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Abstract
In this paper, we consider a class of infinite-point boundary value problems of
fractional differential equations on the infinite interval [0, +∞) with a disturbance
parameter. By using the method of upper and lower solutions, fixed point index
theory and some fixed point theorems, the existence, multiplicity and nonexistence
for the positive solution of the boundary value problem are obtained, respectively.
The impact of the disturbance parameters on the existence of positive solutions is
also given. Finally, some examples are presented to illustrate the wide range of
potential applications of our main results.
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1 Introduction
In this paper, we are concerned with a class of infinite-point boundary value problems of
fractional differential equations on the infinite interval with a disturbance parameter λ as
follows:

⎧
⎪⎪⎨

⎪⎪⎩

Dδ
+ u(t) + q(t)f (t, u(t)) = , t ∈ (, +∞),

u() = Dδ–
+ u(+∞) = ,

Dδ–
+ u() =

∑∞
i= g(ξi)Dδ–

+ u(ξi) + λ,

(.)

where Dδ
+ is the standard Riemann-Liouville fractional derivative,  < δ < .  < ξ <

ξ < · · · < ξi < · · · < +∞, i = , , . . . , g(ξi) ≥  and
∑∞

i= g(ξi) is convergent. R+ = [, +∞),
f : R+ × R

+ → R
+ is an L-Carathéodory function, the disturbance parameter λ ∈ R

+.
Dδ–

+ u(+∞) := limt→+∞ Dδ–
+ u(t) exists.

In recent years, the theory of fractional differential equations has been widely used in
various fields, such as physics, mechanics, chemistry, engineering, etc., see [–]. Mean-
while, the study of boundary value problems of fractional differential equations has gained
plenty of meaningful results and has been growing rapidly, see [–].
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In [], the authors studied the existence and nonexistence of the positive solutions for
the fractional differential equation with two disturbance parameters

⎧
⎨

⎩

Dδ
+ u(t) + f (t, u(t)) = , t ∈ (, ),

limt→+ t–δu(t) = a, u() = b,

where  < δ < , disturbance parameters a ≥ , b ≥ . Under certain conditions, the au-
thors studied the impact of the disturbance parameters a and b on the existence of positive
solutions.

As an important part of fractional differential equations, the boundary value problems
on infinite intervals have also been extensively researched, see [–]. In [], Liang and
Zhang studied the following m-point boundary value problem of fractional differential
equations on the infinite interval:

⎧
⎨

⎩

Dδ
+ u(t) + a(t)f (u(t)) = , t ∈ (, +∞),

u() = u′() = , Dδ–
+ u(+∞) =

∑m–
i= γiu(ξi),

where  < δ ≤ ,  < ξ < ξ < · · · < ξm– < +∞, γi ≥ , i = , , . . . , m –  and
∑m–

i= γiξ
δ–
i <

�(δ). By using the Leggett-Williams fixed point theorem, the existence of three positive
solutions for the boundary value problem on the infinite interval was obtained.

In [], authors investigated the integral boundary value problem of fractional differen-
tial equations on infinite intervals with two disturbance parameters

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Dδ
+u(t) + f (t, u(t), Dδ–

+ u(t)) = , t ∈ (, +∞),

u() = ,

Dδ–
+ u(∞) =

∫ τ

 g(s)u(s) ds + a,

Dδ–
+ u() =

∫ τ

 g(s)u(s) ds + b,

where  < δ ≤ , f satisfies the L-Caratheódory conditions, g, g ∈ L([, +∞)) are non-
negative, disturbance parameters a, b ∈ [, +∞).

The purpose of this paper is to investigate the existence of positive solutions for the
infinite-point boundary value problem of fractional differential equations on the half-line
(.). Moreover, the impact of the disturbance parameters on the existence and nonexis-
tence of positive solutions is established. Finally, some examples are presented to illustrate
the main results.

2 Preliminaries
For the convenience of the readers, we present here some basic definitions and lemmas,
which are used throughout this paper.

The function f : R+ ×R
+ →R is called an L-Carathéodory function if

() for each u ∈R
+, t �→ f (t, u) is measurable on t ∈R

+;
() for a.e. t ∈R

+, u �→ f (t, u) is continuous on u ∈R
+;

() for each r > , there exists ϕr ∈ L(R+) with ϕr(t) ≥  on t ∈R
+ such that

∣
∣f

(
t,

(
 + tδ–)u

)∣
∣ ≤ ϕr(t), for all |u| ≤ r, and a.e. t ∈R

+.
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Throughout this paper, we always assume that the following hypotheses hold:
(H) q ∈ L(R+) is nonnegative and

∫ +∞
 q(s)ϕr(s) ds < +∞ for any r > ;

(H) f (t, u) is monotone increasing with respect to u ∈R
+ for each t ∈R

+.

Definition . (see []) Let p > . The Riemann-Liouville fractional integral of order p of
a function u : R+ →R is given by

Ip
+ u(t) =


�(p)

∫ t


(t – s)p–u(s) ds,

provided the integral exists.

Definition . (see []) Let p > . The Riemann-Liouville fractional derivative of order p
of a function u : R+ →R is given by

Dp
+ u(t) = DnIn–p

+ u(t) =


�(n – p)

(
d
dt

)n ∫ t



u(s)
(t – s)p–n+ ds,

where n is the smallest integer greater than or equal to p, provided the right-hand side is
pointwise defined on R

+.

Denote

E =
{

u ∈ C
(
R

+)
: sup

t∈R+

|u(t)|
 + tδ– < +∞

}

,

endowed with the norm ‖u‖ = supt∈R+
|u(t)|

+tδ– , then E is a Banach space.

Definition . We say that u = u(t) is a solution of boundary value problem (.), if u ∈ E,
Dδ

+ u ∈ L(R+) and satisfies (.). Moreover, if u(t) ≥ , t ∈ R
+, we say that u is a positive

solution of boundary value problem (.).

