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Abstract
An HIV/AIDS epidemic model with general nonlinear incidence rate and treatment is
formulated. The basic reproductive number �0 is obtained by use of the method of
the next generating matrix. By carrying out an analysis of the model, we study the
stability of the disease-free equilibrium and the unique endemic equilibrium by using
the geometric approach for ordinary differential equations. Numerical simulations are
given to show the effectiveness of the main results.
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1 Introduction
The human immuno-deficiency virus (HIV) infection, which can lead to acquired im-
muno-deficiency syndrome (AIDS), has become an important infectious disease in both
the developed and the developing nations. It causes mortality of millions of people and
expenditure of an enormous amount of money in health care and disease control.

The study of HIV/AIDS transmission dynamics has been of great interest to both ap-
plied mathematicians and biologists due to its universal threat to humanity. Mathematical
models have been used extensively in the research of the epidemiology of HIV/AIDS, to
help improve our understanding of the major contributing factors in a given epidemic [–
]. Yusuf and Benyah [] presented a deterministic model for controlling the spread of the
disease, and the results show that the optimal way to mitigate the spread of the disease
is for susceptible individuals to consistently practise safe sex as much as possible, while
the ARV treatment should be initiated for patients as soon as they progress to the pre-
AIDS stage of the disease. Huo et al. [] considered a simple HIV/AIDS epidemic model
with treatment, they incorporate the new compartment, that is, the treatment compart-
ment T . Individuals in compartment T receive all kinds of treatments, these treatments
do not completely eliminate HIV from the body. They study the effect of treatment on the
transmission dynamics of the HIV/AIDS epidemic model.

In mathematical epidemiology, the disease incidence plays an important role in the study
of the mathematical epidemiological model. The general form of incidence rate is written
as βU(N) S

N I . Both bilinear and standard incidences (βSI and βSI/N with N the total pop-
ulation) have been frequently used in classical epidemic models [, ]. However, several
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studies have suggested that the disease transmission process may have a nonlinear in-
cidence rate [, ]. In addition, some general nonlinear incidence βg(I)S [], Sg(I) [],
g(S, I) [] and g(S, I, N) [] are used in models. Contrasted to models with the bilinear or
standard incidence, complex dynamic behaviors may occur when more general nonlinear
incidences are used.

Muldowney [] proposed a way to prove the asymptotical stability of periodic orbits
through estimating the right derivative of the Lyapunov function, and the global asymp-
totical stability of the epidemic equilibrium was proved by using a Poincaré-Bendixson
property and a general criterion for the orbital stability of periodic orbits concerned with
higher-dimensional nonlinear autonomous systems as well as the theory of competitive
system of differential equations. This geometric method is also used in [, ] to resolve
the global asymptotical stability of the epidemic equilibrium for an SEIR with bilinear and
nonlinear incidence rates.

Motivated by the above work, in this paper, we consider an HIV/AIDS epidemic model
with nonlinear incidence rate Sg(I) and treatment. Our paper is organized as follows. In
Section  we formulate the complete mathematical model and define the basic reproduc-
tive number �. Furthermore, the existence of equilibria of this model is given in Sec-
tion . The stability analysis of the equilibria of the model is proposed in Section , which
includes the stability analysis of the disease-free equilibrium and the endemic equilibrium
of the model. Some numerical simulations are given in Section . Finally, we summarize
this work.

2 The model and the basic reproduction number
2.1 Formulation of the models
In this section, following closely the ideas of [, ], discussed above, we incorporate the
nonlinear incidence Sg(I) into our model. The incidences are assumed to be the nonlin-
ear responses to the size of the infectious population, taking the forms Sg(I), where g(I)
satisfies

(H): g() = , g ′(I) > , g ′′(I) ≤  for I ≥ ;
(H): limI→+

g(I)
I = β ,  < β < ∞.

The total population N(t) is divided into five compartments; namely, S(t) represents the
number of susceptible patients, I(t) represents the number of HIV-positive individuals
in the stage of HIV infection, A(t) represents the number of individuals with full-blown
AIDS but not receiving ARV treatment, T(t) represents the number of individuals being
treated, R(t) represents the number of individuals who have changed their sexual habits
sufficiently such that they are, literally, immune to HIV infection by sexual contact. Hence,
we have the following model:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS
dt = � – Sg(I) – (d + μ)S,
dI
dt = Sg(I) + αT – (d + k + k)I,
dT
dt = kI + αT – (d + δ + α),
dA
dt = kI – (d + δ)A + αT ,
dR
dt = μS – dR.

