+ 
α∗ ,

for sufficiently large T ∈ [t,∞)T.

Proof As shown in the proof of Lemma . we have

Rα+
 (t)w(t) ≤ Rα+

 (T)w(T) +
∫ t

T

[
Rα+

 (s)
]�w

(
σ (s)

)
�s

–
∫ t

T
Rα+

 (s)ϕ(s)q(s)�s – α(r∗ – ε)+ 
α
[
R(t) – R(T)

]
.



Hassan et al. Advances in Difference Equations  (2017) 2017:111 Page 20 of 28

Assume

[
Rα+

 (s)
]� =

[
Rα

 (s)R(s)
]� =

[
Rα

 (s)
]�R(s) + Rα


(
σ (s)

)
R�

 (s).

By the Pötzsche chain rule we obtain

[
Rα

 (s)
]� = α

(∫ 



[
R(s) + hμ(t)R�

 (s)
]α– dh

)
R�

 (s)

= α

(∫ 



[
( – h)R(s) + hR

(
σ (s)

)]α– dh
)

R�
 (s)

≤ αRα–
 (s)R�

 (s).

Then

[
Rα+

 (s)
]� ≤ [

αRα
 (s) + Rα


(
σ (s)

)]
R�

 (s)

=
[
αRα

 (s) + Rα

(
σ (s)

)]
r–/α

 (s),

and so

Rα+
 (t)w(t) ≤ Rα+

 (T)w(T)

+
∫ t

T

[
αRα

 (s) + Rα

(
σ (s)

)]
r–/α

 (s)w
(
σ (s)

)
�s

–
∫ t

T
Rα+

 (s)ϕ(s)q(s)�s – α(r∗ – ε)+ 
α
[
R(t) – R(T)

]

= Rα+
 (T)w(T)

+
∫ t

T

[
α +

[
R(σ (s))

R(s)

]α]
r–/α

 (s)Rα
 (s)w

(
σ (s)

)
�s

–
∫ t

T
Rα+

 (s)ϕ(s)q(s)�s – α(r∗ – ε)+ 
α
[
R(t) – R(T)

]

≤ Rα+
 (T)w(T) + (α + L + ε)(R∗ + ε)

[
R(t) – R(T)

]

–
∫ t

T
Rα+

 (s)ϕ(s)q(s)�s – α(r∗ – ε)+ 
α
[
R(t) – R(T)

]
.

Dividing both sides by R, we have

Rα
 (t)w(t) ≤ Rα+

 (T)w(T)
R(t)

+ (α + L + ε)(R∗ + ε)
[

 –
R(T)
R(t)

]

–


R(t)

∫ t

T
Rα+

 (s)ϕ(s)q(s)�s – α(r∗ – ε)+ 
α

[
 –

R(T)
R(t)

]
.

Taking the lim sup of both sides as t → ∞ and using (.), we get

R∗ ≤ (α + L + ε)(R∗ + ε) – lim inf
t→∞


R(t)

∫ t

T
Rα+

 (s)ϕ(s)q(s)�s

– α(r∗ – ε)+ 
α .
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Since ε >  is arbitrary, we have the desired inequality:

lim inf
t→∞


R(t)

∫ t

T
Rα+

 (s)ϕ(s)q(s)�s ≤ R∗(α + L – ) – αr+ 
α∗ .

This completes the proof. �

Lemma . Let α ≥  and x(t) be an eventually positive solution of (.) satisfying (I) of
Lemma .. Then

lim inf
t→∞


R(t)

∫ t

T
Rα+

 (s)ϕ(s)q(s)�s ≤ α
(
LR∗ – r+ 

α∗
)
.

Proof As seen in the proof of Lemma ., we obtain

Rα+
 (t)w(t) ≤ Rα+

 (T)w(T) +
∫ t

T

[
Rα+

 (s)
]�w

(
σ (s)

)
�s

–
∫ t

T
Rα+

 (s)ϕ(s)q(s)�s – α(r∗ – ε)+ 
α
[
R(t) – R(T)

]
.

