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Abstract
In this paper, we define the 2k-step Jordan-Fibonacci sequence, and then we study
the 2k-step Jordan-Fibonacci sequence modulom. Also, we obtain the cyclic groups
from the multiplicative orders of the generating matrix of the 2k-step
Jordan-Fibonacci sequence when read modulom, and we give the relationships
among the orders of the cyclic groups obtained and the periods of the 2k-step
Jordan-Fibonacci sequence modulom. Furthermore, we extend the 2k-step
Jordan-Fibonacci sequence to groups, and then we examine this sequence in the
finite groups. Finally, we obtain the period of the 2k-step Jordan-Fibonacci sequence
in the generalized quaternion group Q2n as applications of the results produced.
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1 Introduction
Suppose that the (n + k)th term of a sequence is defined consecutively by a linear combi-
nation of the preceding k terms:

an+k = can + can+ + · · · + ck–an+k–,

where c, c, . . . , ck– are real constants. In [], Kalman derived a number of closed-form
formulas for the generalized sequence by the companion matrix method as follows.

Let the matrix A be defined by

A = [aij]k×k =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

   . . .  
   . . .  

  
. . .  

...
...

...
...

...
   . . .  
c c c ck– ck–

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,
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then

An

⎡
⎢⎢⎢⎢⎣

a

a
...

ak–

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣

an

an+
...

an+k–

⎤
⎥⎥⎥⎥⎦

for n ≥ .
The k-step Fibonacci sequence {Fk

n} is defined by initial values Fk
 = · · · = Fk

k– = , Fk
k = 

and the recurrence relation

Fk
n+k =

k–∑
i=

Fk
n+i

for n ≥ .
It is clear that the characteristic polynomial of the k-step Fibonacci sequence is as fol-

lows:

Pk(x) = xk – xk– – · · · – x – .

A square matrix of the form

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ   . . .  
 λ  . . .  
  λ . . .  
...

...
...

. . .
...

...
   . . . λ 
   . . .  λ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

is called a Jordan block. The Jordan block of order k is denoted by Jk(λ). A Jordan matrix
is a block diagonal matrix whose blocks are all Jordan blocks.

Work on Fibonacci sequences in groups began with the previous study of Wall [] where
the ordinary Fibonacci sequences in cyclic groups were investigated. Later, Wilcox [] ex-
tended the problem to Abelian groups. Recently, many authors have studied some special
linear recurrence sequences in algebraic structures; see, for example, [–]. In [, ,
–]. The authors obtained the cyclic groups via some special matrices.

In this paper, we obtain the (k)× (k) Jordan-type matrix J with the aid of the character-
istic polynomial of the k-step Fibonacci sequence, and then we define the k-step Jordan-
Fibonacci sequence by using the Jordan-Fibonacci matrix Fk

J of order k which is produced
from the matrix J . Then we study the k-step Jordan-Fibonacci sequence modulo m, and
we obtain the cyclic groups from the multiplicative orders of the Jordan-Fibonacci matrix
Fk

J of order k such that the elements of the matrix Fk
J when read modulo m. Also, we

derive the relationships among the orders of the cyclic groups obtained and the periods
of the k-step Jordan-Fibonacci sequence modulo m. Furthermore, we redefine the k-
step Jordan-Fibonacci sequence by means of the elements of the groups which have two
or more generators, and then we examine this sequence in the finite groups. Finally, we
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obtain the period of the k-step Jordan-Fibonacci sequence in the generalized quaternion
group Qn as applications of the results produced.

2 Main results and proofs
We consider the (k)×(k) Jordan-type matrix J which is defined by using the characteristic
polynomial of the k-step Fibonacci sequence:

⎡
⎢⎢⎢⎢⎣

 – – . . . –   . . . 
  – . . . – –  . . . 
...

. . . . . .
 . . .   – – – . . . –

⎤
⎥⎥⎥⎥⎦

.

