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Abstract
This paper investigates modified function projective synchronization (MFPS) for
complex dynamical networks with mixed time-varying and hybrid asymmetric
coupling delays, which is composed of state coupling, time-varying delay coupling
and distributed time-varying delay coupling. In contrast to previous results, the
coupling configuration matrix needs not be symmetric or irreducible. The MFPS of
delayed complex dynamical networks is considered via either hybrid control or hybrid
pinning control with nonlinear and adaptive linear feedback control, which contains
error linear term, time-varying delay error linear term and distributed time-varying
delay error linear term. Based on Lyapunov stability theory, adaptive control
technique, the parameter update law and the technique of dealing with some
integral terms, we will show that control may be used to manipulate the scaling
functions matrix such that the drive system and response networks could be
synchronized up to the desired scaling function matrix. Numerical examples are given
to demonstrate the effectiveness of the proposed method. The results in this article
generalize and improve the corresponding results of the recent works.

Keywords: modified function projective synchronization; complex dynamical
network; mixed time-varying delay; mixed coupling delays; hybrid adaptive pinning
control

1 Introduction
Complex networks, as an interesting subject, have been thoroughly investigated for
decades. These networks show very complicated behavior and can be used to model and
explain many complex systems in nature such as computer networks, the world wide web,
cellular and metabolic networks, transportation networks, communication networks, dis-
ease transmission networks, electrical power grids and so forth. Complex dynamical net-
works (CDNs) are prominent in describing the sophisticated collaborative dynamics in
many sciences [–].

The time delay exists extensively in the real word networks. It is well known that the
existence in a network may cause instability, poor performances and oscillations. Exam-
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ples can be found in networks such as application engineering, electrical power networks,
physical networks and many other. Thus, synchronization for CDNs with time delays in
the dynamical nodes and coupling has become a key and significant topic. Synchroniza-
tion of a class of general CDNs with coupling delays was investigated in [–]. Li et al. [],
introduced some general CDNs models with time-varying delays in network couplings
and time-varying delays in dynamical nodes. Song et al. [] investigated synchronization
of general CDNs with mixed time, where mixed delay appeared in the hybrid coupling
term, but not in the isolate systems. Furthermore, Li [] considered synchronization for
delayed CDNs with hybrid coupling, which is made up of constant coupling, discrete de-
lay coupling and distributed-delay coupling, but the discrete and distributed delays are not
different values. Up to now, unfortunately, there have only been few papers related to the
topic of synchronization of CDNs with mixed time-varying delays in the dynamical nodes
and time-varying delays in the hybrid coupling, which includes constant coupling, discrete
time-varying delay coupling and distributed time-varying delay coupling, simultaneously.
So, it is challenging to solve this synchronization problem for CDNs.

In the past few decades, control problems for synchronization have been widely studied
in CDNs. Synchronization control methods have been developed for CDNs, for instance,
feedback control [, ], active control [], intermittent control [, ], sampled-data
control [], nonlinear feedback control [], adaptive control [–], hybrid adaptive
control [], impulsive control [], active sliding mode control [] and other control
methods. CDNs have a large number of nodes. It is often impossible to realize the control
goal by controlling every node. It is possible to control a few nodes to realize the same goal.
In engineering, it is usually difficult to control CDNs by adding controllers to all nodes.
To reduce the number of controllers, a natural approach is to control CDNs by pinning
part of nodes. Thus, a pinning control is a special control method of adding controllers to
part of the nodes rather than all of the nodes [, , , , –]. Chen et al. [] studied
the pinning control problem of the coupled networks by controlling one single node. In
[], an adaptive controller was designed to synchronize delayed CDNs with time-varying
coupling strength and time-varying delay. The work in [] studied pinning adaptive syn-
chronization of general CDNs via pinning adaptive controllers, where the pinning nodes
can be randomly selected. In [], with the aid of the nonlinear and adaptive feedback
control and adaptive pinning feedback control method, the authors considered the FPS
for CNDs with asymmetric coupling. However, the adaptive feedback control with mixed
time-varying delays was not considered in feedback control. Thus, in this paper, we focus
on the influences of hybrid pinning feedback control method with nonlinear and adaptive
linear feedback control, which contains error linear term, time-varying delay error linear
term and distributed time-varying delay error linear term.

The problem of synchronization in CDNs has been extensively investigated over the past
few decades. Synchronization of CDNs is one of the most important dynamical mecha-
nisms for creating order in CDNs. Meanwhile, a number of methods developed for the
synchronization of CDNs, including complete synchronization (CS) [, ], generalized
synchronization (GS) [], projection synchronization (PS) [–], outer and inner syn-
chronization [], module-phase synchronization [, ] etc., have been reported in the
literature. Very recently, a new type of synchronization phenomenon in CDNs, called
function projection synchronization (FPS), has emerged. FPS of CDNs was proposed in
[, , , ], which means that the nodes of CDNs could be synchronized up to an
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equilibrium point or periodic orbit with a desired scaling function. Zhang et al. [] pre-
sented the FPS in drive-response dynamical networks (DRDNs) with coupled partially lin-
ear chaotic systems by assuming that the node dynamics are identical and by using a sim-
ple control law. Furthermore, Du et al. [] investigated the problem of FPS of CDNs with
or without external disturbances using error feedback control and adaptive error feed-
back control. In [], a hybrid feedback control method was proposed for achieving FPS
in CDNs with constant time delay and time-varying coupling delay. Shi et al. [] proposed
a control scheme to study FPS in a complex network with asymmetric coupling via adap-
tive feedback control and pinning feedback control, respectively. Moreover, a new type of
synchronization, called modified function projective synchronization (MFPS), where the
drive and response systems could be synchronized up to a desired scale function matrix
was introduced in [, ]. Wang et al. [] investigated modified function projective lag
synchronization (MFPLS) of dynamical complex networks with disturbance and unknown
parameters. The dynamical network is a complex network model containing uncertainty
and coupling delay, where delay appears in a complex network but not in the isolate sys-
tems. From the above discussions, we can see that the problem of MFPS for CDNs with
mixed time-varying delays in the network hybrid coupling and time-varying delays in the
dynamical nodes via hybrid adaptive control and hybrid adaptive pinning control has not
been fully investigated yet and remains open.

To the best of our knowledge, this is the first time that the MFPS of complex dynamical
networks with mixed time-varying and asymmetric coupling delays via new hybrid adap-
tive control has been studied. We will give a comprehensive study on this topic, and the
main contributions of this paper lie in the following aspects. () The mixed time-varying
delays, with discrete and distributed time-varying delays, which are considered in the dy-
namical nodes and in hybrid asymmetric coupling simultaneously, are different from the
time-delay case in [, , , , , ]. () For the coupling matrix, we do not assume
that outer coupling configuration matrix is symmetric or irreducible, which is different
from coupling in [, ]. () For the control method, MFPS is studied via either hybrid
adaptive control or hybrid adaptive pinning control with nonlinear and adaptive linear
feedback control, which contains error linear term, time-varying delay error linear term
and distributed time-varying delay error linear term. The MFPS is different from the con-
trol method in [, ]. In addition, the pinning nodes can be randomly selected. From
the above discussions, this work is one of the first reports of such investigation to further
develop the MFPS of complex dynamical networks with mixed time-varying delays in the
dynamical nodes and in asymmetric coupling via hybrid adaptive control or hybrid adap-
tive pinning control. Based on constructing a novel Lyapunov-Krasovskii functional, the
adaptive control technique, the parameter update law and the technique of dealing with
some integral terms, new sufficient conditions for guaranteeing the existence of the MFPS
of delayed CDNs with asymmetric coupling delays are derived. Numerical examples are
included to show the effectiveness of the proposed hybrid adaptive control and hybrid
adaptive pinning control scheme.

