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Abstract
In this paper, we investigate the existence of a reversed S-shaped component in the
positive solutions set of the fourth-order boundary value problem

{
u′′′′(x) = λh(x)f (u(x)), x ∈ (0, 1),

u(0) = u(1) = u′′(0) = u′′(1) = 0,

where λ > 0 is a parameter, h ∈ C[0, 1] and f ∈ C[0,∞), f (0) = 0, f (s) > 0 for all s > 0. By
figuring the shape of unbounded continua of solutions, we show the existence and
multiplicity of positive solutions with respect to parameter λ, and especially, we
obtain the existence of three distinct positive solutions for λ being in a certain
interval.
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1 Introduction
The fourth-order boundary value problem

⎧⎨
⎩u′′′′(x) = λf (x, u(x)), x ∈ (, ),

u() = u() = u′′() = u′′() = 
(.)

describes the deformations of an elastic beam both of whose ends are simply supported
at  and , see Gupta []. The existence and multiplicity of positive solutions for (.) with
λ ≡  have been extensively studied by many authors using topological degree theory, fixed
point theorems, lower and upper solution methods, and critical point theory (see, for ex-
ample, [–] and the references therein).

However, to the best of our knowledge, when parameter λ varies in R
+, there are few

papers concerned with the global behavior of positive solutions of (.), see, for example,
[–]. By using Rabinowitz’s or Dancer’s global bifurcation theorem, [–] investi-
gated the global structure of the solutions set of (.), and accordingly, obtained the exis-
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Figure 1 S-shaped connected component of
positive solutions set of (1.2).

tence and multiplicity of positive solutions and nodal solutions. Notice that these results
give no information on direction turns of the connected component.

Very recently, Kim and Tanaka [] considered the global structure of positive solutions
set of the p-Laplacian problem

⎧⎨
⎩(|y′|p–y′)′ = λa(x)f (y), x ∈ (, ),

y() = y() = ,
(.)

where the nonlinearity f is asymptotic linear near , superlinear at some point, and sub-
linear near ∞. Based upon Rabinowitz’s global bifurcation theorem, they proved that an
unbounded subcontinuum of positive solutions of (.) bifurcates from the trivial solu-
tion, grows to the right from the initial point, to the left at some point, and to the right
near λ = ∞. Roughly speaking, they concluded that there exists an S-shaped connected
component in the positive solutions set of problem (.) (see Figure ). Motivated by the
above work, in a later paper [], the present authors have established the existence re-
sult of an S-shaped connected component in the positive solutions set of the fourth-order
boundary value problem

⎧⎨
⎩u′′′′(x) = λf (x, u(x), u′′(x)), x ∈ (, ),

u() = u() = u′′() = u′′() = .

Now it is natural to ask whether we can get a reversed S-shaped connected compo-
nent in the positive solutions set (see Figure ) if the conditions on the nonlinearity are
in contrast to these in []. In this paper, we will deal with this topic for problem (.)
with f (x, u) = h(x)f (u). More precisely, we will establish the existence result of a reversed
S-shaped connected component in the positive solutions set of the problem

⎧⎨
⎩u′′′′(x) = λh(x)f (u(x)), x ∈ (, ),

u() = u() = u′′() = u′′() = .
(.)

Throughout the paper, we assume that
(H) h(x) ≥  in [, ] and h �≡  in any subinterval of [, ];
(H) there exist α > , f > , and f >  such that lims→+

f (s)–fs
s+α = f;
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Figure 2 Reversed S-shaped connected of
positive solutions set of (1.3).

(H) f∞ := lims→∞ f (s)
s = ∞;

(H) there exists s >  such that  ≤ s ≤ s implies that

f (s) ≤ f

μ̂h
s,

where ĥ = maxx∈[,] h(x) and μ >  is the first eigenvalue of the linear problem
corresponding to (.) defined in Lemma ..

It is easy to find that if (H) holds, then

lim
s→+

f (s)
s

= f, (.)

that is, f is asymptotic linear near . Contrary to the condition in [], f is superlinear
near ∞ according to (H), then we cannot find a constant f ∗ >  such that f (s) ≤ f ∗s for
all s ≥ . This will bring great difficulty to the study of the global structure of the positive
solutions set of (.). On the other hand, the concavity and convexity of the solutions of
second-order BVPs can be deduced directly from the nonlinearity in the equation, but for
fourth-order BVPs, this becomes complicated, especially when the nonlinearity changes
sign. So in this paper we only consider the case that h ≥  and f (s) >  for all s > .