(.)
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Here, we assume that all parameters in the model are constants. � is the recruitment rate.
d is the natural death rate. k is the rate of individuals leaving the infection class and be-
coming individuals with full-blown AIDS, that is, the proportion of the I becoming indi-
viduals with full-blown AIDS. δ and δ are the disease-induced death rate for individuals
in compartments A(t) and T(t). k is the rate at individuals with HIV receiving treatment,
that is, the proportion of the infection class I receiving treatment per unit time. It indicates
that not all people accept treatment, and because of economic problems, some people give
up treatment. Increasing the rate is important for eradicating the disease. μ is the rate at
which susceptible individuals change their sexual habits per unit time. α is the rate at
which treated individuals leave compartment T(t) and enter compartment I(t). α is the
rate at which treated individuals leave compartment T(t) and enter compartment A(t).

The total population N(t) is given by N(t) = S(t) + I(t) + A(t) + R(t) + T(t). The rate of
change of N(t), which can be obtained by adding all the equations in the model (.), is
given by

dN
dt

= � – dN

and N(t) varies over time and approaches a stable fixed point �
d as t → ∞.

Therefore, the biologically feasible region for the system (.) is

� =
{
(
S(t), I(t), T(t), A(t), R(t)

) ∈ R
+

∣
∣
∣  < S(t) + I(t) + T(t) + A(t) + R(t) ≤ �

d

}

.

Obviously, it can be verified that � is positively invariant with respect to system (.). Let
m = d + k + k, n = d + δ + α + α. Then the model (.) can be rewritten as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS
dt = � – Sg(I) – (d + μ)S,
dI
dt = Sg(I) + αT – mI,
dT
dt = kI – nT ,
dA
dt = kI + αT – (d + δ)A,
dR
dt = μS – dR.

(.)

2.2 The basic reproduction number
In this section, we will derive the basic reproduction number of (.) by using the next
generation matrix method formulated in [, ]. Let x = (I, A, T , S, R)T . We rewrite system
(.) in the matrix form

dx
dt

= F (x) – V(x),

where

F (x) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

Sg(I)





⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

, V(x) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

mI – αT
(d + δ)A – kI – αT

nT – kI
Sg(I) + (μ + d)S – �

dR – μS

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

.
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The Jacobian matrices ofF (x) andV(x) at the disease-free equilibrium E are, respectively,

F = DF (E) =

(
F×  

  

)

,

V = DV(E) =

⎛

⎜
⎝

V×  
β�

μ+d   μ + d 
   –μ d

⎞

⎟
⎠ ,

where

F× =

⎛

⎜
⎝

β�

μ+d  
  
  

⎞

⎟
⎠ , V× =

⎛

⎜
⎝

m  –α

–k d + δ –α

–k  n

⎞

⎟
⎠ ,

where E is given in Section . The basic reproduction number, denoted by �, is thus
given by

� = ρ
(
FV –) =

β�

(μ + d)(d + δ)n
· d + δ

mn – αk
=

βn�

(μ + d)(mn – αk)
.

3 The existence of the equilibria
Theorem . The system (.) always has a disease-free equilibrium E = (S, I, T,
A, R) = ( �

μ+d , , , , μ�
d(μ+d) ). If � > , the assumptions (H) and (H) are satisfied, then,

besides E, system (.) has a unique endemic equilibrium E∗ = (S∗, I∗, T∗, A∗, R∗).

Proof It is easy to verify that system (.) always has a disease-free equilibrium E.
Next, we prove the existence of the unique endemic equilibrium E∗. This equilibrium

can be obtained by solving the following set of algebraic equations:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

� – Sg(I) – (μ + d)S = ,

Sg(I) + αT – mI = ,

kI – nT = ,

kI – (d + δ)A + αT = ,

μS – dR = .

(.)

From the last three equations of (.), we have

T =
k

n
I, A =

k + αk
n

d + δ
I, R =

μ

d
S. (.)

Substituting them into the first two equations of (.) yields

⎧
⎨

⎩

� – Sg(I) – (μ + d)S = ,

Sg(I) + ( αk
n – m)I = ,

(.)



Jia and Qin Advances in Difference Equations  (2017) 2017:136 Page 5 of 13

which is equivalent to the equations

⎧
⎨

⎩

� – (m – αk
n )I – (μ + d)S = ,

Sg(I) – (m – αk
n )I = .