The rest of the paper is organized as follows. Section  provides some mathematical
preliminaries and the network model. Section  presents MFPS of the complex dynam-
ical network with mixed time-varying delay and hybrid asymmetric coupling by hybrid
adaptive control and hybrid adaptive pinning control, respectively. In Section  some nu-
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merical examples illustrate given theoretical results. The paper ends with conclusions in
Section  and cited references.

2 Network model and mathematic preliminaries
Notations The following notation will be used in this paper. Rn denotes the n-dimen-
sional space and ‖ · ‖ denotes the Euclidean vector norm; AT denotes the transpose of
matrix A; A is symmetric if A = AT ; IN denotes an N-dimensional identity matrix. For the
matrix A ∈R

N ×R
N , the ith row and the ith column of A is called the ith row-column pair

of A. Al ∈R
(N–l)×(N–l) is the minor matrix of A ∈R

N×N by removing arbitrary l ( ≤ l ≤ N )
row-column pairs of A. The symbol ⊗ denotes the Kronecker product.

Consider a complex dynamical network consisting of N identical coupled nodes, with
each node being an n-dimensional nonlinear dynamical system given by

ẋi(t) = f
(

xi(t), xi
(
t – h(t)

)
,
∫ t

t–k(t)
xi(s) ds

)

+ c

N∑
j=

aijGxj(t) + c

N∑
j=

bijGxj
(
t – h(t)

)

+ c

N∑
j=

cijG

∫ t

t–k(t)
xj(s) ds + Ui(t), t ≥ , i = , , . . . , N ,

xi(t) = φi(t), t ∈ [–τmax, ], τmax = max{h, k},

()

where xi(t) = (xi(t), xi(t), . . . , xin(t))T ∈ R
n is the state vector of ith node; f : Rn × R

n ×
R

n → R
n is a smooth nonlinear vector function which describes the local dynamics of

nodes and is continuously differentiable and capable of performing abundant dynamical
behaviors such as equilibrium points, periodic orbits and chaos; Ui(t) ∈ R

m is the con-
trol input of the node i; the constant c and c, c >  denote the non-delayed and de-
layed coupling strength, respectively; G, G, G ∈ R

n×n are constant inner-coupling ma-
trices, and it is assumed that G, G, G are positive definite matrices; A = (aij)N×N , B =
(bij)N×N , C = (cij)N×N ∈ R

N×N are the coupling configuration matrices representing the
coupling weights and the topological structure for non-delayed configuration and delayed
one at time t, respectively, in which aij, bij and cji are defined as follows: if there is a con-
nection between node i and node j (j �= i), then aij > , bij > , cij > ; otherwise, aij = ,
bij = , cij =  (j �= i), and the diagonal elements of matrices A, B and C are defined by

aii = –
N∑

j=,i�=j

aij, bii = –
N∑

j=,i�=j

bij, cii = –
N∑

j=,i�=j

cij, i = , , . . . , N . ()

Suppose that C([–τmax, ],Rn) is the Banach space of continuous functions with the norm

∥∥φi(t)
∥∥ = sup

–τmax≤s≤

∥∥φi(t)
∥∥.

The initial condition function φi(t) denotes a continuous vector-valued initial function of
t ∈ [–τmax, ]. Under the initial conditions, we always assume that () has a unique solution.
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Definition . Network () with time delay is said to achieve modified function projec-
tive synchronization (MFPS) if there exists a continuously differentiable scaling function
matrix α(t) such that

lim
t→∞

∥∥ei(t)
∥∥ = lim

t→∞
∥∥xi(t) – α(t)s(t)

∥∥, i = , , . . . , N ,

where ‖ ·‖ stands for the Euclidean vector norm and s(t) ∈ Rn can be either an equilibrium
point, or a (quasi-)periodic orbit, or an orbit of a chaotic attractor, which satisfies ṡ(t) =
f (s(t), s(t – h(t)),

∫ t
t–k(t) s(θ ) dθ ).

To investigate the stability of the synchronized states (), we set the synchronization er-
ror ei(t) in the form ei(t) = xi(t)–α(t)s(t), i = , . . . , N , where α(t) is an n-order real diagonal
matrix, i.e., α(t) = diag(α(t),α(t), . . . ,αn(t)) and αi(t) is a continuously bounded differen-
tiable function, αi(t) �= . Then, substituting it into complex dynamical network (), we get
the following:

ėi(t) = ẋi(t) – α̇(t)s(t) – α(t)ṡ(t)

= f
(

xi(t), xi
(
t – h(t)

)
,
∫ t

t–k(t)
xi(s) ds

)
– α(t)f

(
s(t), s

(
t – h(t)

)
,
∫ t

t–k(t)
s(θ ) dθ

)

+ c

N∑
j=

aijGej(t) + c

N∑
j=

bijGej
(
t – h(t)

)
+ c

N∑
j=

cijG

∫ t

t–k(t)
ej(s) ds

– α̇(t)s(t) + Ui(t), i = , . . . , N . ()

Remark  If the scaling function matrix α(t) = diag(α(t),α(t), . . . ,αn(t)) (i = , , . . . , n)
is the function of the time t, then the CDNs would realize modified function projective
synchronization. If the scaling function matrix α(t) = α(t) = · · · = αn(t), then the syn-
chronization problem will be reduced to the function projective synchronization [, ,
, ]. If the scaling function matrix α(t) = α,α(t) = α, . . . ,αn(t) = αn, then the syn-
chronization problem will be reduced to the projective synchronization [, ]. If the
scaling function matrix α(t) = ,α(t) = , . . . ,αn(t) = , then the synchronization prob-
lem will be reduced to the common synchronization [, ]. If the scaling function matrix
α(t) = ,α(t) = , . . . ,αn(t) = , then the synchronization problem turns into a chaos con-
trol problem []. Therefore, MFPS is a more general form that includes many kinds of
synchronization as its special cases.

Remark  If h(t) = k(t) = , c = c = , the network model () turns into the complex
dynamical network proposed by [, , , ]. If c = , for constant delay, that is h(t) = h,
k(t) = , network () is translated into

ẋi(t) = f
(
xi(t)

)
+ c

N∑
j=

aijGxj(t) + c

N∑
j=

bijGxj(t – h), i = , , . . . , N . ()

The complex dynamical network () was considered in [], and if c = , network () was
investigated in []. For time-varying delay, that is, h(t) �= , k(t) = , the network model
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() turns into the complex dynamical network presented by Wu et al. [] as

ẋi(t) = f
(
xi(t)

)
+ c

N∑
j=

aijGxj(t) + c

N∑
j=

bijGxj
(
t – h(t)

)
, i = , , . . . , N .

Hence, our network model () includes a previous network model, which can be regarded
as a special case of the complex dynamical network ().

Remark  If h(t) = k(t), the network model () turns into the complex dynamical network
proposed by [], where discrete and distributed time-varying delays appeared in a drive-
respond network. If h(t) �= k(t), the result in [] cannot be used to decide whether the
synchronization of network model () can be achieved.

In the rest of this paper, we need the following assumption and some lemmas.