Lemma . Suppose h ∈ L(R+) and  < δ < , then the following boundary value problem

⎧
⎪⎪⎨

⎪⎪⎩

Dδ
+ u(t) + h(t) = , t ∈ (, +∞),

u() = Dδ–
+ u(+∞) = ,

Dδ–
+ u() =

∑∞
i= g(ξi)Dδ–

+ u(ξi) + λ

(.)

has a unique solution

u(t) =
∫ +∞


G(t, s)h(s) ds +

λtδ–

�(δ – )
, (.)

where

G(t, s) = G(t, s) + G(t, s), (.)

G(t, s) =


�(δ)

⎧
⎨

⎩

tδ– – (t – s)δ–,  ≤ s ≤ t < +∞,

tδ–,  ≤ t < s < +∞,
(.)
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G(t, s) =


�(δ – )

∞∑

i=

g(ξi)χ (ξi, s)tδ–, (.)

and the characteristic function χ is defined by

χ (ξi, s) =

⎧
⎨

⎩

, s ≥ ξi,

, s < ξi,
i = , , . . . .

Proof Since Dδ
+u(t) + h(t) = , we have

u(t) = –


�(δ)

∫ t


(t – s)δ–h(s) ds + ctδ– + ctδ– + ctδ–, (.)

where ci ∈R, i = , , .
Since u() = , then c =  and

Dδ–
+ u(t) = –

∫ t


h(s) ds+c�(δ), Dδ–

+ u(t) = –
∫ t


(t – s)h(s) ds+c�(δ)t +c�(δ –).

By the boundary conditions, we can get

⎧
⎨

⎩

–
∫ +∞

 h(s) ds + c�(δ) = ,

c�(δ – ) =
∑∞

i= g(ξi)
∫ +∞
ξi

h(s) ds + λ,

and c = 
�(δ)

∫ +∞
 h(s) ds, c = 

�(δ–)
∑∞

i= g(ξi)
∫ +∞
ξi

h(s) ds + λ
�(δ–) .

So

u(t) = –


�(δ)

∫ t


(t – s)δ–h(s) ds +


�(δ)

∫ +∞


tδ–h(s) ds

+
tδ–

�(δ – )

∞∑

i=

g(ξi)
∫ +∞

ξi

h(s) ds +
λtδ–

�(δ – )

=
∫ +∞


G(t, s)h(s) ds +

∑∞
i= g(ξi)tδ–

�(δ – )

∫ +∞


χ (ξi, s)h(s) ds +

λtδ–

�(δ – )

=
∫ +∞


G(t, s)h(s) ds +

∫ +∞


G(t, s)h(s) ds +

λtδ–

�(δ – )

=
∫ +∞


G(t, s)h(s) ds +

λtδ–

�(δ – )
.

On the other hand, if u satisfies (.), we can easily show that u satisfies (.) and Dδ
+ u ∈

L(R+).
The proof is completed. �

Lemma . Let G(t, s), G(t, s) defined by (.) and (.) satisfy the following properties:
() G(t, s), G(t, s) ≥  for any (t, s) ∈R

+ ×R
+;

() G(t, s) and G(t,s)
+tδ– are continuous on (t, s) ∈R

+ ×R
+;

()  ≤ G(t,s)
+tδ– ≤ L

�(δ) for any t, s ∈ R
+, where the constant L =  + (δ – )

∑∞
i= g(ξi);
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() for a constant k > , we have

min

k ≤t≤k

G(t, s)
 + tδ– ≥ 

k( + kδ–)
sup
t∈R+

G(t, s)
 + tδ–

and

min

k ≤t≤k

G(t, s)
 + tδ– ≥ 

k( + kδ–)
sup
t∈R+

G(t, s)
 + tδ– .

Proof By (.) and (.), the definitions of G(t, s) and G(t, s), the results () and () can be
easily obtained.

() According to the definition of G(t, s), we have

G(t, s)
 + tδ– =

G(t, s)
 + tδ– +

G(t, s)
 + tδ– ≤ 

�(δ)
+


�(δ – )

∞∑

i=

g(ξi) =
L

�(δ)
.

() The first inequality can be found in [].
We can easily show that min 

k ≤t≤k{ tδ–

+tδ– } = kδ–

+kδ– for k > . Thus

min

k ≤t≤k

G(t, s)
 + tδ– =


�(δ – )

∞∑

i=

g(ξi)χ (ξi, s) min

k ≤t≤k

tδ–

 + tδ–

=


�(δ – )

∞∑

i=

g(ξi)χ (ξi, s)
kδ–

 + kδ–

>


�(δ – )

∞∑

i=

g(ξi)χ (ξi, s)


 + kδ–

>


 + kδ–


�(δ – )

∞∑

i=

g(ξi)χ (ξi, s) sup
t∈R+

tδ–

 + tδ–

=


 + kδ– sup
t∈R+

G(t, s)
 + tδ– .

So

min

k ≤t≤k

G(t, s)
 + tδ– ≥ min


k ≤t≤k

G(t, s)
 + tδ– + min


k ≤t≤k

G(t, s)
 + tδ–

≥ 
k( + kδ–)

sup
t∈R+

G(t, s)
 + tδ– +


 + kδ– sup

t∈R+

G(t, s)
 + tδ–

≥ 
k( + kδ–)

sup
t∈R+

G(t, s)
 + tδ– . �

Let

P =
{

u ∈ E : u(t) ≥ , t ∈R
+}

.

Then P ⊂ E is a cone.
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For u ∈ P, let

(Tu)(t) =
∫ +∞


G(t, s)q(s)f

(
s, u(s)

)
ds +

λtδ–

�(δ – )
.

Then T : P → E.