Now we define the Jordan-Fibonacci matrix Fk
J = [fij]k×k by using the last row of the

matrix J as follows:

k
↓

th

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

  . . .   – . . . –
   . . .  
   . . .  

. . .

 . . .    
 . . .    

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

For example,

F
J =

⎡
⎢⎢⎢⎣

  – –
   
   
   

⎤
⎥⎥⎥⎦ .

Next, we define the k-step Jordan-Fibonacci sequence with the aid of the matrix Fk
J as

follows:

ak
n+k = ak

n+k– + ak
n+k – ak

n+k– – · · · – ak
n ()

for n ≥ , with initial conditions ak
 = · · · = ak

k– =  and ak
k = .

By mathematical induction on α, we may write

(
F

J
)α =

⎡
⎢⎢⎢⎣

a
α+ a

α+ – a
α+ –a

α+ – a
α+ –a

α+

a
α+ a

α+ – a
α+ –a

α+ – a
α+ –a

α+

a
α+ a

α+ – a
α+ –a

α+ – a
α –a

α+

a
α+ a

α+ – a
α+ a

α – a
α– –a

α

⎤
⎥⎥⎥⎦ ()
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and

(
Fk

J
)α =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ak
α+k ak

α+k+ – ak
α+k ak

α+k+ – ak
α+k+ . . . ak

α+k– – ak
α+k– –ak

α+k–
ak
α+k– ak

α+k – ak
α+k– ak

α+k+ – ak
α+k . . . ak

α+k– – ak
α+k– –ak

α+k–
ak
α+k– ak

α+k– – ak
α+k– ak

α+k – ak
α+k– . . . ak

α+k– – ak
α+k– M –ak

α+k–
.
..

.

..
.
..

.

..
.
..

ak
α+ ak

α+ – ak
α+ ak

α+ – ak
α+ . . . ak

α+k – ak
α+k– –ak

α

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

()

for k ≥ , where M is a (k) × (k) matrix as follows:

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

–ak
α+k– – ak

α+k– – · · · – ak
α+k –ak

α+k– – ak
α+k– – · · · – ak

α+k+ . . . –ak
α+k– – ak

α+k–

–ak
α+k– – ak

α+k– – · · · – ak
α+k– –ak

α+k– – ak
α+k– – · · · – ak

α+k . . . –ak
α+k– – ak

α+k–

–ak
α+k– – ak

α+k– – · · · – ak
α+k– –ak

α+k– – ak
α+k– – · · · – ak

α+k– . . . –ak
α+k– – ak

α+k–

...
...

...
–ak

α – ak
α– – · · · – ak

α–k+ –ak
α – ak

α– – · · · – ak
α–k+ . . . –ak

α – ak
α–

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Now we consider the k-step Jordan-Fibonacci sequence {ak
n} modulo m. If we reduce

the sequence {ak
n} by a modulus m, then we get the repeating sequence, denoted by

{
ak

n(m)
}

=
{

ak
 (m), ak

(m), . . . , ak
i (m), . . .

}
,

where we denote ak
i (mod m) by ak

i (m). It has the same recurrence relation as in ().
A sequence is said to be periodic if, after a certain point, it consists only of repetitions

of a fixed subsequence. The number of elements in the shortest repeating subsequence is
called the period of the sequence. In particular, if the first n elements in the sequence form
a repeating subsequence, then this sequence is simply periodic and its period is n.

Theorem . {ak
n(m)} forms a simply periodic sequence.

Proof Let X = {(x, x, . . . , xk)|xi’s be integers such that  ≤ xi ≤ m – }. Since there are
mk distinct k-tuples of elements of Zm, at least one of the k-tuples appears twice in the
sequence {ak

n(m)}. Therefore, the subsequence following this k-tuple repeats; hence, the
sequence is periodic. Assume that u > v and

ak
u+(m) = ak

v+(m), ak
u+(m) = ak

v+(m), . . . , ak
u+k(m) = ak

v+k(m),

then u ≡ v (mod k). By (), we may write

ak
n = –ak

n+k + ak
n+k– + ak

n+k – ak
n+k– – · · · – ak

n+.