Assumption  The time-varying delay functions h(t) and k(t) satisfy conditions that h(t)
is differential,  ≤ h(t) ≤ h,  ≤ k(t) ≤ k and  ≤ ḣ(t) ≤ β < .

Lemma . (Cauchy inequality []) For any symmetric positive definite matrix N ∈
Mn×n and x, y ∈ R

n, we have

±xT y ≤ xT Nx + yT N–y.

Lemma . ([]) For any constant symmetric matrix M ∈ Rm×m, M = MT > , γ > , the
vector function ω : [,γ ] →R

m such that the integrations concerned are well defined

(∫ γ


ωT (s) ds

)T

M
(∫ γ


ω(s) ds

)
≤ γ

∫ γ


ωT (s)Mω(s) ds.

Lemma . ([]) Let c ∈ R and A, B, C, D be matrices with appropriate dimensions.
Then

(i) c(A ⊗ B) = (cA) ⊗ B = A ⊗ (cB),
(ii) (A ⊗ B)T = AT ⊗ BT ,

(iii) (A ⊗ B)(C ⊗ D) = (AC) ⊗ (BD),
(iv) A ⊗ B ⊗ C = (A ⊗ B) ⊗ C = A ⊗ (B ⊗ C).

Lemma . ([]) Assume that A and B are the N × N Hermitian matrices. Suppose that
α ≥ α ≥ · · · ≥ αN , β ≥ β ≥ · · · ≥ βN and γ ≥ γ ≥ · · · ≥ γN are eigenvalues of matrices
A, B and A + B, respectively. Then one has αi + βN ≤ γi ≤ αi + β, i = , , . . . , N .

Lemma . ([]) If A = (aij)(N×N) is irreducible and satisfies aij = aji ≥ , i �= j; aii =
–
∑N

j=,i�=j, i, j = , , . . . , N , then, for any constant ξ > , all eigenvalues of the matrix A – 


are negative definite, where 
 = diag(ξ , , . . . , ).
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Lemma . ([]) For a symmetric matrix M ∈ RN×N and a diagonal matrix D =
diag(d, . . . , dl, , . . . , ︸ ︷︷ ︸

N–l

) with di > , i = , , . . . , l ( ≤ l < N ), let

M – D =

[
A – D̃ B

BT Ml

]
,

where Ml is the minor matrix of M by removing its first l row-column pairs, A and B are
matrices with appropriate dimensions, D̃ = diag(d, . . . , dl). If di > λmax(A – BM–

l BT ), i =
, . . . , l, M – D <  is equivalent to Ml < .

3 MFPS of delayed complex dynamical networks via hybrid adaptive control
and hybrid adaptive pinning control

In this section, we give some sufficient conditions for MFPS of complex dynamical net-
works with discrete and distributed time-varying delays and hybrid asymmetric coupling
delays () via hybrid adaptive control and hybrid adaptive pinning control.

3.1 MFPS under hybrid adaptive control
We first stabilize the origin of delayed complex dynamical network () by means of the
hybrid adaptive control Ui(t) such as

Ui(t) = ui(t) + ui(t), i = , , . . . , N , ()

where

ui(t) = α̇(t)s(t),

ui(t) = –cdi(t)Gei(t) – cdi(t)Gei
(
t – h(t)

)
– cdi(t)G

∫ t

t–k(t)
ei(s) ds,

and the updating laws are

ḋi(t) = qieT
i (t)Gei(t),

ḋi(t) = qieT
i (t)Gei

(
t – h(t)

)
, ()

ḋi(t) = qieT
i (t)G

[∫ t

t–k(t)
ei(s) ds

]
,

where qi, qi and qi are positive constants and s(t) is a solution of an isolated node, sat-
isfying ṡ(t) = f (s(t), s(t – h(t)),

∫ t
t–k(t) s(θ ) dθ ). The controller in (), ui(t) is the nonlinear

control and ui(t) is the hybrid adaptive linear feedback control. Then, substituting it into
complex dynamical network (), we get the following:

ėi(t) = ẋi(t) – α̇(t)s(t) – α(t)ṡ(t)

= f
(

xi(t), xi
(
t – h(t)

)
,
∫ t

t–k(t)
xi(s) ds

)
– α(t)f

(
s(t), s

(
t – h(t)

)
,
∫ t

t–k(t)
s(θ ) dθ

)

+ c

N∑
j=

aijGej(t) + c

N∑
j=

bijGej
(
t – h(t)

)
+ c

N∑
j=

cijG

∫ t

t–k(t)
ej(s) ds
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– cdi(t)Gei(t) – cdi(t)Gei
(
t – h(t)

)

– cdi(t)G

∫ t

t–k(t)
ei(s) ds, i = , . . . , N , ()

ḋi(t) = qieT
i (t)Gei(t), i = , . . . , N ,

ḋi(t) = qieT
i (t)Gei

(
t – h(t)

)
, i = , . . . , N ,

ḋi(t) = qieT
i (t)G

[∫ t

t–k(t)
ei(s) ds

]
, i = , . . . , N .

Let us set
. J(t) = f ′(s(t), s(t – h(t)),

∫ t
t–k(t) s(θ ) dθ ) ∈ Rn×n is the Jacobian of

f (x(t), x(t – h(t)),
∫ t

t–k(t) x(s) ds) at s(t) with the derivative of
f (x(t), x(t – h(t)),

∫ t
t–k(t) x(s) ds) with respect to x(t),

. Jh(t) = f ′(s(t), s(t – h(t)),
∫ t

t–k(t) s(θ ) dθ ) ∈ Rn×n is the Jacobian of
f (x(t), x(t – h(t)),

∫ t
t–k(t) x(s) ds) at s(t – h(t)) with the derivative of

f (x(t), x(t – h(t)),
∫ t

t–k(t) x(s) ds) with respect to x(t – h(t)),
. Jk(t) = f ′(s(t), s(t – h(t)),

∫ t
t–k(t) s(θ ) dθ ) ∈ Rn×n is the Jacobian of

f (x(t), x(t – h(t)),
∫ t

t–k(t) x(s) ds) at
∫ t

t–k(t) s(θ ) dθ with the derivative of
f (x(t), x(t – h(t)),

∫ t
t–k(t) x(s) ds) with respect to

∫ t
t–k(t) x(s) ds,

and

δ =


λmin(IN ⊗ G)
(
ε + cε + cd∗

ε
)
,

τ =


λmin(IN ⊗ G)
(
ε + cε + cd∗

ε
)
,

η =


λmin(IN ⊗ G)

(
λmax

(
IN ⊗ J(t)

)
+ cλmax(A)λmax(G) +

c

( – β)
λmax(IN ⊗ G)

+
ck


λmax(IN ⊗ G) +


ε

λmax
(
IN ⊗ Jh(t)JT

h (t)
)

+


ε
λmax

(
IN ⊗ Jk(t)JT

k (t)
)

+
c

ε
λmax

(
BBT)λmax

(
GGT


)

+
c

ε
λmax

(
CCT)λmax

(
GGT


)

+
cd∗


ε

λmax
(
IN ⊗ GGT


)

+
cd∗


ε

λmax
(
IN ⊗ GGT


))

,

ξ (t) =
(

eT (t), eT(t – h(t)
)
,
(∫ t

t–k
e(s) ds

)T)T

.