(.)

Since mn – αk > , from the first equation of (.) we know I < n�
mn–αk

, and from the
second equation of (.) we have

S =
(m – αk

n )I
g(I)

.

Substituting it into the first equation of (.), we have

g(I) =
(μ + d)(m – αk

n )I
� – (m – αk

n )I
=: h(I). (.)

Notice that I = n�
mn–αk

is a vertical asymptote of the function h(I). For all  < I < n�
mn–αk

we have

h′(I) =
λ(μ + d)(m – αk

n )
[� – (m – αk

n )I]
> ,

h′′(I) =
λ(μ + d)(m – αk

n )

[� – (m – αk
n )I]

> ,

i.e. h(I) passes point (, ) and increasing and concave in interval (, n�
mn–αk

). Thus, ac-

cording to the assumption for the function g(I), when g ′() > h′() = (μ+d)(m– αk
n )

�
, i.e.

� > , equation (.) has a unique root I∗ in the interval (, nλ
mn–αk

). It implies that (.)

has a unique positive solution (S∗, I∗) when � > , where S∗ = (m– αk
n )I∗

g(I∗) .
Correspondingly, model (.) has a unique endemic equilibrium E∗(S∗, I∗, T∗, A∗, R∗),

where T∗ = k
n I∗, A∗ = k+ αk

n
d+δ

I∗, R∗ = μ
d S∗.

The proof of Theorem . is completed. �

4 Analysis of stability
4.1 Stability of the disease-free equilibrium
Theorem . The disease-free equilibrium E is globally asymptotically stable if  < � <
, and unstable if � > .

Proof The Jacobian matrix corresponding to system (.) about E is obtained as fol-
lows:

J(E) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

–(μ + d) – β�

μ+d   
 β�

μ+d – m α  
 k –n  
 k α –(d + δ) 

–μ    –d

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

.
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The characteristic equation corresponding to the Jacobian matrix J(E) is given by
det(λE – J(E)) = , where E is the unit matrix. Thus, we get

(λ + μ + d)(λ + d + δ)(λ + d)
[(

λ + m –
β�

μ + d

)

(λ + n) – αk

]

= . (.)

Obviously, equation (.) has three negative real roots λ = –(μ + d), λ = –(d + δ),
λ = –d, and the other two roots λ and λ are the roots of the equation

h(λ) =
(

λ + m –
β�

μ + d

)

(λ + n) – αk ≡ λ + bλ + c = ,

where b = m + n – β�

μ+d , c = mn – αk – βn�

μ+d .
So we only need to consider the sign of λ and λ. Since λ +λ = –b, λλ = c, and when

 < � < , i.e. βn�

μ+d < mn –αk < mn, we have b > , c > , hence λ < , λ < . So all roots
of (.) have negative real parts, i.e. the equilibrium E is locally asymptotically stable in
� when  < � < .

From the above, we know that if  < � < , the equilibrium E is locally asymptotically
stable and by Theorem . there are no endemic equilibrium in �. By [], any solution of
(.) starting in � must approach either an equilibrium or a closed orbit in �. By [], if
the solution path approaches a closed orbit, then this closed orbit must enclose an equi-
librium. Nevertheless, the only equilibrium existing in � is E when  < � <  and it is
located in the boundary of �, therefore there is no closed orbit in �. Hence any solution
of system (.) with initial condition in � must approach the point E as time tends to
infinity. Therefore, the disease-free equilibrium E is globally asymptotically stable in �

when  < � < .
When � > , we have c < , so the equation h(λ) =  has a positive root. Therefore, the

equilibrium E is unstable.
The proof of Theorem . is completed. �

4.2 Stability of the endemic equilibrium
Theorem . If � > , then the endemic equilibrium E∗ of the system (.) is locally
asymptotically stable.

Proof For the endemic equilibrium E∗ = (S∗, I∗, T∗, A∗, R∗), the Jacobian matrix is

J
(
E∗) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

–g(I∗) – (μ + d) S∗g ′(I∗)   
g(I∗) S∗g ′(I∗) – m α  

 k –n  
 k α –(d + δ) 

–μ    –d

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

The characteristic equation of J(E∗) is given by

(λ + d + δ)(λ + d)
(
λ + aλ

 + aλ + a
)

= , (.)

where

a = g
(
I∗) + μ + d + m + n – S∗g ′(I∗),
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a = (m + n)
[
g
(
I∗) + μ + d

]
– S∗g ′(I∗)(μ + d + n) + mn – αk,

a =
[
g
(
I∗) + μ + d

]
(mn – αk) – n(μ + d)S∗g ′(I∗).