Assume

[
Rα+

 (s)
]� =

[
Rα

 (s)R(s)
]� =

[
Rα

 (s)
]�R

(
σ (s)

)
+ Rα

 (s)R�
 (s).

By the Pötzsche chain rule, we obtain

[
Rα

 (s)
]� = α

(∫ 



[
R(s) + hμ(t)R�

 (s)
]α– dh

)
R�

 (s)

= α

(∫ 



[
( – h)R(s) + hR

(
σ (s)

)]α– dh
)

R�
 (s)

≤ αRα–


(
σ (s)

)
R�

 (s).

Then

[
Rα+

 (s)
]� ≤ [

αRα

(
σ (s)

)
+ Rα

 (s)
]
R�

 (s)

=
[
αRα


(
σ (s)

)
+ Rα

 (s)
]
r–/α

 (s)

and so

Rα+
 (t)w(t) ≤ Rα+

 (T)w(T)

+
∫ t

T

[
αRα


(
σ (s)

)
+ Rα

 (s)
]
r–/α

 (s)w
(
σ (s)

)
�s

–
∫ t

T
Rα+

 (s)ϕ(s)q(s)�s – α(r∗ – ε)+ 
α
[
R(t) – R(T)

]

= Rα+
 (T)w(T)

+
∫ t

T

[
α

Rα
 (σ (s))
Rα

 (s)
+ 

]
r–/α

 (s)Rα
 (s)w

(
σ (s)

)
�s
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–
∫ t

T
Rα+

 (s)ϕ(s)q(s)�s – α(r∗ – ε)+ 
α
[
R(t) – R(T)

]

≤ Rα+
 (T)w(T) +

(
α(L + ε) + 

)
(R∗ + ε)

[
R(t) – R(T)

]

–
∫ t

T
Rα+

 (s)ϕ(s)q(s)�s – α(r∗ – ε)+ 
α
[
R(t) – R(T)

]
.

Dividing both sides by R, we have

Rα
 (t)w(t) ≤ Rα+

 (T)w(T)
R(t)

+
(
α(L + ε) + 

)
(R∗ + ε)

[
 –

R(T)
R(t)

]

–


R(t)

∫ t

T
Rα+

 (s)ϕ(s)q(s)�s

– α(r∗ – ε)+ 
α

[
 –

R(T)
R(t)

]
.

Taking the lim sup of both sides as t → ∞ and using (.), we get

R∗ ≤ (
α(L + ε) + 

)
(R∗ + ε)

– lim inf
t→∞


R(t)

∫ t

T
Rα+

 (s)ϕ(s)q(s)�s – α(r∗ – ε)+ 
α .

Since ε >  is arbitrary, we have the desired inequality:

lim inf
t→∞


R(t)

∫ t

T
Rα+

 (s)ϕ(s)q(s)�s ≤ α
(
LR∗ – r+ 

α∗
)
.

This completes the proof. �

Remark . The conclusion of Lemmas .-. remains intact if ϕ (.) is replaced by ϕ̄.

4 Proofs of the main results
In this section we prove the main results.

Proof of Theorem . Assume equation (.) has a nonoscillatory solution x on [t,∞)T.
Then, without loss of generality, assume x(t) >  and x(g(t)) >  on [t,∞)T. Then if case
(I) of Lemma . holds, so by Lemma ., we see

∫ ∞

t

q(s)�s < ∞,

which contradicts (.). Now if case (II) of Lemma . holds, then by Lemma ., we get
limt→∞ x(t) = . The proof is complete. �

Proof of Theorem . Assume equation (.) has a nonoscillatory solution x on [t,∞)T.
Then, without loss of generality, assume x(t) >  and x(g(t)) >  on [t,∞)T. Then if case
(I) of Lemma . holds, so by Lemma ., we see

∫ ∞

t

φ(s)q(s)�s < ∞,
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which contradicts (.). Now if case (II) of Lemma . holds, then by Lemma ., we get
limt→∞ x(t) = . The proof is complete. �

Proof of Theorem . Assume equation (.) has a nonoscillatory solution x on [t,∞)T.
Then, without loss of generality, assume x(t) >  and x(g(t)) >  on [t,∞)T. Then if case
(I) of Lemma . holds, then by Lemma ., we see

lim inf
t→∞ Rα

 (t)
∫ ∞

σ (t)
ϕ(s)q(s)�s ≤ r∗ –

r+ 
α∗

L
.