Lemma . (see []) Let V = {u ∈ E : ‖u‖ ≤ l}, l > , V = {v = u
+tδ– : u ∈ V }. If V is

equicontinuous on any compact interval of R+ and equiconvergent at infinity, then V is
relatively compact on E.

Lemma . Assume (H) holds, then T : P → P is completely continuous.

Proof For u ∈ P ⊂ E, since supt∈R+
u(t)

+tδ– < +∞, there exists a constant l >  such that
‖u‖ ≤ l. Then Tu(t)

+tδ– < L
�(δ)

∫ +∞
 q(s)ϕl(s) ds + λ

�(δ–) < +∞, and Tu(t) is continuous with re-
spect to t ∈ R

+. So Tu ∈ E and T : P → E is well defined. Since G, f , q are nonnegative,
then Tu(t) ≥ , which implies Tu ∈ P for any u ∈ P.

(i) Let {un} ⊂ P, u ∈ P such that ‖un – u‖ →  as n → +∞, that is, un(t)
+tδ– → u(t)

+tδ– .
Then there exists a constant r >  such that ‖un‖ ≤ r, ‖u‖ ≤ r. Since f satisfies the L-
Carathéodory conditions for a.e. s ∈R

+, then

∣
∣f

(
s, un(s)

)
– f

(
s, u(s)

)∣
∣ → , as n → +∞,

and

∣
∣f

(
s, un(s)

)
– f

(
s, u(s)

)∣
∣ =

∣
∣
∣
∣f

(

s,
(
 + sδ–) un(s)

 + sδ–

)

– f
(

s,
(
 + sδ–) u(s)

 + sδ–

)∣
∣
∣
∣ ≤ ϕr(s).

By the Lebesgue dominated convergence theorem,

∫ +∞


q(s)

∣
∣f

(
s, un(s)

)
– f

(
s, u(s)

)∣
∣ds → , as n → +∞.

Therefore,

|Tun(t) – Tu(t)|
 + tδ– =

∣
∣
∣
∣

∫ +∞



G(t, s)
 + tδ– q(s)

(
f
(
s, un(s)

)
– f

(
s, u(s)

))
ds

∣
∣
∣
∣

≤
∫ +∞



G(t, s)
 + tδ– q(s)

∣
∣f

(
s, un(s)

)
– f

(
s, u(s)

)∣
∣ds

≤ L
�(δ)

∫ +∞


q(s)

∣
∣f

(
s, un(s)

)
– f

(
s, u(s)

)∣
∣ds → , as n → +∞.

Hence, ‖Tun – Tu‖ →  as n → +∞, which implies that T is a continuous operator.
Let B ⊂ P be a nonempty bounded closed subset. There exists a constant lB >  such

that ‖u‖ ≤ lB for all u ∈ B, and there exists ϕlB ∈ L(R+) such that

f
(
s, u(s)

)
= f

(

s,
(
 + sδ–) u(s)

 + sδ–

)

≤ ϕlB (s).
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For any u ∈ B,

∣
∣
∣
∣

Tu(t)
 + tδ–

∣
∣
∣
∣ =

∣
∣
∣
∣

∫ +∞



G(t, s)
 + tδ– q(s)f

(
s, u(s)

)
ds +

λ

�(δ – )
tδ–

 + tδ–

∣
∣
∣
∣

≤ L
�(δ)

∫ +∞


q(s)ϕlB (s) ds +

λ

�(δ – )
< +∞.

So, ‖Tu‖ < +∞. Then T(B) is bounded and T is uniformly bounded.
(ii) For any T > , let I = [, T] be a compact interval. Because G(t,s)

+tδ– is continuous for
(t, s) ∈ I × I , tδ–

+tδ– , tδ–

+tδ– are continuous for t ∈ I , then they are uniformly continuous. So,
for any ε > , there exists a constant  < δ < ε such that

∣
∣
∣
∣
G(t, s)
 + tδ–


–

G(t, s)
 + tδ–



∣
∣
∣
∣ <

ε

�(δ)
,

∣
∣
∣
∣

tδ–


 + tδ–


–
tδ–


 + tδ–


∣
∣
∣
∣ < ε,

∣
∣
∣
∣

tδ–


 + tδ–


–
tδ–


 + tδ–


∣
∣
∣
∣ < ε

for all t, t, s, s ∈ I and |t – t| < δ, |s – s| < δ.
From the definition of G(t, s), for s > t,

∣
∣
∣
∣
G(t, s)
 + tδ–


–

G(t, s)
 + tδ–



∣
∣
∣
∣ ≤ 

�(δ)

∣
∣
∣
∣

tδ–


 + tδ–


–
tδ–


 + tδ–


∣
∣
∣
∣ <


�(δ)

ε.

Similarly, we can get

∣
∣
∣
∣
G(t, s)
 + tδ–


–

G(t, s)
 + tδ–



∣
∣
∣
∣ ≤ 

�(δ – )

∞∑

i=

g(ξi)
∣
∣
∣
∣

tδ–


 + tδ–


–
tδ–


 + tδ–


∣
∣
∣
∣ <

ε

�(δ – )

∞∑

i=

g(ξi).