Arguing the shape of a component in the positive solutions set of problem (.), we have
the following result.

Theorem . Assume that (H), (H), (H), and (H) hold. Then there exist λ∗ ∈ (, μ
f

)
and λ∗ > μ

f
such that

(i) (.) has at least one positive solution if  < λ < λ∗;
(ii) (.) has at least two positive solutions if λ = λ∗;

(iii) (.) has at least three positive solutions if λ∗ < λ < μ
f

;
(iv) (.) has at least two positive solutions if μ

f
≤ λ < λ∗;

(v) (.) has at least one positive solution if λ = λ∗;
(vi) (.) has no positive solution if λ > λ∗.

Remark . Indeed, condition (H) pushes the direction of bifurcation to the left near
u = , while conditions (H) and (H) guarantee that the bifurcation curve grows to the
right at some point and grows to the left near λ = , respectively.



Wang and Ma Advances in Difference Equations  (2017) 2017:113 Page 4 of 11

Remark . Let us consider the functions

h(x) ≡ , x ∈ [, ]

and

f (s) = s(s – ) +
√

s ln

[
 +

(
e


– 
)

s
]

, s ∈ [,∞).

Obviously, h satisfies (H), ĥ =  and the first eigenvalue of the linear problem correspond-
ing to (.) is μ = π. It is easy to check that f satisfies (H) and (H) with

α =



, f = , f =
e


– .

Denote

w(s) =

π s, s ∈ [,∞).

By using Mathematica ., we deduce that f is increasing on [,∞), and the equation

f (s) = w(s), s ∈ [,∞)

has exactly three roots: s = , s
.= ., s

.= .. Combining this with f =  > 
π =

w′() and f∞ = ∞, we conclude that for each fixed s ∈ [s, s],

f (s) ≤ 
π s, ∀s ∈ [, s],

that is, f satisfies (H).

Notice that the Conditions (H)-(H) are fulfilled, then Theorem . guarantees that
there exist λ∗ ∈ (,π) and λ∗ > π such that the conclusions (i)-(vi) are correct for prob-
lem ⎧⎨

⎩u′′′′(x) = λ{u(x)(u(x) – ) +
√

u(x) ln[ + ( e
 – )u(x)]}, x ∈ (, ),

u() = u() = u′′() = u′′() = .

The rest of this paper is arranged as follows. In Section , we show global bifurcation
phenomena from the trivial branch with the leftward direction. Section  is devoted to
showing that there are at least two direction turns of the component and to completing
the proof of Theorem ..

2 Leftward bifurcation
In this section, we state some preliminary results and show global bifurcation phenomena
from the trivial branch with the leftward direction.

Let g ∈ C[, ], then the solution of the fourth-order linear boundary value problem
⎧⎨
⎩v′′′′ = g(t), t ∈ (, ),

v() = v() = v′′() = v′′() = ,
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can be expressed by

v(t) =
∫ 



∫ 


G(t, s)G(s, τ )g(τ ) dτ ds,

where

G(t, s) =

⎧⎨
⎩s( – t),  ≤ s ≤ t ≤ ,

t( – s),  ≤ t ≤ s ≤ .

Moreover, if g(t) ≥ , g �≡ , then

v′′(t) = –
∫ 


G(t, s)g(s) ds ≤ ,

and v(t) ≥  is concave.
Since the Green’s function G(t, s) has the properties:
(i)  ≤ G(t, s) ≤ G(s, s), ∀t, s ∈ [, ];

(ii) G(t, s) ≥ 
 G(s, s), ∀t ∈ [ 

 , 
 ], s ∈ [, ],

then, for t ∈ [ 
 , 

 ], we have

v(t) =
∫ 


G(t, s)

[∫ 


G(s, τ )g(τ ) dτ

]
ds

≥ 


∫ 


G(s, s)

[∫ 


G(s, τ )g(τ ) dτ

]
ds

≥ 


‖v‖∞. (.)

Let us consider the linear eigenvalue problem

⎧⎨
⎩u′′′′(x) = λh(x)u(x), x ∈ (, ),

u() = u() = u′′() = u′′() = .
(.)