Using the inequality (.) with A = 
L , B =  and u = r∗, we get the desired inequality:

lim inf
t→∞ Rα

 (t)
∫ ∞

σ (t)
ϕ(s)q(s)�s ≤ (αL)α

(α + )α+ ,

which contradicts (.). Now if case (II) of Lemma . holds, then by Lemma ., we get
limt→∞ x(t) = . The proof is complete. �

Proof of Theorem . Assume equation (.) has a nonoscillatory solution x on [t,∞)T.
Then, without loss of generality, assume x(t) >  and x(g(t)) >  on [t,∞)T. Then if case
(I) of Lemma . holds, then by Lemmas . and ., we have

R∗ ≤ Lα+ – lim inf
t→∞


R(t)

∫ t

t

Rα+
 (s)ϕ(s)q(s)�s

and

lim inf
t→∞


R(t)

∫ t

t

Rα+
 (s)ϕ(s)q(s)�s ≤ R∗

[
(α + )L – 

]
– αr+ 

α∗ .

Therefore

lim inf
t→∞


R(t)

∫ t

t

Rα+
 (s)ϕ(s)q(s)�s ≤ Lα+

(
 –


(α + )L

)
,

which contradicts the condition (.). If case (II) of Lemma . holds, then by Lemma .,
we get limt→∞ x(t) = . The proof is complete. �

Proof of Theorem . Assume equation (.) has a nonoscillatory solution x on [t,∞)T.
Then, without loss of generality, assume x(t) >  and x(g(t)) >  on [t,∞)T. Then if case
(I) of Lemma . holds, then by Lemmas . and ., we have

R∗ ≤ Lα+ – lim inf
t→∞


R(t)

∫ t

t

Rα+
 (s)ϕ(s)q(s)�s

and

lim inf
t→∞


R(t)

∫ t

t

Rα+
 (s)ϕ(s)q(s)�s ≤ R∗[α + L – ] – αr+ 

α∗ .
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Therefore

lim inf
t→∞


R(t)

∫ t

t

Rα+
 (s)ϕ(s)q(s)�s ≤ Lα+

(
 –


α + L

)
,

which contradicts the condition (.). If case (II) of Lemma . holds, then by Lemma .,
we get limt→∞ x(t) = . The proof is complete. �

Proof of Theorem . Assume equation (.) has a nonoscillatory solution x on [t,∞)T.
Then, without loss of generality, assume x(t) >  and x(g(t)) >  on [t,∞)T. Then if case
(I) of Lemma . holds, then by Lemmas . and ., we have

R∗ ≤ Lα+ – lim inf
t→∞


R(t)

∫ t

t

Rα+
 (s)ϕ(s)q(s)�s

and

lim inf
t→∞


R(t)

∫ t

T
Rα+

 (s)ϕ(s)q(s)�s ≤ α
(
LR∗ – r

α+
α∗

)
.

Thus

lim inf
t→∞


R(t)

∫ t

t

Rα+
 (s)ϕ(s)q(s)�s ≤ αLα+

 + αL
,

which contradicts the condition (.). If case (II) of Lemma . holds, then by Lemma .,
we get limt→∞ x(t) = . The proof is complete. �

Proof of Theorem . Assume equation (.) has a nonoscillatory solution x on [t,∞)T.
Then, without loss of generality, assume x(t) >  and x(g(t)) >  on [t,∞)T. Then if case
(I) of Lemma . holds, then

x[](t) > , x[](t) > ,
[
x[](t)

]� <  on [t,∞)T.

Integrating both sides of the dynamic equation (.) from t to v ∈ [t,∞)T, we obtain

∫ v

t
q(s)xα

(
g(s)

)
�s = x[](t) – x[](v) ≤ x[](t). (.)