Then, for each u ∈ B,
∣
∣
∣
∣

Tu(t)
 + tδ–


–

Tu(t)
 + tδ–



∣
∣
∣
∣

≤
∫ +∞



∣
∣
∣
∣
G(t, s)
 + tδ–


–

G(t, s)
 + tδ–



∣
∣
∣
∣q(s)

∣
∣f

(
s, u(s)

)∣
∣ds

+
∫ +∞



∣
∣
∣
∣
G(t, s)
 + tδ–


–

G(t, s)
 + tδ–



∣
∣
∣
∣q(s)

∣
∣f

(
s, u(s)

)∣
∣ds +

λ

�(δ – )

∣
∣
∣
∣

tδ–


 + tδ–


–
tδ–


 + tδ–


∣
∣
∣
∣

≤
∫ T



∣
∣
∣
∣
G(t, s)
 + tδ–


–

G(t, s)
 + tδ–



∣
∣
∣
∣q(s)

∣
∣f

(
s, u(s)

)∣
∣ds

+
∫ +∞

T

∣
∣
∣
∣
G(t, s)
 + tδ–


–

G(t, s)
 + tδ–



∣
∣
∣
∣q(s)

∣
∣f

(
s, u(s)

)∣
∣ds

+
ε

�(δ – )

∞∑

i=

g(ξi)
∫ +∞


q(s)f

(
s, u(s)

)
ds +

λ

�(δ – )
ε

≤ ε

�(δ)

∫ T


q(s)ϕlB (s) ds +

ε

�(δ)

∫ +∞

T

q(s)ϕlB (s) ds

+
ε

�(δ – )

∞∑

i=

g(ξi)
∫ +∞


q(s)ϕlB (s) ds +

λ

�(δ – )
ε
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≤
(


�(δ)

∫ +∞


q(s)ϕlB (s) ds +


�(δ – )

∞∑

i=

g(ξi)
∫ +∞


q(s)ϕlB (s) ds +

λ

�(δ – )

)

ε

=
(

L
�(δ)

∫ +∞


q(s)ϕlB (s) ds +

λ

�(δ – )

)

ε.

Therefore, Tu(t)
+tδ– is equicontinuous on I .

(iii) We prove that T : P → P is equiconvergent at t = +∞. Since limt→+∞ tδ–

+tδ– =
 and limt→+∞ tδ–

+tδ– = , then limt→+∞ G(t,s)
+tδ– =  and limt→+∞ G(t,s)

+tδ– = . Therefore
limt→+∞ G(t,s)

+tδ– = .
For any u ∈ B, we have

∫ +∞


q(s)f

(
s, u(s)

)
ds ≤

∫ +∞


q(s)ϕlB (s) ds < +∞

and

lim
t→+∞

∣
∣
∣
∣

Tu(t)
 + tδ–

∣
∣
∣
∣ = lim

t→+∞

∣
∣
∣
∣

∫ +∞



G(t, s)
 + tδ– q(s)f

(
s, u(s)

)
ds +

λ

�(δ – )
tδ–

 + tδ–

∣
∣
∣
∣ =  < +∞.

Hence, T(B) is equiconvergent at infinity. Consequently, in view of Lemma ., T(B) is
relatively compact, thus T is a compact operator. So T is completely continuous and the
proof is finished. �

Lemma . If boundary value problem (.) has a positive solution u, then for t ∈R
+,

min

k ≤t≤k

u(t)
 + tδ– ≥ 

k( + kδ–)
‖u‖.

Proof By Lemma ., we have

u(t) =
∫ +∞


G(t, s)q(s)f

(
s, u(s)

)
ds +

λ

�(δ – )
tδ–.

Then, according to () of Lemma ., for t ∈ R
+,

min

k ≤t≤k

u(t)
 + tδ– = min


k ≤t≤k

(∫ +∞



G(t, s)
 + tδ– q(s)f

(
s, u(s)

)
ds +

λ

�(δ – )
tδ–

 + tδ–

)

≥ min

k ≤t≤k

∫ +∞



G(t, s)
 + tδ– q(s)f

(
s, u(s)

)
ds +

λ

�(δ – )
min


k ≤t≤k

tδ–

 + tδ–

≥ 
k( + kδ–)

∫ +∞


sup
t∈R+

G(t, s)
 + tδ– q(s)f

(
s, u(s)

)
ds +

λ

�(δ – )
kδ–

 + kδ–

≥ 
k( + kδ–)

sup
t∈R+

∫ +∞



G(t, s)
 + tδ– q(s)f

(
s, u(s)

)
ds +

λ

�(δ – )


 + kδ–

≥ 
k( + kδ–)

sup
t∈R+

(∫ +∞



G(t, s)
 + tδ– q(s)f

(
s, u(s)

)
ds +

λ

�(δ – )
tδ–

 + tδ–

)

=


k( + kδ–)
‖u‖.

The proof is finished. �
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By Lemma ., we can easily show that the following lemma holds.

Lemma . Assume u ∈ E, Dδ
+ u ∈ L(R+). Then boundary value problem (.) has a pos-

itive solution if and only if the operator T has a fixed point in P.

Lemma . (see []) Let P be a cone of the Banach space E, � ⊂ E be a bounded open set
and θ ∈ �. Suppose T : P ∩ � → P is a completely continuous operator. If u �= μTu for any
u ∈ P ∩ ∂� and μ ∈ [, ], then i(T , P ∩ �, P) = .

3 Comparison principle
Definition . Let α ∈ E, Dδ

+α ∈ L(R+), we say that α = α(t) is a lower solution of bound-
ary value problem (.) if α satisfies

⎧
⎪⎪⎨

⎪⎪⎩

–Dδ
+α(t) ≤ q(t)f (t,α(t)), t ∈ (, +∞),

α() = , Dδ–
+ α(+∞) = ,

Dδ–
+ α() ≤ ∑∞

i= g(ξi)Dδ–
+ u(ξi) + λ.

Let β ∈ E, Dδ
+β ∈ L(R+), we say β = β(t) is an upper solution of boundary value prob-

lem (.) if β satisfies

⎧
⎪⎪⎨

⎪⎪⎩

–Dδ
+β(t) ≥ q(t)f (t,β(t)), t ∈ (, +∞),

β() = , Dδ–
+ β(+∞) = ,

Dδ–
+ β() ≥ ∑∞

i= g(ξi)Dδ–
+ u(ξi) + λ.