Lemma . (see [], Theorem .) Assume that (H) holds. Then the linear problem (.)
has a positive simple principal eigenvalue

μ = inf

{ ∫ 
 (u′′(x)) dx∫ 

 h(x)u(x) dx

∣∣∣ u ∈ C[, ], u �≡  and u() = u() = u′′() = u′′() = 
}

.

Moreover, the corresponding eigenfunction φ is positive in (, ).

Extend f to R with the oddity and rewrite (.) by

⎧⎨
⎩u′′′′(x) = λh(x)fu + λh(x)(f (u) – fu), x ∈ (, ),

u() = u() = u′′() = u′′() = .
(.)

Since condition (H) implies (.), then following an argument similar to that in the proof
of Theorem . in [] or Theorem . in [], we have the following.
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Lemma . Assume that (H) and (H) hold, then from ( μ
f

, ) there emanates an un-
bounded subcontinuum C of positive solutions of (.) in the set R × E, where E = {u ∈
C[, ] | u() = u() = u′′() = u′′() = } with the norm ‖u‖ = ‖u‖∞ + ‖u′‖∞ + ‖u′′‖∞ +
‖u′′′‖∞.

Lemma . Assume that (H) and (H) hold. Let {(λn, un)} be a sequence of positive solu-
tions to (.) which satisfies λn → μ

f
and ‖un‖ → . Let φ be the first eigenfunction of (.)

which satisfies ‖φ‖∞ = . Then there exists a subsequence of {un}, again denoted by {un},
such that un

‖un‖∞ converges uniformly to φ on [, ].

Proof Set vn := un
‖un‖∞ . Then ‖vn‖∞ = . For every (λn, un), we have

u′′
n(x) = –λn

∫ 


G(x, s)h(s)f

(
un(s)

)
ds. (.)

From the boundary condition un() = un() = , there exists x̂n ∈ (, ) such that u′
n (̂xn) = .

Integrating (.) on [x, x̂n], we obtain

u′
n(x) = λn

∫ x̂n

x

∫ 


G(t, s)h(s)f

(
un(s)

)
ds dt, x ∈ [, ]. (.)

Dividing both sides of (.) by ‖un‖∞, we get

v′
n(x) = λn

∫ x̂n

x

∫ 


G(t, s)h(s)

f (un(s))
un(s)

vn(s) ds dt, x ∈ [, ]. (.)

Since ‖un‖ →  implies ‖un‖∞ → , then by (.) there exists a constant m >  such that

f (un(s))
un(s)

< m, ∀n ∈N, s ∈ (, ). (.)

From λn → μ
f

, it follows that there exists a constant m >  such that

λn ≤ m, ∀n ∈N. (.)

Then, for x ∈ [, ], (.) implies that

v′
n(x) = λn

∫ x̂n

x

∫ 


G(t, s)h(s)

f (un(s))
un(s)

vn(s) ds dt

≤ mm‖vn‖∞
∫ x̂n

x

∫ 


G(t, s)h(s) ds dt

≤ mm‖vn‖∞
∫ 



∫ 


G(t, s)h(s) ds dt

= M‖vn‖∞ = M,
(

M = mm

∫ 



∫ 


G(t, s)h(s) ds dt

)
, (.)

that is,

∥∥v′
n
∥∥∞ ≤ M, ∀n ∈N. (.)
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Since ‖v′
n‖∞ is bounded, by the Ascoli-Arzela theorem, a subsequence of {vn} uniformly

converges to a limit v ∈ C[, ] with ‖v‖∞ = , and we again denote by {vn} the subse-
quence.

For every (λn, un), we have

un(x) = λn

∫ 


G(x, s)

[∫ 


G(s, τ )h(τ )f

(
un(τ )

)
dτ

]
ds. (.)

Dividing both sides of (.) by ‖un‖∞, we get

vn(x) = λn

∫ 


G(x, s)

[∫ 


G(s, τ )h(τ )

f (un(τ ))
un(τ )

vn(τ ) dτ

]
ds. (.)