Obviously, equation (.) has real roots λ = –d < , λ = –(d + δ) < , and other roots
of (.) are given by the roots of h(λ) = λ + aλ

 + aλ + a = .
Since g ′′(I) ≤ , we can obtain  – I∗

g(I∗) g ′(I∗) ≥ , therefore

m – S∗g ′(I∗) = m –
(m – αk

n )I∗

g(I∗)
g ′(I∗) > m

[

 –
I∗

g(I∗)
g ′(I∗)

]

≥ .

Hence

a = g
(
I∗) + μ + d + n + m – S∗g ′(I∗) > ,

a = (m + n)
[
g
(
I∗) + μ + d

]
– S∗g ′(I∗)(μ + d + n) + mn – αk

= (m + n)g
(
I∗) + (μ + d)

[
m + n – S∗g ′(I∗)] – nS∗g ′(I∗) + mn – αk

= (m + n)g
(
I∗) + (μ + d)

[
m + n – S∗g ′(I∗)] + (mn – αk)

[

 –
I∗

g(I∗)
g ′(I∗)

]

> ,

a =
[
g
(
I∗) + μ + d

]
(mn – αk) – n(μ + d)S∗g ′(I∗)

=
[
g
(
I∗) + μ + d

]
(mn – αk) – (μ + d)(mn – αk)

I∗

g(I∗)
g ′(I∗)

= (mn – αk)
[
g
(
I∗) + μ + d

]
[

 –
I∗

g(I∗)
g ′(I∗)

]

> ,

aa – a = a
[
(m + n)g

(
I∗) + (μ + d)

[
m + n – S∗g ′(I∗)]]

+
[
n + m – S∗g ′(I∗)](mn – αk)

[

 –
I∗

g(I∗)
g ′(I∗)

]

> .

By the Routh-Hurwitz criteria, we see that all roots of the equation h(λ) =  have neg-
ative real parts, i.e. the epidemic equilibrium E∗ of system (.) is locally asymptotically
stable in �.

The proof of Theorem . is completed. �

Next, we turn to showing the global stability of the equilibrium E∗.
Since the first three equations of system (.) are without A and R, we consider the

subsystem

⎧
⎪⎪⎨

⎪⎪⎩

dS
dt = � – Sg(I) – (d + μ)S,
dI
dt = Sg(I) + αT – mI,
dT
dt = kI – nI.

(.)

In order to study the global asymptotic stability of the endemic equilibrium E∗ of the
system (.), by use of the geometrical approach developed by Li and Muldowney [], we
obtain the simple sufficient condition that E∗ is globally asymptotically stable when � > .
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Showing the existence of a compact set in the interior � that is absorbing for (.)
is equivalent to proving that (.) be uniformly persistent, which means that there ex-
ists a constant c > , such that every solution (S(t), I(t), T(t)) of (.) with the initial data
(S(), I(), T()) in the interior of � satisfies

lim inf
t→∞ S(t) ≥ c, lim inf

t→∞ I(t) ≥ c, lim inf
t→∞ T(t) ≥ c.

Here c is independent of the initial data in �; see []. We can prove the following result.

Proposition . The system (.) is uniformly persistent if and only if � > .

Proof Combining the local stability analysis for the equilibrium in Theorem . and The-
orem . in [], we know that system (.) is uniformly persistent if and only if � > .

The proof of Proposition . is completed. �

Theorem . Assume that � > , then the endemic equilibrium E∗ of system (.) is glob-
ally asymptotically stable when μ < k + k.

Proof Firstly, we verify the system (.) is a competitive system. The Jacobian matrix of
(.) is given by

J =

⎛

⎜
⎝

–g(I) – (μ + d) –Sg ′(I) 
g(I) Sg ′(I) – m α

 k –n

⎞

⎟
⎠ .

The second additive compound matrix J [] of the Jacobian matrix J is given by

J [] =

⎛

⎜
⎝

–g(I) + Sg ′(I) – (μ + d + m) α 
k –g(I) – (μ + d + n) –Sg ′(I)
 g(I) Sg ′(I) – (m + n)

⎞

⎟
⎠ .