Theorem . For some given synchronization scaling function matrix α(t), the complex dy-
namical networks () with time-varying delay satisfying Assumption  and the target system
can realize modified function projective synchronization by the hybrid adaptive control law
as shown in () if there exist positive constants εi, i = , , . . . , , and by taking appropriate
d∗

 , d∗
 and d∗

 such that

d∗
 –

η

c
> , ()

d∗
 –


ε

(
ε

c
+ ε – λmin(IN ⊗ G)

)
> , ()
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d∗
 –


ε

(
ε

c
+ ε – λmin(IN ⊗ G)

)
> . ()

Then the controlled complex dynamical network () is modified function projective syn-
chronization.

Proof Since f (·) is continuous differentiable, it is easy to know that the origin of the non-
linear system () is an asymptotically stable equilibrium point if it is an asymptotically
stable equilibrium point of the following linear time-varying delays systems:

ėi(t) = J(t)ei(t) + Jh(t)ei
(
t – h(t)

)
+ Jk(t)

∫ t

t–k(t)
ei(s) ds + c

N∑
j=

aijGej(t)

+ c

N∑
j=

bijGej
(
t – h(t)

)
+ c

N∑
j=

cijG

∫ t

t–k(t)
ej(s) ds – cdi(t)Gei(t)

– cdi(t)Gei
(
t – h(t)

)
– cdi(t)G

∫ t

t–k(t)
ei(s) ds, i = , . . . , N ,

ḋi(t) = qieT
i (t)Gei(t), i = , . . . , N ,

ḋi(t) = qieT
i (t)Gei

(
t – h(t)

)
, i = , . . . , N ,

ḋi(t) = qieT
i (t)G

[∫ t

t–k(t)
ei(s) ds

]
, i = , . . . , N .

()

Construct the following Lyapunov-Krasovskii functional candidate:

V (t) =



N∑
i=

eT
i (t)ei(t) +




N∑
i=

c

qi

(
di(t) – d∗


)

+
c

( – β)

N∑
i=

∫ t

t–h(t)
eT

i (s)Gei(s) ds +



N∑
i=

c

qi

(
di(t) – d∗


)

+
ck


N∑
i=

∫ 

–k

∫ t

t+s
eT

i (θ )Gei(θ ) dθ ds +



N∑
i=

c

qi

(
di(t) – d∗


). ()

Taking the derivative of V (t) along the trajectories of system (), we have the following:

V̇ (t) =
N∑

i=

eT
i (t)J(t)ei(t) +

N∑
i=

eT
i (t)Jh(t)ei

(
t – h(t)

)
+

N∑
i=

eT
i (t)Jk(t)

∫ t

t–k(t)
ei(s) ds

+ c

N∑
i=

N∑
j=

eT
i (t)aijGej(t) + c

N∑
i=

N∑
j=

eT
i (t)bijGej

(
t – h(t)

)

– c

N∑
i=

eT
i (t)di(t)Gei

(
t – h(t)

)
– c

N∑
i=

eT
i (t)di(t)Gei(t)

+ c

N∑
i=

N∑
j=

eT
i (t)cijG

∫ t

t–k(t)
ej(s) ds – c

N∑
i=

eT
i (t)di(t)G

∫ t

t–k(t)
ei(s) ds
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+
N∑

i=

c

qi

(
di(t) – d∗


)
qieT

i (t)Gei(t) +
c

( – β)

N∑
i=

eT
i (t)Gei(t)

–
c( – ḣ(t))

( – β)

N∑
i=

eT
i
(
t – h(t)

)
Gei

(
t – h(t)

)
+

ck



N∑
i=

eT
i (t)Gei(t)

+
N∑

i=

c

qi

(
di(t) – d∗


)
qieT

i (t)Gei
(
t – h(t)

)
–

ck


∫ t

t–k
eT

i (s)Gei(s) ds

+
N∑

i=

c

qi

(
di(t) – d∗


)
qieT

i (t)G

∫ t

t–k(t)
ei(s) ds

≤
N∑

i=

eT
i (t)J(t)ei(t) +

N∑
i=

eT
i (t)Jh(t)ei

(
t – h(t)

)
+

N∑
i=

eT
i (t)Jk(t)

∫ t

t–k(t)
ei(s) ds

+ c

N∑
i=

N∑
j=

eT
i (t)aijGej(t) + c

N∑
i=

N∑
j=

eT
i (t)bijGej

(
t – h(t)

)

+ c

N∑
i=

N∑
j=

eT
i (t)cijG

∫ t

t–k(t)
ej(s) ds +

c

( – β)

N∑
i=

eT
i (t)Gei(t)

–
c



N∑
i=

eT
i
(
t – h(t)

)
Gei

(
t – h(t)

)
– cd∗



N∑
i=

eT
i (t)Gei

(
t – h(t)

)

– cd∗


N∑
i=

eT
i (t)Gei(t) +

ck



N∑
i=

eT
i (t)Gei(t) –

ck


N∑
i=

∫ t

t–k
eT

i (s)Gei(s) ds

– cd∗


N∑
i=

eT
i (t)G

∫ t

t–k(t)
ei(s) ds. ()

Let e(t) = (e(t), . . . , eN (t)) ∈ Rn×N , e(t – h(t)) = (e(t – h(t)), . . . , eN (t – h(t))) ∈ Rn×N ,∫ t
t–k(t) e(s) ds =

∫ t
t–k(t)(e(s), e(s), . . . , eN (s)) ds ∈ Rn×N , we have

V̇ (t) ≤ eT (t)
(
IN ⊗ J(t)

)
e(t) + eT (t)

(
IN ⊗ Jh(t)

)
e
(
t – h(t)

)
+ ceT (t)(A ⊗ G)e(t)

+ ceT (t)(B ⊗ G)e
(
t – h(t)

)
– cd∗

 eT (t)(IN ⊗ G)e(t)

+ ceT (t)(C ⊗ G)
∫ t

t–k(t)
e(s) ds – cd∗

eT (t)(IN ⊗ G)e
(
t – h(t)

)

– cd∗
eT (t)(IN ⊗ G)

∫ t

t–k(t)
e(s) ds +

c

( – β)
eT (t)(IN ⊗ G)e(t)

–
c


eT(t – h(t)

)
(IN ⊗ G)e

(
t – h(t)

)
+

ck


eT (t)(IN ⊗ G)e(t)

+ eT (t)
(
IN ⊗ Jk(t)

)∫ t

t–k(t)
e(s) ds –

ck


∫ t

t–k
eT (s)(IN ⊗ G)e(s) ds. ()

Applying Lemmas ., . and . gives

eT (t)
(
IN ⊗ Jh(t)

)
e
(
t – h(t)

)

≤ 
ε

eT (t)
(
IN ⊗ Jh(t)JT

h (t)
)
e(t) +

ε


eT(t – h(t)

)
e
(
t – h(t)

)
, ()
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eT (t)
(
IN ⊗ Jk(t)

)∫ t

t–k(t)
e(s) ds

≤ 
ε

eT (t)
(
IN ⊗ Jk(t)JT

k (t)
)
e(t) +

ε



(∫ t

t–k(t)
eT (s) ds

)T(∫ t

t–k(t)
eT (s) ds

)
, ()

ceT (t)(B ⊗ G)e
(
t – h(t)

)

≤ c

ε
eT (t)

(
BBT ⊗ GGT


)
e(t) +

cε


eT(t – h(t)

)
e
(
t – h(t)

)
, ()

ceT (t)(C ⊗ G)
∫ t

t–k(t)
e(s) ds

≤ c

ε
eT (t)