Since ‖un‖∞ → , we conclude that f (un(τ ))
un(τ ) → f for each fixed τ ∈ [, ]. By recalling (.),

Lebesgue’s dominated convergence theorem shows that

v(x) =
μ

f

∫ 


G(x, s)

[∫ 


G(s, τ )h(τ )fv(τ ) dτ

]
ds

= μ

∫ 


G(x, s)

[∫ 


G(s, τ )h(τ )v(τ ) dτ

]
ds, (.)

which means that v is a nontrivial solution of (.) with λ = μ, and hence v ≡ φ. �

Lemma . Assume that (H) and (H) hold. Let C be as in Lemma .. Then there exists
δ >  such that (λ, u) ∈ C and |λ – μ

f
| + ‖u‖ ≤ δ imply λ < μ

f
.

Proof Assume to the contrary that there exists a sequence {(λn, un)} ⊂ C such that λn →
μ
f

, ‖un‖ →  and λn ≥ μ
f

. By Lemma ., there exists a subsequence of {un}, again de-
noted by {un}, such that un

‖un‖∞ converges uniformly to φ on [, ]. Multiplying the equation
of (.) with (λ, u) = (λn, un) by φ and integrating it over [, ], we have

∫ 


φ(x)u′′′′

n (x) dx = λn

∫ 


h(x)f

(
un(x)

)
φ(x) dx. (.)

By a simple computation, one has that

∫ 


φ(x)u′′′′

n (x) dx =
∫ 


φ′′′′(x)un(x) dx = μ

∫ 


h(x)φ(x)un(x) dx. (.)

Combining (.) with (.), we obtain

∫ 


h(x)f

(
un(x)

)
φ(x) dx =

μ

λn

∫ 


h(x)φ(x)un(x) dx,

that is,

∫ 
 h(x)φ(x)[f (un(x)) – fun(x)] dx

‖un‖+α∞
=

∫ 
 h(x)φ(x)[ μ

λn
un(x) – fun(x)] dx

‖un‖+α∞
. (.)
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Since
∫ 

 h(x)φ(x)[f (un(x)) – fun(x)] dx
‖un‖+α∞

=
∫ 


h(x)φ(x)

f (un(x)) – fun(x)
(un(x))+α

[
un(x)
‖un‖∞

]+α

dx, (.)

then Lebesgue’s dominated convergence theorem, Lemma ., and condition (H) imply
that

∫ 
 h(x)φ(x)[f (un(x)) – fun(x)] dx

‖un‖+α∞
→ f

∫ 


h(x)φ+α(x) dx > . (.)

Similarly,

∫ 
 h(x)φ(x)[ μ

λn
un(x) – fun(x)] dx

‖un‖+α∞

=
μ – fλn

λn‖un‖α∞

∫ 


h(x)φ(x)

un(x)
‖un‖∞

dx. (.)

By Lebesgue’s dominated convergence theorem and Lemma . again, we conclude that

∫ 


h(x)φ(x)

un(x)
‖un‖∞

dx →
∫ 


h(x)φ(x) dx > , (.)

this contradicts (.). �

3 Direction turns of the component and the proof of Theorem 1.1
In this section, we show that there are at least two direction turns of the component under
conditions (H) and (H), that is, the component is reversed S-shaped, and accordingly
we finish the proof of Theorem ..

Lemma . Assume that (H) and (H) hold. Let u be a solution of (.) with ‖u‖∞ = s,
then λ > μ

f
.

Proof Let u be a solution of (.) with ‖u‖∞ = s, then by condition (H) and the property
of G(x, s), we have

s = ‖u‖∞ = max
x∈[,]

{
λ

∫ 


G(x, s)

[∫ 


G(s, τ )h(τ )f

(
u(τ )

)
dτ

]
ds

}

< λ̂h
f

μ̂h
s

∫ 


G(s, s)

[∫ 


G(s, τ ) dτ

]
ds

= λ
f

μ
s, (.)

then λ > μ
f

. �

Lemma . Assume that (H), (H), and (H) hold. Let C be as in Lemma .. Then sup{λ |
(λ, u) ∈ C} < ∞.
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Proof Note that if (H) and (H) hold, there exists a positive constant k with f ≥ k such
that

f (s) ≥ ks, ∀s ∈ [,∞). (.)