Then we obtain

ak
u(m) = ak

v(m), ak
u–(m) = ak

v–(m), . . . , ak
u–v+(m) = ak

 (m).

Thus it is verified that the sequence is simply periodic. �

The period of the sequence {ak
n(m)} is denoted by Pk(m).
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Given an integer matrix A = [aij], A (mod m) means that all entries of A are modulo m,
that is,

A (mod m) =
(
aij (mod m)

)
.

Let us consider the set

〈A〉m =
{

Ai (mod m)|i ≥ 
}

.

If gcd(m, det A) = , then 〈A〉m is a cyclic group; if gcd(m, det A) �= , then 〈A〉m is a semi-
group. Let the notation |〈A〉m| denote the order of the set 〈A〉m. Since det Fk

J = , |〈Fk
J 〉m|

is a cyclic group for every positive integer m. From () and (), it is easy to see that
Pk(m) = |〈Fk

J 〉m|.
Now we give some properties of the period Pk(m) by the following theorems.

Theorem . Let t be a prime and suppose that u is the largest positive integer with Pk(t) =
Pk(tu). Then

Pk(tv) = tv–u · Pk(t)

for every v ≥ u. In particular if Pk(t) �= Pk(t), then Pk(tv) = tv– · Pk(t).

Proof Since Pk(m) = |〈Fk
J 〉m|, we have a positive integer n such that

(
Fk

J
)Pk (tn+) ≡ I

(
mod tn+),

where I is the (k) × (k) identity matrix. Then it is clear that

(
Fk

J
)Pk (tn+) ≡ I

(
mod tn),

which implies that Pk(tn+) is divisible by Pk(tn). Furthermore, if we denote

(
Fk

J
)Pk (tn) = I +

(
f (t)
ij · tn),

then by the binomial expansion, we may write

(
Fk

J
)Pk (tn)·t =

(
I +

(
f (t)
ij · tn))t

=
t∑

i=

(
t
i

)(
f (t)
ij · tn)i ≡ I

(
mod tn+).

This yields that Pk(tn+) divides Pk(tn) · t. Then it is clear that

Pk(tn+) = Pk(tn)

or

Pk(tn+) = Pk(tn+) · t.
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It is easy to see that the latter holds if and only if there is f (t)
ij which is not divisible by t.

Since u is the largest positive integer such that

Pk(t) = Pk(tu),

Pk(tu) �= Pk(tu+),

then there is f (u+)
ij which is not divisible by t. Therefore, we obtain

Pk(tu+) �= Pk(tu+),

and so

Pk(tn+) = Pk(tn+) · t = Pk(tn) · t.

To complete the proof we may use an inductive method. �

Theorem . If m has the prime factorization m =
∏u

i= tri
i , where (u ≥ ), then Pk(m)

equals the least common multiple of Pk(tri
i )′s.

Proof Since Pk(tri
i ) is a period of the sequence {ak

n(tri
i )}, it is easy to see that the sequence

{ak
n(tri

i )} repeats only after blocks of length n · Pk(tri
i ), (n ∈N). Since also Pk(m) is a period

of the sequence {ak
n(m)}, the sequence {ak

n(tri
i )} repeats after terms Pk(m) for all values i.

Then we get that Pk(m) is the form n · Pk(pri
i ) for all values of i, and since any such number

gives a period of Pk(m), we conclude that

Pk(m) = lcm
[
Pk(tr


)
, . . . , Pk(tru

u
)]

. �

Now we extend the k-step Jordan-Fibonacci sequence to k-generator groups such that
k ≥ . Let G be a finite k-generator group and suppose that

X =
{

(x, x, . . . , xk) ∈ G × G × · · · × G︸ ︷︷ ︸
k

|〈{x, x, . . . , xk}
〉

= G
}

.

We call (x, x, . . . , xk) a generating k-tuple for G.