(
CCT ⊗ GGT


)
e(t) +

cε



(∫ t

t–k(t)
eT (s) ds

)T(∫ t

t–k(t)
eT (s) ds

)
, ()

–cd∗
eT (t)(IN ⊗ G)e

(
t – h(t)

)

≤ cd∗


ε
eT (t)

(
IN ⊗ GGT


)
e(t) +

cd∗
ε


eT(t – h(t)

)
e
(
t – h(t)

)
, ()

–cd∗
eT (t)(IN ⊗ G)

∫ t

t–k(t)
e(s) ds

≤ cd∗


ε
eT (t)

(
IN ⊗ GGT


)
e(t) +

cd∗
ε



(∫ t

t–k(t)
eT (s) ds

)T(∫ t

t–k(t)
eT (s) ds

)
. ()

Hence, according to ()-(), we have

V̇ (t) ≤ eT (t)
(

IN ⊗ J(t) + c(A ⊗ G) – cd∗
 (IN ⊗ G) +

c

( – β)
(IN ⊗ G)

+
ck


(IN ⊗ G) +


ε

(
IN ⊗ Jh(t)JT

h (t)
)

+


ε

(
IN ⊗ Jk(t)JT

k (t)
)

+
c

ε

(
BBT ⊗ GGT


)

+
c

ε

(
CCT ⊗ GGT


)

+
cd∗


ε

(
IN ⊗ GGT


)

+
cd∗


ε

(
IN ⊗ GGT


))

e(t) – eT(t – h(t)
)( c


(IN ⊗ G)

+ δ(IN ⊗ G)
)

e
(
t – h(t)

)
–
(∫ t

t–k
e(s) ds

)T( c


(IN ⊗ G)

– τ (IN ⊗ G)
)(∫ t

t–k
e(s) ds

)

≤ (
η – cd∗


)
eT (t)(IN ⊗ G)e(t) – eT(t – h(t)

)( c


– δ

)
(IN ⊗ G)e

(
t – h(t)

)

–
(∫ t

t–k
e(s) ds

)T(c


– τ

)
(IN ⊗ G)

(∫ t

t–k
e(s) ds

)
. ()

It is obvious that there exist sufficiently large positive constants d∗
 , d∗

 and d∗
 such that

d∗
 –

η

c
> , ()

d∗
 –


ε

(
ε

c
+ ε – λmin(IN ⊗ G)

)
> , ()
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d∗
 –


ε

(
ε

c
+ ε – λmin(IN ⊗ G)

)
> . ()

We can choose d∗
 , d∗

 and d∗
 satisfying (), () and (), respectively. Since G, G and G

are positive definite matrices, we know that V̇ (t) ≤  and V̇ (t) =  if and only if ξ (t) = .
Hence, the set W = {ξ (t) = , di = d∗

 , di = d∗
, di = d∗

} is the invariant set contained in
W = {ξ (t) =  : V̇ (t) = } for system (). According to LaSalle’s invariance principle []
and Lyapunov stability theory, for any initial condition, every solution of system () ap-
proaches W as t −→ ∞, which indicates that ‖ei(t)‖ −→ , i = , , . . . , N . This means that
the function projective synchronization between the delayed complex dynamical network
() and the reference node s(t) is achieved under hybrid adaptive control (). The proof is
completed. �

Remark  If f (xi(t), xi(t – h(t)),
∫ t

t–k(t) xi(s) ds) = f (x(t)), h(t) = h, k(t) =  and c=, then
system () reduces to the following network () presented in []. According to Theo-
rem ., we obtain the following corollary for the synchronization of network ().

Corollary . For some given synchronization scaling function matrix α(t), the complex
dynamical network () and the target system can realize modified function projective syn-
chronization by the hybrid adaptive control law as shown in () if there exist positive con-
stants εi, i = , , and by taking appropriate d∗

 and d∗
 such that

d∗
 –

ω

c
> , ()

d∗
 +

λmin(IN ⊗ G)
ε

> , ()

where

ω =


λmin(IN ⊗ G)

(
λmax

(
IN ⊗ J(t)

)
+ cλmax(A)λmax(G)

+
c


λmax(IN ⊗ G)

c

ε
λmax

(
BBT)λmax

(
GGT


)

+
cd∗


ε

λmax
(
IN ⊗ GGT


))

.

Then the controlled complex dynamical networks () is modified function projective syn-
chronization.

Proof The proof is similar to that of Theorem .. Indeed, by setting Jh(t) = , Jk(t) = ,
k = , β =  and c = , one may easily derive the result, and hence the proof is omitted.

�

Remark  The authors in [, ] presented the synchronization of complex dynamical
networks via hybrid control, which is dependent on a nonlinear function f (·). But in this
paper, the controller () is independent of the nonlinear function f (·). Therefore, for re-
moving the nonlinear function f (·), we employ some new techniques that make the imple-
mentation of controller easier with practice. This theorem can be applied to a great many
complex dynamical networks in the real world.
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3.2 MFPS under hybrid adaptive pinning control
Without loss of generality, assume that the first l nodes  ≤ i ≤ l are selected and pinned
with the adaptive pinning control, which is described by

Ui(t) = ui(t) + ūi(t), i = , , . . . , N , ()

where

ui(t) = α̇(t)s(t), i = , , . . . , N ,

ūi(t) = –cdi(t)Gei(t) – cdi(t)Gei
(
t – h(t)

)

– cdi(t)G

∫ t

t–k(t)
ei(s) ds, i = , , . . . , l,

ūi(t) = , i = l + , l + , . . . , N ,

and the updating laws are defined in (). The controllers ui(t) and ūi(t) are different types
of controllers, i.e., ui(t) is the nonlinear control and ui(t) is the adaptive pinning control.
Let us set

� =


λmin(IN ⊗ G)

(
λmax

(
IN ⊗ J(t)

)
+

c

( – β)
λmax(IN ⊗ G) +

ck


λmax(IN ⊗ G)

+


ε
λmax

(
IN ⊗ Jh(t)JT

h (t)
)

+


ε
λmax

(
IN ⊗ Jk(t)JT

k (t)
)

+
cd̄∗


ε

λmax
(
IN ⊗ GGT


)

+
c

ε
λmax

(
CCT)λmax

(
GGT


)

+
cd̄∗


ε

λmax
(
IN ⊗ GGT


)

+
c

ε
λmax

(
BBT)λmax

(
GGT


))

,

� =


λmin(IN ⊗ G)
(
ε + cε + cd̄∗

ε
)
,

� =


λmin(IN ⊗ G)
(
ε + cε + cd̄∗

ε
)
.