For any (λ, u) ∈ C , by (.) and (.) and the property of G(x, s), we have

u(x) = λ

∫ 


G(x, s)

[∫ 


G(s, τ )h(τ )f

(
u(τ )

)
dτ

]
ds

≥ λ

∫ 


G(x, s)

[∫ 


G(s, τ )h(τ )ku(τ ) dτ

]
ds

≥ λ



∫ 


G(x, s)

[∫ 





G(s, τ )h(τ )k‖u‖∞ dτ

]
ds

≥ λ



k‖u‖∞



∫ 





G(s, s)
[∫ 






G(s, τ )h(τ ) dτ

]
ds

= λK‖u‖∞, ∀x ∈
[




,



]
, (.)

where

K =



k
∫ 






G(s, s)
[∫ 






G(s, τ )h(τ ) dτ

]
ds.

Then (.) implies that


K

≥
maxx∈[ 

 , 
 ] u(x)

K‖u‖∞
≥ λ. �

Lemma . Assume that (H), (H), and (H) hold. Let {(λn, un)} be a sequence of positive
solutions to (.), then ‖un‖ → ∞ implies ‖un‖∞ → ∞.

Proof From Lemma ., we conclude that {λn} is bounded. Assume on the contrary that
‖un‖∞ is bounded. By recalling (.) and (.), we have that ‖u′

n‖∞ and ‖u′′
n‖∞ are bounded

too.
From the boundary condition u′′

n() = u′′
n() = , there exists x∗

n ∈ (, ) such that u′′′
n (x∗

n) =
. Integrating the equation of (.) on [x∗

n, x], we obtain

u′′′
n (x) =

∫ x

x∗
n

u′′′′
n (s) ds = λn

∫ x

x∗
n

h(s)f
(
un(s)

)
ds, x ∈ [, ], (.)

then ‖u′′′
n ‖∞ is bounded. Finally, we conclude that ‖un‖ = ‖un‖∞ +‖u′

n‖∞ +‖u′′
n‖∞ +‖u′′′

n ‖∞
is bounded, this deduces a contradiction. �

Lemma . Assume that (H), (H), and (H) hold. Let {(λn, un)} be a sequence of positive
solutions to (.), then ‖un‖ → ∞ implies λn → .
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Proof For every (λn, un), we have

un(x) = λn

∫ 


G(x, s)

[∫ 


G(s, τ )h(τ )f

(
un(τ )

)
dτ

]
ds. (.)

Lemma . and Lemma . imply that ‖un‖∞ → ∞. Dividing both sides of (.) by ‖un‖∞,
we get

un(x)
‖un‖∞

= λn

∫ 


G(x, s)

[∫ 


G(s, τ )h(τ )

f (un(τ ))
un(τ )

un(τ )
‖un‖∞

dτ

]
ds, x ∈ [, ]. (.)

Then by (H) and the boundedness of un(x)
‖un‖∞ , we conclude that λn → . �

Proof of Theorem . Let C be as in Lemma .. By Lemma ., C is bifurcating from ( μ
f

, )
and goes leftward. Since C is unbounded, there exists {(λn, un)} such that (λn, un) ∈ C
and |λn| + ‖un‖ → ∞. By Lemmas . and ., we have that ‖un‖ → ∞ and λn → .
Lemma . implies that ‖un‖∞ → ∞, then there exists (λ, u) ∈ C such that ‖u‖∞ = s,
and Lemma . shows that λ > μ

f
.

By Lemmas ., ., and ., C passes through some points ( μ
f

, v) and ( μ
f

, v) with
‖v‖∞ < s < ‖v‖∞, and there exist λ and λ which satisfy  < λ < μ

f
< λ and both (i) and

(ii):
(i) if λ ∈ (λ, μ

f
), then there exist u and v such that (λ, u), (λ, v) ∈ C and

‖u‖∞ < ‖v‖∞ < s;
(ii) if λ ∈ [ μ

f
,λ), then there exist u and v such that (λ, u), (λ, v) ∈ C and

‖u‖∞ < s < ‖v‖∞.
Define λ∗ = inf{λ : λ satisfies (i)} and λ∗ = sup{λ : λ satisfies (ii)}. Then (.) has a posi-

tive solution uλ∗ at λ = λ∗ and uλ∗ at λ = λ∗, respectively. Clearly, the component curve
turns to the right at (λ∗,‖uλ∗‖∞) and to the left at (λ∗,‖uλ∗‖∞) (see Figure ). That is, C
is a reversed S-shaped component, this together with Lemma . completes the proof of
Theorem .. �
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