Definition . For a k-tuple (x, x, . . . , xk) ∈ X, we define the Jordan-Fibonacci orbit

JO(G; x, x, . . . , xk) =
{

bk
i
}

by

bk
 = x, . . . , bk

k = xk , bk
k+ = (x)–(x)– · · · (xk)–,

bk
k+ = · · · = bk

k = (x)–(x)– · · · (xk)–(xk+)

and

bk
n+k =

(
bk

n
)– · · · (bk

n+k–
)–(bk

n+k
)(

bk
n+k–

)

for n ≥ .
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Theorem . If the group G is finite, then the Jordan-Fibonacci orbit JO(G; x, x, . . . , xk)
is simply periodic.

Proof Let β be order of the group G, then it is clear that there are βk distinct k-tuples
of elements of G. Thus it is verified that at least one of the k-tuples appears twice in the
Jordan-Fibonacci orbit JO(G; x, x, . . . , xk). Because of the repeating, the sequence is pe-
riodic. Since the Jordan-Fibonacci orbit JO(G; x, x, . . . , xk) is periodic, there exist natural
numbers m and l with l ≡ m (mod k) such that

bk
m+ = bk

l+, bk
m+ = bk

l+, . . . , bk
m+k = bk

l+k .

From the definition of the Jordan-Fibonacci orbit JO(G; x, x, . . . , xk), we may write

bk
n =

(
bk

n+
)– · · · (bk

n+k–
)–(bk

n+k
)(

bk
n+k–

)(
bk

n+k
)–.

Thus it is verified that

bk
m = bk

l , bk
m– = bk

l–, . . . , bk
 = bk

l–m+.

So the proof is complete. �

The period of the Jordan-Fibonacci orbit JO(G; x, x, . . . , xk) is denoted by PJO(G; x,
x, . . . , xk).

It is well known that the generalized quaternion group Qn is defined by presentation

〈
x, y|xn–

= e, y = xn–
, y–xy = x–〉,

for n ≥ . We will now address the Jordan-Fibonacci orbit of the generalized quaternion
group Qn for generating pair (x, y).

Theorem . The period of the Jordan-Fibonacci orbit JO(Qn ; x, y) is P() ·n– =  ·n–.

Proof We prove this by direct calculation. We first note that |x| = n–, |y| =  and xy =
yx–. Since

{
a

n()
}

= {, , , , , , , , , . . .},

it is clear that P() = . From Definition ., it is easy to see that the Jordan-Fibonacci
orbit JO(Qn ; x, y) is as follows:

b
n+ =

(
b

n
)–(b

n+
)–(b

n+
)(

b
n+

)

for n ≥ , with initial conditions

b
 = x, b

 = y, b
 = xn––, b

 = xn–
.
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Then we have the sequence

x, y, xn––y, xn–
, e, xn–+, yx,

yx, x–, x–n––, x–, yx–, xn–+, xn–+, . . . .

So, the Jordan-Fibonacci orbit JO(Qn ; x, y) can be said to form layers of length . Using
the above, the sequence becomes

b
 = x, b

 = y, b
 = xn––, b

 = xn–
, . . . ,

b
 = x–, b

 = x–y, b
 = xn–+y, b

 = xn–+, . . . ,

b
i+ = x–i+, b

i+ = x–iy, b
i+ = xi+n––, b

i+ = xi+n–
, . . . .

Hence, we need the smallest i ∈ N such that i = n–α and i = n–α. If we choose
i = n–, we obtain

b
·n–+ = x, b

·n–+ = y, b
·n–+ = xn––, b

·n–+ = xn–
.

Since the elements succeeding b
·n–+, b

·n–+, b
·n–+ and b

·n–+ depend on x, y,
xn–– and xn– for their values, the cycle begins again with the ( ·n–)nd element. Then
we get that

PJO(Qn ; x, y) = P() · n– =  · n–.

Thus it is verified that PA(Q : x, y) = . �
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