Lemma . If u ∈ E, Dδ
+ u ∈ L(R+) and satisfies

⎧
⎨

⎩

Dδ
+ u(t) ≤ , t ∈ (, +∞),

u() = Dδ–
+ u(+∞) = , Dδ–

+ u() ≥ ∑∞
i= g(ξi)Dδ–

+ u(ξi),

then u(t) ≥  for t ∈R
+.

Proof Let –Dδ
+ u(t) = y(t) ≥  for a.e. t ∈ R

+, and Dδ–
+ u() =

∑∞
i= g(ξi)Dδ–

+ u(ξi) + λ, then
λ ≥ .

According to Lemma ., we know that the boundary value problem

⎧
⎪⎪⎨

⎪⎪⎩

–Dδ
+ u(t) = y(t), t ∈ (, +∞),

u() = Dδ–
+ u(+∞) = ,

Dδ–
+ u() =

∑∞
i= g(ξi)Dδ–

+ u(ξi) + λ

has a unique solution

u(t) =
∫ +∞


G(t, s)y(s) ds +

λ

�(δ – )
tδ–.

From Lemma ., we can obtain that u(t) ≥  for t ∈R
+. �
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Theorem . Suppose (H) and (H) hold if boundary value problem (.) has a nonnega-
tive lower solution α and an upper solution β satisfies α(t) ≤ β(t) for t ∈R

+. Then boundary
value problem (.) has at least one positive solution u that satisfies α(t) ≤ u(t) ≤ β(t) for
t ∈R

+.

Proof Let

F(t, u) =

⎧
⎪⎪⎨

⎪⎪⎩

f (t,β(t)), u > β(t),

f (t, u), α(t) ≤ u ≤ β(t),

f (t,α(t)), u < α(t).

Since f is an L-Carathéodory function, then F is an L-Carathéodory function, too.
By Lemma ., the boundary value problem

⎧
⎪⎪⎨

⎪⎪⎩

Dδ
+ u(t) + q(t)F(t, u(t)) = , t ∈ (, +∞),

u() = Dδ–
+ u(+∞) = ,

Dδ–
+ u() =

∑∞
i= g(ξi)Dδ–

+ u(ξi) + λ

(.)

is equivalent to the integral equation

u(t) =
∫ +∞


G(t, s)q(s)F

(
s, u(s)

)
ds +

λ

�(δ – )
tδ–.

Define the operator Q : P → P by

(Qu)(t) =
∫ +∞


G(t, s)q(s)F

(
s, u(s)

)
ds +

λ

�(δ – )
tδ–.

For any u ∈ P and t ∈R
+, by (H), we can get

 ≤ F
(
t, u(t)

) ≤ f
(
t,β(t)

)
= f

(

t,
(
 + tδ–) β(t)

 + tδ–

)

≤ ϕ‖β‖(t).

Let � = {u ∈ P : ‖u‖ ≤ R}, where the constant R = L
�(δ)

∫ +∞
 q(s)ϕ‖β‖(s) ds + λ

�(δ–) .
Obviously, � is a closed and convex set. Then, for any u ∈ �,

|Qu(t)|
 + tδ– =

∣
∣
∣
∣

∫ +∞



G(t, s)
 + tδ– q(s)F

(
s, u(s)

)
ds +

λ

�(δ – )
tδ–

 + tδ–

∣
∣
∣
∣

≤ L
�(δ)

∫ +∞


q(s)ϕ‖β‖(s) ds +

λ

�(δ – )
= R.

That is, ‖Qu‖ ≤ R, which implies Q : � → �.
We can easily show that Q is completely continuous since its proof is similar to

Lemma ..
According to the Schauder fixed point theorem, we know that Q has at least one fixed

point u. By Lemma ., boundary value problem (.) has a positive solution u.
Next, we prove α(t) ≤ u(t) ≤ β(t) for t ∈R

+, and u = u(t) is a solution of boundary value
problem (.).
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Let v(t) = u(t) – α(t). According to (H), we get

Dδ
+ v(t) = Dδ

+ u(t) – Dδ
+α(t) = –q(t)F

(
t, u(t)

)
– Dδ

+α(t)

≤ –q(t)F
(
t, u(t)

)
+ q(t)f

(
t,α(t)

) ≤ ,

v() = u() – α() = ,

Dδ–
+ v(+∞) = Dδ–

+ u(+∞) – Dδ–
+ α(+∞) = ,

and

Dδ–
+ v() = Dδ–

+ u() – Dδ–
+ α()

≥
∞∑

i=

g(ξi)Dδ–
+ u(ξi) + λ –

∞∑

i=

g(ξi)Dδ–
+ α(ξi) – λ

=
∞∑

i=

g(ξi)Dδ–
+

(
u(ξi) – α(ξi)

)
=

∞∑

i=

g(ξi)Dδ–
+ v(ξi).

From Lemma ., we have v(t) ≥  for t ∈R
+, which implies that u(t) ≥ α(t) for t ∈R

+.
Similarly, we can show that u(t) ≤ β(t) for t ∈R

+.
Therefore, each solution u of boundary value problem (.) satisfies α(t) ≤ u(t) ≤ β(t)

for t ∈ R
+. That is, F(t, u(t)) = f (t, u(t)), and u is a positive solution of boundary value

problem (.). �

4 The properties of positive solutions
Theorem . Assume (H) and (H) hold.

() If there exists a constant λ = λ ≥  such that boundary value problem (.) has a
positive solution u = u(t), then for each  ≤ λ ≤ λ, boundary value problem (.) has
a positive solution u and λtδ–

�(δ–) ≤ u(t) ≤ u(t) for t ∈R
+.

() If there exists a constant λ = λ ≥  such that boundary value problem (.) does not
have positive solutions, then for each λ ≥ λ, boundary value problem (.) does not
have positive solutions.