By looking at its Jacobian matrix and choosing the matrix H as H = diag(, –, ), it is easy
to verify that HJH has nonpositive off-diagonal elements, then we can see that the system
(.) is competitive in the convex region �. It is well known that -dimensional competi-
tive systems have the Poincaré-Bendixson property [].

By using the second additive compound matrix J [], we can write down the composite
system along any of the periodic solutions of the system (.) as follows:

⎧
⎪⎪⎨

⎪⎪⎩

dX
dt = –[g(I) – Sg ′(I) + (μ + d + m)]X + αY ,
dY
dt = kX – [g(I) + (μ + d + n)]Y – Sg ′(I)Z,
dZ
dt = g(I)Y + [Sg ′(I) – (m + n)]Z.

(.)

To show the asymptotic stability of the system (.), we consider the following Lyapunov
function:

V (X, Y , Z; S, I, T) = sup

{

|X|, I
T

(|Y | + |Z|)
}

.
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Suppose that γ (t) = (S(t), E(t), I(t)) is the ω-periodic solution of (.). Then Proposi-
tion . implies that its orbit γ (t) remains at a positive distance from the boundary of �.
So there exists a constant c >  such that

V (X, Y , Z; S, I, T) ≥ c sup
{|X|, |Y |, |Z|} (.)

for all (X, Y , Z) ∈ R and (S, E, I) ∈ γ (t). Let (X(t), Y (t), Z(t)) be a solution to (.) and the
right-hand derivative of V (t) exist and its calculation be described in []. In fact, direct
calculation yields

D+
∣
∣X(t)

∣
∣ ≤ –

[
g(I) – Sg ′(I) + (μ + d + m)

]∣
∣X(t)

∣
∣ + α

∣
∣Y (t)

∣
∣

≤ –
[
g(I) – Sg ′(I) + (μ + d + m)

]∣
∣X(t)

∣
∣ + α

(∣
∣Y (t)

∣
∣ +

∣
∣Z(t)

∣
∣
)

≤ –
[
g(I) – Sg ′(I) + (μ + d + m)

]∣
∣X(t)

∣
∣ +

αT
I

I
T

(∣
∣Y (t)

∣
∣ +

∣
∣Z(t)

∣
∣
)

(.)

and

D+
∣
∣Y (t)

∣
∣ ≤ k

∣
∣X(t)

∣
∣ –

[
g(I) + (μ + d + n)

]∣
∣Y (t)

∣
∣ – Sg ′(I)

∣
∣Z(t)

∣
∣,

D+
∣
∣Z(t)

∣
∣ ≤ g(I)

∣
∣Y (t)

∣
∣ +

[
Sg ′(I) – (m + n)

]∣
∣Z(t)

∣
∣.

If μ + d < m, i.e. μ < k + k, then

D+
(∣
∣Y (t)

∣
∣ +

∣
∣Z(t)

∣
∣
) ≤ k

∣
∣X(t)

∣
∣ – (μ + d + n)

(∣
∣Y (t)

∣
∣ +

∣
∣Z(t)

∣
∣
)
,

and thus

D+
I
T

(∣
∣Y (t)

∣
∣ +

∣
∣Z(t)

∣
∣
)

=
(

I ′

I
–

T ′

T

)
I
T

(∣
∣Y (t)

∣
∣ +

∣
∣Z(t)

∣
∣
)

+
I
T

D+
(∣
∣Y (t)

∣
∣ +

∣
∣Z(t)

∣
∣
)

≤ kI
T

∣
∣X(t)

∣
∣ +

(
I ′

I
–

T ′

T
– μ – d – n

)
I
T

(∣
∣Y (t)

∣
∣ +

∣
∣Z(t)

∣
∣
)
. (.)

From (.) and (.), we get

D+V (t) ≤ max
{

g(t), g(t)
} · V (t), (.)

where

g(t) =
αT

I
+ Sg ′(I) – g(I) – (μ + d + m),

g(t) =
kI
T

+
I ′

I
–

T ′

T
– (μ + d + n).

(.)

Rewriting the second and the third equation in (.), we obtain

αT
I

– m =
I ′

I
–

Sg(I)
I

,
T ′

T
=

kI
T

– n. (.)
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Substituting (.) into (.) we have

g(t) =
I ′

I
–

Sg(I)
I

+ Sg ′(I) – g(I) – (μ + d),

g(t) =
I ′

I
– (μ + d).