As shown in the proof of Lemmas . and ., we have, for t ≥ t,

xα(t) ≥ x[](t)Rα
 (t) (.)

and

xα
(
g(t)

) ≥ ϕ(t)xα(t), (.)

for some t ∈ (t,∞)T such that g(t) ∈ (t,∞)T for t ≥ t. From (.) and (.), we obtain

∫ v

t
ϕ(s)q(s)xα(s)�s ≤ x[](t).
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Since x�(t) > , we get

xα(t)
∫ v

t
ϕ(s)q(s)�s ≤ x[](t). (.)

From (.) and (.), we get

Rα
 (t)

∫ v

t
ϕ(s)q(s)�s ≤ .

Taking v → ∞, we have

Rα
 (t)

∫ ∞

t
ϕ(s)q(s)�s ≤ ,

which gives us the contradiction

lim sup
t→∞

Rα
 (t)

∫ ∞

t
ϕ(s)q(s)�s ≤ .

Now if case (II) of Lemma . holds, then by Lemma ., we get limt→∞ x(t) = . The proof
is complete. �

Proof of Theorem . The proof is similar to that of previous results where ϕ is replaced
by ϕ̄; see Lemma . and Remark .. �

Proof of Theorem . Assume equation (.) has a nonoscillatory solution x on [t,∞)T.
Then, without loss of generality, assume x(t) >  and x(g(t)) >  on [t,∞)T. Then if case
(I) of Lemma . holds, then

x[](t) > , x[](t) > ,
[
x[](t)

]� <  on [t,∞)T.

Define

z(t) :=
x[](t)

(x[](t))α
.

By the product rule and the quotient rule, we get

z�(t) =


(x[](t))α

(
x[](t)

)� +
(


(x[](t))α

)�

x[](σ (t)
)

=
(x[](t))�

(x[](t))α
–

((x[](t))α )�

(x[](t))α (x[](σ (t)))α
x[](σ (t)

)
.

From (.) and the definition of z(t), we see that, for t ≥ t,

z�(t) = –q(t)
xα(g(t))

(x[](t))α
–

((x[](t))α )�

(x[](t))α
z
(
σ (t)

)
.

Hence

xα(g(t))
(x[](t))α

=
[

x(g(t))
x(t)

]α xα(t)
(x[](t))α

.
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As shown in the proof of Lemma . we get

xα(t)
(x[](t))α

≥ Rα(t),

and as in the proof of Lemma ., there exists t ∈ [t,∞)T such that g(t) > t and

[
x(g(t))

x(t)

]α

≥ ϕ(t).

Then

xα(g(t))
(x[](t))α

≥ ϕ̂(t).

It follows that, for t ≥ t,

z�(t) ≤ –ϕ̂(t)q(t) –
((x[](t))α )�

(x[](t))α
z
(
σ (t)

)
.

By the Pötzsche chain rule,

((
x[](t)

)α)� ≥
{

α[x[](σ (t))]α–(x[](t))�,  < α ≤ ,
α[x[](t)]α–(x[](t))�, α ≥ .

If  < α ≤ , we have

z�(t) ≤ –ϕ̂(t)q(t) –
αz(σ (t))
ρ(σ (t))

(x[](t))�

x[](σ (t))

(
x[](σ (t))

x[](t)

)α

; (.)

and if α ≥ , we have

z�(t) ≤ –Q(t) – α
(x[](t))�

x[](σ (t))
x[](σ (t))

x[](t)
z
(
σ (t)

)
. (.)

Since x[] is strictly increasing and x[] is strictly decreasing, we get

x[](σ (t)
) ≥ x[](t) and

(
x[](t)

)� ≥
(

x[](σ (t))
r(t)

)/α

. (.)

Then from (.) and (.) we obtain

z�(t) ≤ –ϕ̂(t)q(t) – αr–/α
 (t)z+ 

α
(
σ (t)

)
for t ≥ t.

The rest of the argument is similar to that of previous results with R is replaced by R and
hence is omitted. �
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