Proof () Since u = u(t) is a positive solution of boundary value problem (.) with λ = λ,
then by Lemma .,

u(t) =
∫ +∞


G(t, s)q(s)f

(
s, u(s)

)
ds +

λtδ–

�(δ – )
.

Therefore, we can obtain that for any  ≤ λ ≤ λ, u(t) ≥ λtδ–

�(δ–) ≥ λtδ–

�(δ–) , t ∈R
+.

We take α = λtδ–

�(δ–) and β = u, obviously, α ≤ β . We can easily show that α is a lower
solution and β is an upper solution of boundary value problem (.), respectively.

Then, according to Theorem ., we can obtain that for any  ≤ λ ≤ λ, boundary value
problem (.) has a positive solution u and λtδ–

�(δ–) ≤ u(t) ≤ u(t) for t ∈R
+.

() Assume that there exists a constant λ ≥ λ such that boundary value problem (.)
has a positive solution. In view of () in this theorem, for λ = λ ≤ λ, boundary value prob-
lem (.) has a positive solution, which is a contradiction. �
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Denote

f  = lim sup
u→+

sup
t∈R+

f (t, ( + tδ–)u)
u

, f∞ = lim inf
u→+∞ inf

t∈[ 
k ,k]

f (t, ( + tδ–)u)
u

,

ρ =
�(δ)

δ –  + L
∫ +∞

 q(s) ds
, ρ =

k( + kδ–)�(δ)
∫ k


k

q(s) ds
.

Theorem . Suppose (H) holds, if f  < ρ, then there exists a constant λ∗ ≥  such that
boundary value problem (.) with λ = λ∗ has at least one positive solution.

Proof Because f  < ρ, there exists a constant r >  such that f (t, ( + tδ–)u) < ρu ≤ ρr

for any t ∈R
+ and u ∈ (, r].

Set B = {u ∈ P : ‖u‖ ≤ r} and  ≤ λ∗ ≤ ρr. Then, for any u ∈ B,

f
(
s, u(s)

)
= f

(

s,
(
 + sδ–) u(s)

 + sδ–

)

≤ ρ
u(s)

 + sδ– ≤ ρr

and

Tu(t)
 + tδ– =

∫ +∞



G(t, s)
 + tδ– q(s)f

(
s, u(s)

)
ds +

λ∗
�(δ – )

tδ–

 + tδ–

≤ Lρr

�(δ)

∫ +∞


q(s) ds +

λ∗
�(δ – )

≤ Lρr

�(δ)

∫ +∞


q(s) ds +

ρr

�(δ – )

=
ρr

�(δ)

(

L
∫ +∞


q(s) ds + δ – 

)

= r.

So T(B) ⊂ B. According to the Schauder fixed point theorem, we can obtain that T has at
least one fixed point on B. By Lemma ., boundary value problem (.) has at least one
positive solution. �

Theorem . Suppose (H) holds, if f∞ > ρ, then there exist large enough positive con-
stants λ̂ such that boundary value problem (.) with λ = λ̂ has no positive solution.

Proof Assume that there exists a constant λ̂ >  and λ̂ is large enough, boundary value
problem (.) with λ = λ̂ has a positive solution û = û(t). By f∞ > ρ, we know that

f
(
t,

(
 + tδ–)u

)
> ρu,

for t ∈ [ 
k , k] and u ≥ r, where constant r >  is large enough.

Take λ̂ > �(δ – )( + kδ–)r. By Lemma .,

û(t) =
∫ +∞


G(t, s)q(s)f

(
s, û(s)

)
ds +

λ̂

�(δ – )
tδ–,
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then

û( 
k )

 + ( 
k )δ–

≥ λ̂

�(δ – )
( 

k )δ–

 + ( 
k )δ–

=
λ̂

�(δ – )
k

 + kδ– >
λ̂

�(δ – )


 + kδ– > r,

and ‖û‖ > r. Then, for s ∈ [ 
k , k],

f
(
s, û(s)

)
= f

(

s,
(
 + sδ–) û(s)

 + sδ–

)

> ρ
û(s)

 + sδ– .

According to Lemma ., we have min 
k ≤t≤k

û(t)
+tδ– ≥ 

k(+kδ–)‖û‖. Then

û( 
k )

 + ( 
k )δ–

=
∫ +∞



G( 
k , s)

 + ( 
k )δ–

q(s)f
(
s, û(s)

)
ds +

λ̂

�(δ – )
( 

k )δ–

 + ( 
k )δ–

≥
∫ k


k

G( 
k , s)

 + ( 
k )δ–

q(s)f
(
s, û(s)

)
ds +

λ̂

�(δ – )
k

 + kδ–

≥ ρ

�(δ)

∫ k


k

( 
k )δ–

 + ( 
k )δ–

û(s)
 + sδ– q(s) ds +

λ̂

�(δ – )


 + kδ–

>
ρ‖û‖

k( + kδ–)�(δ)

∫ k


k

q(s) ds + r

= ‖û‖ + r.

That is, ‖û‖ > ‖û‖+r, which is a contradiction. Thus, there exist large enough constants
λ̂ >  such that boundary value problem (.) with λ = λ̂ has no positive solution. �

Theorem . Let I ⊂ [, +∞) be a bounded set. Suppose (H) holds, f∞ > ρ, then for
each λ ∈ I , there exists a constant τ >  such that ‖u‖ ≤ τ , where u = u(t) is a solution of
boundary value problem (.).

Proof Because I is a bounded set, then for each λ ∈ I , there exists a constant σ >  such
that  ≤ λ ≤ σ .

Since f∞ > ρ, there exists a constant r >  such that f (t, (+ tδ–)u) > ρu for any t ∈ [ 
k , k]

and u ≥ r.
Let τ = k( + kδ–)r. Assume that boundary value problem (.) has a solution u = u(t)

that satisfies ‖u‖ > τ . Then

min

k ≤t≤k

u(t)
 + tδ– ≥ 

k( + kδ–)
‖u‖ >


k( + kδ–)

τ = r.