Theorem . For some given synchronization scaling function α(t), the complex dynami-
cal network () with time-varying delay satisfying Assumption  and the target system can
realize function projective synchronization by the adaptive pinning control law as shown
in () if there exist positive constants εi, i = , , . . . , , and by taking appropriate d̄∗

i,
i = , , . . . , l, d̄∗

 and d̄∗
 such that

λmax

(
Al + AT

l


)
< –

�

c
, ()

d̄∗
 –


ε

(
ε

c
+ ε – λmin(IN ⊗ G)

)
> , ()

d̄∗
 –


ε

(
ε

c
+ ε – λmin(IN ⊗ G)

)
> . ()

Then the controlled complex dynamical network is modified function projective synchro-
nization.
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Proof Similarly to the proof of Theorem ., we can get

ėi(t) = J(t)ei(t) + Jh(t)ei
(
t – h(t)

)
+ Jk(t)

∫ t

t–k(t)
ei(s) ds + c

N∑
j=

aijGej(t)

+ c

N∑
j=

bijGej
(
t – h(t)

)
+ c

N∑
j=

cijG

∫ t

t–k(t)
ej(s) ds – di(t)Gei(t)

– di(t)Gei
(
t – h(t)

)
– di(t)G

∫ t

t–k(t)
ei(s) ds, i = , . . . , l,

ḋi(t) = qieT
i (t)Gei(t), i = , . . . , l,

ḋi(t) = qieT
i (t)Gei

(
t – h(t)

)
, i = , . . . , l,

ḋi(t) = qieT
i (t)G

[∫ t

t–k(t)
ei(s) ds

]
, i = , . . . , l,

ėi(t) = J(t)ei(t) + Jh(t)ei
(
t – h(t)

)
+ Jk (t)

∫ t

t–k(t)
ei(s) ds

+ c

N∑
j=

aijGej(t) + c

N∑
j=

bijGej
(
t – h(t)

)

+ c

N∑
j=

cijG

∫ t

t–k(t)
ej(s) ds, i = l + , l + , . . . , N .

()

Choose the Lyapunov-Krasovskii functional candidate as follows:

V (t) =



N∑
i=

eT
i (t)ei(t) +




l∑
i=

c

qi

(
di(t) – d∗

i
)

+
c

( – β)

N∑
i=

∫ t

t–h(t)
eT

i (s)Gei(s) ds +



l∑
i=

c

qi

(
di(t) – d∗

i
)

+
ck


N∑
i=

∫ 

–k

∫ t

t+s
eT

i (θ )Gei(θ ) dθ ds +



l∑
i=

c

qi

(
di(t) – d∗

i
). ()

Taking the derivative of V (t) along the trajectories of system (), we have the following:

V̇ (t) ≤
N∑

i=

eT
i (t)J(t)ei(t) +

N∑
i=

eT
i (t)Jh(t)ei

(
t – h(t)

)
+

N∑
i=

eT
i (t)Jk(t)

∫ t

t–k(t)
ei(s) ds

+ c

N∑
i=

N∑
j=

eT
i (t)aijGej(t) + c

N∑
i=

N∑
j=

eT
i (t)bijGej

(
t – h(t)

)

–
c



N∑
i=

eT
i
(
t – h(t)

)
Gei

(
t – h(t)

)
+

c

( – β)

N∑
i=

eT
i (t)Gei(t)

+ c

N∑
i=

N∑
j=

eT
i (t)cijG

∫ t

t–k(t)
ej(s) ds – c

l∑
i=

eT
i (t)d∗

iGei
(
t – h(t)

)
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– c

l∑
i=

eT
i (t)d∗

iGei(t) +
ck



N∑
i=

eT
i (t)Gei(t)

–
ck


N∑
i=

∫ t

t–k
eT

i (s)Gei(s) ds

– c

l∑
i=

eT
i (t)d∗

iG

∫ t

t–k(t)
ei(s) ds. ()

Let ĪN = diag(, . . . , ︸ ︷︷ ︸
l

, , . . . , ︸ ︷︷ ︸
N–l

), D∗
 = diag(d∗

, d∗
, . . . , d∗

l, , . . . , ) ∈ RN×N , D∗
 = diag(d∗

,

d∗
, . . . , d∗

l, , . . . , ) ∈ RN×N and D∗
 = diag(d∗

, d∗
, . . . , d∗

l, , . . . , ) ∈ RN×N . Using a meth-
od similar to that of Theorem ., we can get

V̇ (t) ≤ eT (t)
(

IN ⊗ J(t) + c(A ⊗ G) – c
(
D∗

 ⊗ G
)

+
c

( – β)
(IN ⊗ G)

+
ck


(IN ⊗ G) +


ε

(
IN ⊗ Jh(t)JT

h (t)
)

+


ε

(
IN ⊗ Jk(t)JT

k (t)
)

+
c

ε

(
BBT ⊗ GGT


)

+
c

ε

(
CCT ⊗ GGT


)

+
cd̄∗


ε

(
IN ⊗ GGT


)

+
cd̄∗


ε

(
IN ⊗ GGT


))

e(t)

– eT(t – h(t)
)( c


(IN ⊗ G) – �(IN ⊗ G)

)
e
(
t – h(t)

)

–
(∫ t

t–k
e(s) ds

)T(c


(IN ⊗ G) – �(IN ⊗ G)

)(∫ t

t–k
e(s) ds

)

≤ eT (t)
[(

�IN + cA – cD∗

)⊗ G

]
e(t)

– eT(t – h(t)
)( c


– �

)
(IN ⊗ G)e

(
t – h(t)

)

–
(∫ t

t–k
e(s) ds

)T(c


– �

)
(IN ⊗ G)

(∫ t

t–k
e(s) ds

)

= eT (t)
[(

� – cD∗

)⊗ G

]
e(t)

– eT(t – h(t)
)( c


– �

)
(IN ⊗ G)e

(
t – h(t)

)

–
(∫ t

t–k
e(s) ds

)T(c


– �

)
(IN ⊗ G)

(∫ t

t–k
e(s) ds

)
, ()

where d̄∗
 = max≤i≤l{d∗

i}, d̄∗
 = max≤i≤l{d∗

i} and � = �IN + cA. Note that the matrix �

is symmetric. Let

� – cD∗
 =

[
�̃ – cD̃∗

l �̃

�̃T
 �̃

]
,

where �̃ is the minor matrix of � by removing its first l ( ≤ l < N ) row column
pairs, �̃ and �̃ are matrices with appropriate dimensions, D̃∗

l = diag(d∗
, d∗

, . . . , d∗
l).
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If λmax( Al+AT
l

 ) < – �
c

and Lemma ., we have �̃ < . Therefore, one can choose suitable
positive constants d∗

i > , i = , , . . . , l, such that d∗
i > λmax(�̃ –�̃�̃

–
 �̃T

 ). It follows from
Lemma . and �̃ <  that � – cD∗

 < . Then, by G >  and (), we can conclude that

V̇ (t) ≤ –eT(t – h(t)
)( c


– �

)
(IN ⊗ G)e

(
t – h(t)

)

–
(∫ t

t–k
e(s) ds

)T(c


– �

)
(IN ⊗ G)

(∫ t

t–k
e(s) ds

)
. ()

We only need to choose the suitable positive constants d̄∗
 and d̄∗

 such that

d̄∗
 –


ε

(
ε

c
+ ε – λmin(IN ⊗ G)

)
> , ()

d̄∗
 –


ε

(
ε

kc
+ ε – λmin(IN ⊗ G)

)
> . ()

The remaining proof is similar to that of Theorem . and is omitted. �

Remark  The nodes pinned for directed networks are chosen as follows.

Step I: Choose some appropriate parameters εi, i = , , . . . , , and by taking appropriate
d̄∗

i, i = , , . . . , l, d̄∗
 and d̄∗

 such that the conditions in Theorem . are feasible.
Step II: The l pinned nodes are sorted according to the pinned-node selection scheme

studied in [] for the pinning controlled error dynamical network (); so, the
nodes to be pinned are chosen in the particular order. Let l = , if the first inequal-
ities of Theorem . are satisfied, then the least number is ; otherwise, go to next
step.

Step III: If condition () is not satisfied, increase l (l = l + ) gradually and add more net-
work nodes to the pined node based on the order in step II particularly until con-
dition () holds.