By the assumption (H), we have g(I)
I – g ′(I) ≥  and g(I) > . So

g(t) ≤ I ′

I
– (μ + d).

Then

max
{

g(t), g(t)
} ≤ I ′

I
– (μ + d).

We thus have
∫ ω


max

{
g(t), g(t)

}
dt ≤ ln I(t)|ω – (μ + d)ω = –(μ + d)ω < ,

which, together with (.), implies that V (t) →  as t → ∞ and in turn that (X(t), Y (t),
Z(t)) →  as t → ∞ by (.). As a result, the linear system (.) is asymptotically stable
and the periodic solution γ (t) is asymptotically orbitally stable.

On the other hand, the Jacobian matrix of (.) at E∗ is given by

J
(
E∗) =

⎛

⎜
⎝

–g(I∗) – (μ + d) –S∗g ′(I∗) 
g(I∗) S∗g ′(I∗) – m α

 k –n

⎞

⎟
⎠ ;

then det J(E∗) = –[g(I∗) + μ + d](mn – αk) + n(μ + d)S∗g ′(I∗) = –a <  and, thus,
(–) det J(E∗) > . Hence, the unique endemic equilibrium E∗ = (S∗, I∗, T∗) of system (.)
is globally asymptotically stable by Theorem . in [].

The proof of Theorem . is completed. �

Theorem . If μ < k + k, then the epidemic equilibrium E∗ = (S∗, I∗, T∗, A∗, R∗) of sys-
tem (.) is globally asymptotically stable when � > .

Proof From Theorem ., we know that the epidemic equilibrium E∗ = (S∗, I∗, T∗) of sys-
tem (.) is globally asymptotically stable when � >  and μ < k + k. Then, for any
solution (S(t), I(t), T(t)) of the system (.), we have

lim sup
t→∞

S(t) = S∗, lim sup
t→∞

I(t) = I∗, lim sup
t→∞

T(t) = T∗.

From the last two equations of system (.), we have

A(t) = exp
[
–(d + δ)t

]
[

A() +
∫ t



(
kI(τ ) + αT(τ )

)
exp

[
(d + δ)τ

]
dτ

]

.



Jia and Qin Advances in Difference Equations  (2017) 2017:136 Page 11 of 13

By the L’Hospital rule, we have

lim
t→∞ A(t) = lim

t→∞
kI(t) + αT(t)

d + δ
=

kI∗ + αT∗

d + δ
= A∗.

Similarly, we can obtain limt→∞ R(t) = μS∗
d = R∗.

From an analysis of the above, we can know that the endemic equilibrium E∗(S∗, I∗, T∗,
A∗, R∗) is globally attractive in �. Combined with the local stability of E∗, the endemic
equilibrium E∗ is globally asymptotically stable in �.

The proof of Theorem . is completed. �

5 Numerical simulations
In this section, some numerical results of system (.) are presented for supporting the
analytic results obtained above. We choose g(I) = βI

+αI , it is not difficult to verify that as-
sumptions (H) and (H) are satisfied.

Let

β = ., � = ., d = .,

δ = ., δ = ., α = ., α = .,

and the initial values are S() = , I() = , T() = , A() = , R() = .
() When α = ., μ = ., k = ., k = .. By directly computing, we have

� = . < . According to Theorem . the disease-free equilibrium
E = (., , , , .) is globally asymptotically stable (see Figure ). It
shows that the disease eventually tends to go extinct.

() When α = ., μ = ., k = ., k = .. By directly computing, we have
� = . > , E∗ = (., ., ., ., .) and μ = . < k + k = ..
So the conditions of Theorem . are satisfied, then the endemic equilibrium E∗ is
globally asymptotically stable (see Figure ). This shows the disease is persistent.

6 Conclusion
In this paper, a simple model HIV/AIDS epidemic model in which we consider a nonlinear
incidence rate with a general form is introduced. The global dynamics of our model is

Figure 1 The disease-free equilibrium E0 is globally asymptotically stable.
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Figure 2 The endemic equilibrium Ec of the system (2.1) is globally asymptotically stable.

determined by the basic reproduction number �. When � is less than unity, the disease-
free equilibrium is globally asymptotically stable. When � is bigger than , the unique
endemic equilibrium is globally asymptotically stable under the condition μ < k +k. Our
results suggest that appreciable change in the susceptible individuals’ sexual habits faster
reduces both incidence and prevalence the disease. Numerical simulations are given to
support our analytic results.
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