By Lemmas . and ., we have

u( 
k )

 + ( 
k )δ–

=
∫ +∞



G( 
k , s)

 + ( 
k )δ–

q(s)f
(
s, u(s)

)
ds +

λ

�(δ – )
( 

k )δ–

 + ( 
k )δ–

≥
∫ k


k

G( 
k , s)

 + ( 
k )δ–

q(s)f
(
s, u(s)

)
ds
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≥ ρ

�(δ)

∫ k


k

( 
k )δ–

 + ( 
k )δ–

u(s)
 + sδ– q(s) ds

>
ρ‖u‖

k( + kδ–)�(δ)

∫ k


k

q(s) ds = ‖u‖,

which is a contradiction.
So, for all solutions of boundary value problem (.), u = u(t) satisfies that ‖u‖ ≤ τ . �

5 Existence, nonexistence and multiplicity of positive solutions
Theorem . Suppose that (H), (H) hold, f  < ρ and f∞ > ρ, then there exists a con-
stant λ∗ ∈ (, +∞) such that the following results hold:

() Boundary value problem (.) has at least one positive solution for λ =  and λ = λ∗;
() Boundary value problem (.) has at least two positive solutions for each λ ∈ (,λ∗);
() Boundary value problem (.) does not have any positive solutions for each

λ ∈ (λ∗, +∞).

Proof Let

� =
{
λ ∈ [, +∞) : the λ such that boundary value problem (.)

has at least one positive solution
}

.

Then by Theorem . we know that � �= ∅.
In view of Theorem ., [, λ̃] ⊂ � if and only if λ̃ ∈ �.
According to f∞ > ρ and Theorem ., we can show that � is a bounded set. Let M =

⋃
λ̃∈�[, λ̃], then M is a bounded set. Therefore, M has a supremum which is denoted by

λ∗ = sup M > .
Next, we will prove that boundary value problem (.) has at least one positive solution

for λ = λ∗.
Since λ∗ = sup M, there exists a sequence {λm} ⊂ M that satisfies λm < λ∗ such that λm →

λ∗ as m → +∞. Let um(t) be the solution of boundary value problem (.) with λ = λm. In
view of Lemma ., we know that boundary value problem (.) with λ = λm is equivalent
to

um(t) =
∫ +∞


G(t, s)q(s)f

(
s, um(s)

)
ds +

λm

�(δ – )
tδ–, m = , , . . . .

According to Theorem ., there exists a constant τ such that ‖um‖ ≤ τ , which im-
plies that {um(t)} is uniformly bounded. By Lemma ., we can easily show that {um(t)}
is equicontinuous. Then we know that {um(t)} has a convergent subsequence, we assume
that {um(t)} itself converges uniformly to u onR

+, and u ∈ P. Since f is an L-Carathéodory
function, then by the Lebesgue dominated convergence theorem, as m → +∞, we have

u(t) =
∫ +∞


G(t, s)q(s)f

(
s, u(s)

)
ds +

λ∗

�(δ – )
tδ–.

Hence, boundary value problem (.) has a positive solution u for λ = λ∗. By Theorem .,
boundary value problem (.) has at least one positive solution for λ ∈ [,λ∗]. And by
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the definition of λ∗ we know that boundary value problem (.) does not have positive
solutions for each λ ∈ (λ∗, +∞).

Finally, we prove that boundary value problem (.) has at least two positive solutions
for λ ∈ (,λ∗).

For each λ ∈ (,λ∗), there exist λ,λ ∈ M such that  < λ < λ < λ. Let u, u be the solutions
of boundary value problem (.) for λ = λ, λ = λ, respectively. Then, according to Theo-
rem ., boundary value problem (.) has a positive solution u = u(t) for λ = λ, and
u(t) ≤ u(t) ≤ u(t).

Let α = u and β = u. We can easily verify that α is a lower solution and β is an upper
solution of boundary value problem (.), and α(t) < β(t).

Choose λ̂ > λ∗ satisfies λ < λ∗ < λ̂.
We define K : [λ, λ̂] × P → E by

K(r, u) =
∫ +∞


G(t, s)q(s)f

(
s, u(s)

)
ds +

r
�(δ – )

tδ–.

Let

F(t, u) =

⎧
⎪⎪⎨

⎪⎪⎩

f (t,β(t)), u > β(t),

f (t, u), α(t) ≤ u ≤ β(t),

f (t,α(t)), u < α(t).

Define an integral operator K̂ : [λ, λ̂] × P → E by

K̂(r, u) =
∫ +∞


G(t, s)q(s)F

(
s, u(s)

)
ds +

r
�(δ – )

tδ–.

We can easily prove that K and K̂ are completely continuous for each r ∈ [λ, λ̂] according
to Lemma .. In view of Lemma ., u is a positive solution of boundary value problem
(.) if and only if u = K(λ, u).

By Theorem ., there exists a constant τ such that the fixed point u of K satisfies ‖u‖ ≤
τ for each r ∈ [λ, λ̂]. Let

� =
{

u ∈ P : ‖u‖ < τ ,α(t) < u(t) < β(t), t ∈ R
+}

.

Obviously, � ⊂ P is a nonempty open-bounded subset, then u ∈ �.
Since F is an L-Carathéodory function, then F(t, u(t)) ≤ ϕ‖β‖(t). For any (r, u) ∈ [λ, λ̂] ×

P, there exists a constant R > τ >  such that K̂ (r,u)
+tδ– < R. Let B(θ , R) = {u ∈ E : ‖u‖ < R}. Then

� ⊂ P ∩ B(θ , R) and u �= μK̂u for u ∈ P ∩ ∂B(θ , R) and any μ ∈ [, ]. Otherwise, if there
exists u ∈ P ∩ ∂B(θ , R) such that u = μK̂u, then R = ‖u‖ = μ‖K̂u‖ < μR < R, which is
a contradiction. Hence, according to Lemma ., for each r ∈ [λ, λ̂],

i
(
K̂(r, u), P ∩ B(θ , R), P

)
= .