For undirected networks, e.g., the small-world network [], the scale-free network [] and
the Watts-Strogatz network [], we can randomly choose a set of pinned nodes to satisfy
condition () by increasing the number of pinned nodes l.

Remark  In Theorem ., we investigated the MFPS of complex dynamical networks
via hybrid control, where the control ui(t) is a nonlinear control (not pinning control) to
apply for every node. By using the principle of function projective synchronization, this
control needs to be applied for every node. And ūi(t) is an adaptive pinning control to
apply for the first l nodes  ≤ i ≤ l by using the principle of pinning control approach.
This technique for applying both of controls has been considered in [].

Remark  If we investigate the dynamical nodes without delays and ignore the adap-
tive linear feedback control, which contains time-varying delay error linear term and
distributed time-varying delay error linear term, we can see the general model of the
complex dynamical networks in [, ]. By comparison, this paper contains discrete and
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distributed time-varying delays in dynamical nodes and adaptive linear feedback control
simultaneously. Furthermore, it also develops the pre-existing research.

Remark  However, there is room for improvement. First, the time-varying delays are
still necessarily differentiable. So, we should remove them, which means that fast time-
varying delays are allowed. Second, even though the hybrid pinning adaptive control can
reduce the number of controllers, it cannot reduce the control cost. Hence, combining
the intermittent control technique and the pinning control strategy should be considered
together.

4 Numerical examples
In this section, we present three examples to illustrate the effectiveness and the reduced
conservatism of our result.

Example . We consider the perturbed Chua’s circuit system with mixed time-varying
delays used as an uncoupled node in network () to show the effectiveness of the pro-
posed control scheme. The perturbed Chua’s circuit system with mixed time-varying de-
lays (drive system) is given by []

ẋ(t) = p
(

x
(
t – h(t)

)
–



(
x

 (t) – x(t)
))

,

ẋ(t) = x(t) – sx(t) + x
(
t – h(t)

)
, ()

ẋ(t) = qx(t) + r
∫ t

t–k(t)
x

 (s) ds,

and we take system () as identical nodes of the network (response networks), which is
given by

⎛
⎜⎝

ẋi(t)
ẋi(t)
ẋi(t)

⎞
⎟⎠ =

⎛
⎜⎝

p(xi(t – h(t)) – 
 (x

i(t) – xi(t)))
xi(t) – sxi(t) + xi(t – h(t))

qxi(t) + r
∫ t

t–k(t) x
i(s) ds

⎞
⎟⎠ + c

N∑
j=

aijGxj(t)

+ c

N∑
j=

bijGxj
(
t – h(t)

)
+ c

N∑
j=

cijG

∫ t

t–k(t)
xj(s) ds

+ Ui(t), i = , , . . . , N , ()

where p, q, r and s are real positive constants. It is well known that system () exhibits
chaotic behavior with the parameters p, q, r and s being chosen as p = , q = – 

 , r = .
and s = .. The initial condition function φ(t) = [. cos t, . cos t, –. cos t]T , the time-
varying delay functions h(t) = . + . sin t and k(t) = . cos t are shown in Figure . It
is stable at the equilibrium point s(t) = , s(t – h(t)) = ,

∫ t
t–k(t) s(θ ) dθ =  and Jacobian

matrices are

J(t) =

⎡
⎢⎣

  
 –. 
 – 

 

⎤
⎥⎦ , Jh(t) =

⎡
⎢⎣

  
  
  

⎤
⎥⎦ , Jk(t) =

⎡
⎢⎣

  
  
  

⎤
⎥⎦ .



Niamsup et al. Advances in Difference Equations  (2017) 2017:124 Page 18 of 31

Figure 1 Chaotic behavior of drive system (38) and response network (39) with the time-varying
scaling function matrix α(t) = diag(0.6 sin( 2π

15 ), 0.7 sin( 2π
15 ), 0.75 sin( 2π

15 )).

The parameters are selected as follows: the time-varying scaling function matrix α(t) =
diag(. sin( π

 ), . sin( π
 ), . sin( π

 )), the coupling strength c = ., c = ., c = .,
the inner-coupling matrices are

G =

⎡
⎢⎣

  
  
  

⎤
⎥⎦ , G =

⎡
⎢⎣

  
  
  

⎤
⎥⎦ , G =

⎡
⎢⎣

  
  
  

⎤
⎥⎦ ,

and the coupling configuration matrices are given respectively as follows:

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

–       
 –      
  –     
   –    
    –   
     –  
      – 
       –

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

–       
 –      
  –     
   –    
    –   
     –  
      – 
       –

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,
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Figure 2 Chaotic behavior of drive system (38) and response network (39) with the time-varying
scaling function matrix α(t) = diag(0.6 sin( 2π

15 ), 0.7 sin( 2π
15 ), 0.75 sin( 2π

15 )).

C =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

–       
 –      
  –     
   –    
    –   
     –  
      – 
       –

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Solution: From conditions ()-() of Theorem . and with positive constants ε = .,
ε = ., ε = ., ε = ., ε = ., ε = ., one can check that the last three
conditions in Theorem . are satisfied. From the conditions of Theorem ., we obtain
d∗

 > ., d∗
 > . and d∗

 > ..
The numerical simulations are carried out using the explicit Runge-Kutta-like method

(dde), interpolation and extrapolation by spline of the third order. Figures  and  show
the chaotic behavior of drive system () and response network (). Figure  shows the
modified function projective synchronization errors between the states of isolate node
α(t)s(t) () and node xi(t) (), where eij(t) = xij(t) – αj(t)sj(t) for i = , . . . , , j = , , ,
without hybrid adaptive control (). Figure  shows the modified function projective syn-
chronization errors between the states of isolate node α(t)s(t) () and node xi(t) () with
hybrid adaptive control (). Figure  gives the evolution of adaptive feedback gain di(t),
di(t) and di(t) (i = , , . . . , ). We assume l = , i.e., the number of nodes to be controlled
is five. Figure  shows the modified function projective synchronization errors between
the states of isolate node α(t)s(t) () and node xi(t) () with hybrid adaptive pinning
control (). Figure  gives the evolution of adaptive pinning feedback gain di(t), di(t)
and di(t) (i = , , . . . , ).
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Figure 3 The modified function projective synchronization errors between the states of isolate node
α(t)s(t) (38) and node xi(t) (39), i = 1, 2, . . . , 8, without hybrid adaptive control (5).

Figure 4 The modified function projective synchronization errors between the states of isolate node
α(t)s(t) (38) and node xi(t) (39), i = 1, 2, . . . , 8, with hybrid adaptive control (5).
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Figure 5 The evolution of adaptive feedback gain di1(t), di2(t) and di3(t) (i = 1, 2, . . . , 8).

Figure 6 The modified function projective synchronization errors between the states of isolate node
α(t)s(t) (38) and node xi(t) (39), i = 1, 2, . . . , 5, with hybrid adaptive pinning control (27).
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Figure 7 The evolution of adaptive feedback gain di1(t), di2(t) and di3(t) (i = 1, 2, . . . , 5).

Remark  The advantage of Example . is that the discrete and distributed time-varying
delays are different values, i.e., h(t) = . + . sin t, k(t) = . cos t. Moreover, in these
examples we still consider discrete and distributed time-varying delays in the dynamical
nodes and the hybrid coupling term simultaneously. Hence the synchronization condi-
tions in [] cannot be applied to these examples.

Example . In this example, the drive dynamical system and response dynamical net-
works with coupling time delay, respectively, in which each node is a unified chaotic system
with coupling time delay, were proposed by [], which can be described by

ẋ(t) = (θ + )
(
x(t) – x(t)

)
,

ẋ(t) = ( – θ )x(t) + (θ – )x(t) – xi(t)x(t), ()

ẋ(t) = x(t)x(t) –
 + θ


x(t)

and

⎛
⎜⎝

ẋi(t)
ẋi(t)
ẋi(t)

⎞
⎟⎠ =

⎛
⎜⎝

(θ + )(xi(t) – xi(t))
( – θ )xi(t) + (θ – )xi(t) – xi(t)xi(t)

xi(t)xi(t) – +θ
 xi(t)

⎞
⎟⎠ + c

N∑
j=

aijGxj(t)

+ c

N∑
j=

bijGxj(t – h) + Ui(t), i = , , . . . , N , ()
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where θ ∈ [, ] is a system parameter. It is stable at the equilibrium point s(t) = , and the
Jacobian matrix is

J(t) =

⎡
⎢⎣

–θ –  θ +  
 – θ θ –  

  – +θ


⎤
⎥⎦ .

The parameters are selected as follows: the coupling strength c = . and c = ., the
inner-coupling matrices are

G =

⎡
⎢⎣

  –
  

–  

⎤
⎥⎦ , G =

⎡
⎢⎣

 – 
–  
  

⎤
⎥⎦

and the coupling configuration matrices A and B are given in Example ., respectively, the
time-varying scaling function matrix α(t) = diag(.esin(t), .esin(t), .esin(t)). Since time-
varying scaling function matrices αi(t), i = , , , are different values, the synchronization
conditions derived in [, , , ] cannot be applied to these examples.

Solution: From conditions ()-() of Corollary . and with positive constants ε =
. and ε = ., one can check that the last two conditions in Corollary . are sat-
isfied. From the conditions of Corollary ., we can obtain d∗

 > ., d∗
 > –..

Figures  and  show the chaotic behavior of drive system () and response network
(). Figure  shows the function projective synchronization errors between the states of

Figure 8 Chaotic behavior of drive system (40) and response network (41) with the time-varying
scaling function matrix α(t) = diag(0.45esin(t), 0.5esin(t), 0.4esin(t)).
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Figure 9 Chaotic behavior of drive system (40) and response network (41) with the time-varying
scaling function matrix α(t) = diag(0.45esin(t), 0.5esin(t), 0.4esin(t)).

Figure 10 The modified function projective synchronization errors between the states of isolate node
α(t)s(t) (40) and node xi(t) (41), i = 1, . . . , 8, without hybrid adaptive control (5).
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Figure 11 The modified function projective synchronization errors between the states of isolate node
α(t)s(t) (40) and node xi(t) (41), i = 1, . . . , 8, with hybrid adaptive control (5).

isolate node α(t)s(t) () and node xi(t) (), i = , . . . , , without hybrid adaptive control
(). Figure  shows the function projective synchronization errors between the states of
isolate node α(t)s(t) () and node xi(t) (), i = , . . . , , with hybrid adaptive control ().
Figure  gives the evolution of adaptive feedback gain di(t) and di(t) (i = , , . . . , ).

Remark  In Examples . and ., we see that every state variable of the error networks
of () and () is unstable without control. After applying controllers () and (), all the
state variables of the error networks of () and () quickly converge to . That shows the
effectiveness of the controllers.

Example . Now we investigate the pining MFPS of a large-scale undirected Watts-
Strogatz network with  identical nodes of the perturbed Chua’s circuit system with
mixed time-varying delays given in Example .. The parameters are selected as follows:
the time-varying scaling function matrix α(t) = diag(. sin( π

 ), . sin( π
 ), . sin( π

 )),
the coupling strength c = , c = ., c = ., the inner-coupling matrices G, G and G

are given in Example ., respectively. For a Watts-Strogatz network here, we set the pa-
rameters [N = , K = ,β = .], [N = , K = ,β = .] and [N = , K = ,β = .].
Then the coupling matrices A, B and C can be randomly generated by the Watts-Strogatz
model as shown in Figures -, respectively.

Now we study how to select pinned nodes of a network. Since A is an undirected Watts-
Strogatz network, the pinned nodes can be randomly chosen for the convenience of prac-
tical applications. We randomly choose seven network nodes, i.e., l = , and the feed-
back control gains are chosen as di = , i = , , . . . , , d̄∗

 = ., d̄∗
 = . and with
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Figure 12 The evolution of adaptive feedback gain di1(t) and di2(t) (i = 1, 2, . . . , 8).

Figure 13 The topology structure of Watts-Strogatz complex network with N = 20, K = 2 and β = 0.75.
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Figure 14 The topology structure of Watts-Strogatz complex network with N = 20, K = 1 and β = 0.75.

Figure 15 The topology structure of Watts-Strogatz complex network with N = 20, K = 1 and β = 0.5.
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Figure 16 The modified function projective synchronization errors between the states of isolate node
α(t)s(t) (38) and node xi(t) (39) with Watts-Strogatz network, where eij(t) = xij(t) – αj(t)sj(t) for
i = 1, . . . , 20, j = 1, 2, 3, without hybrid adaptive pinning control.

positive constants ε = ., ε = ., ε = ., ε = ., ε = ., ε = .. By
a simple numerical calculation, we see that pinning condition () holds:

λmax

(
A + AT




)
= –. < –

�

c
= –

.


= –..

Figure  shows the modified function projective synchronization errors between the
states of isolate node α(t)s(t) () and node xi(t) () with Watts-Strogatz network, where
eij(t) = xij(t) – αj(t)sj(t) for i = , . . . , , j = , , , without hybrid adaptive pinning control
(). Figure  shows the modified function projective synchronization errors between the
states of isolate node α(t)s(t) () and node xi(t) () with Watts-Strogatz network and
hybrid adaptive pinning control (). Figure  gives the evolution of adaptive pinning
feedback gain di(t), di(t) and di(t) (i = , , . . . , ).

5 Conclusions
In this paper, modified function projective synchronization (MFPS) for complex dynam-
ical networks with mixed time-varying and hybrid coupling delays was investigated. It is
assumed that the coupling configuration matrix need not be symmetric or irreducible and
it contains state coupling, time-varying delay coupling and distributed time-varying delay
coupling. Firstly, we considered MFPS via either hybrid control or hybrid pinning control
with nonlinear and adaptive linear feedback control, which contains error linear term,
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Figure 17 The modified function projective synchronization errors between the states of isolate node
α(t)s(t) (38) and node xi(t) (39) with Watts-Strogatz network and hybrid adaptive pinning control.

Figure 18 The evolution of adaptive pinning feedback gain di1(t), di2(t) and di3(t) (i = 1, 2, . . . , 7).
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time-varying delay error linear term and distributed time-varying delay error linear term.
Secondly, by using a novel Lyapunov-Krasovskii functional, a new adaptive control tech-
nique, the parameter update law and the technique of dealing with some integral terms,
improved MFPS criteria of delayed CDNs with asymmetric coupling delays are obtained.
In addition, the pinning nodes can be randomly selected. Finally, numerical examples are
included to show the effectiveness of the proposed hybrid adaptive control and hybrid
adaptive pinning control scheme. The results in this paper generalize and improve the
corresponding results of the recent works.
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