Since K̂ does not have a fixed point on P ∩ (B(θ , R)\�), thus for any r ∈ [λ, λ̂],

i
(
K̂(r, u), P ∩ (

B(θ , R)\�)
, P

)
= .
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Since K̂ |� = K , then by the excision property of the fixed point index, we can obtain that
for each r ∈ [λ, λ̂],

i
(
K(r, u), P ∩ �, P

)
= i

(
K̂(r, u), P ∩ �, P

)

= i
(
K̂(r, u), P ∩ B(θ , R), P

)
– i

(
K̂(r, u), P ∩ (

B(θ , R)\�)
, P

)

= . (.)

Since λ̂ > λ∗, we know that boundary value problem (.) does not have positive solutions
for each λ ∈ (λ∗, +∞), then K(λ̂, u) �= u for any u ∈ P. Hence,

i
(
K(λ̂, u), P ∩ B(θ , R), P

)
= . (.)

Define H : [, ] × P ∩ B(θ , R) → E by

H(μ, u) = K
(
( – μ)λ + μλ̂, u

)
.

Obviously, H is completely continuous.
We have H(μ, u) �= u for (μ, u) ∈ [, ]×P ∩∂B(θ , R). Otherwise, if there exists (μ, u) ∈

[, ] × P ∩ ∂B(θ , R) such that H(μ, u) = u, then

K
(
( – μ)λ + μλ̂, u

)
= u, u ∈ P,‖u‖ = R.

Therefore, u = u(t) is a solution of boundary value problem (.) with λ = (–μ)λ+μλ̂.
Then ‖u‖ ≤ τ , which is a contradiction.

By (.) and the homotopy invariance of the fixed point index, we have

i
(
K(λ, u), P ∩ B(θ , R), P

)
= i

(
H(, u), P ∩ B(θ , R), P

)

= i
(
H(, u), P ∩ B(θ , R), P

)

= i
(
K(λ̂, u), P ∩ B(θ , R), P

)
= . (.)

According to (.), (.) and by using the additivity property of the fixed point index, we
have

i
(
K(λ, u), P ∩ B(θ , R)\�, P

)
= –.

Therefore, boundary value problem (.) has a solution u ∈ P ∩B(θ , R)\�. Because u ∈
�, we have u �= u. Hence, boundary value problem (.) has at least two positive solutions
for λ ∈ (,λ∗).

The proof is completed. �

Definition . (see [, ]) Suppose that E is a Banach space, P ⊂ E is a cone. We say that
γ is a nonnegative, continuous, concave functional on P if γ : P → [, +∞) is continuous,
and

γ
(
μx + ( – μ)y

) ≥ μγ (x) + ( – μ)γ (y)

for all x, y ∈ P and μ ∈ [, ].
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Set

Pc =
{

u ∈ P : ‖u‖ < c
}

, P(γ , a, b) =
{

u ∈ P : a ≤ γ (u),‖u‖ ≤ b
}

.

Lemma . (see []) Suppose that there exist constants  < a < b < d ≤ c, T : Pc → Pc is
a completely continuous operator, γ : P → [, +∞) is a continuous concave functional, for
u ∈ Pc, we have γ (u) ≤ ‖u‖, and the following conditions hold:

(C) {u ∈ P(γ , b, d) | γ (u) > b} �= ∅, and for u ∈ P(γ , b, d), γ (Tu) > b;
(C) for u ∈ Pa, we have ‖Tu‖ < a;
(C) for u ∈ P(γ , b, c) and ‖Tu‖ > d, we have γ (Tu) > b.
Then T has at least three fixed points u, u and u satisfying

‖u‖ < a < ‖u‖, γ (u) < b < γ (u).

Theorem . Suppose (H) holds. Let  < a < b < d ≤ c, λ < aρ, bρ < cρ and suppose
that f satisfies the following conditions:

(H) f (t, ( + tδ–)u) < aρ, (t, u) ∈R
+ × [, a];

(H) f (t, ( + tδ–)u) > bρ, (t, u) ∈ [ 
k , k] × [b, c];

(H) f (t, ( + tδ–)u) < cρ, (t, u) ∈R
+ × [, c].

Then boundary value problem (.) has at least three positive solutions u, u and u such
that

‖u‖ < a, b < γ (u), a < ‖u‖ and γ (u) < b.

Proof Define a nonnegative, continuous, concave functional on E by

γ (u) = min

k ≤t≤k

u(t)
 + tδ– .

Next, we prove that the conditions of Lemma . hold.
For u ∈ Pc, we have ‖u‖ ≤ c, then for t ∈R

+,  ≤ u(t)
+tδ– ≤ c.

According to assumption (H), we get

f
(
s, u(s)

)
= f

(

s,
(
 + sδ–) u(s)

 + sδ–

)

< cρ.

Hence,

Tu(t)
 + tδ– =

∫ +∞



G(t, s)
 + tδ– q(s)f

(
s, u(s)

)
ds +

λ

�(δ – )
tδ–

 + tδ–

≤ L
�(δ)

cρ

∫ +∞


q(s) ds +

λ

�(δ – )

≤ ρ

�(δ)

(

L
∫ +∞


q(s) ds + δ – 

)

c = c.

Therefore, T : Pc → Pc. According to Lemma ., we have T is completely continuous.
Similarly, it follows from assumption (H) that if u ∈ Pa, we have ‖Tu‖ ≤ a. Condition

(C) of Lemma . holds.
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Let u∗(t) = b+c
 ( + tδ–), t ∈ R

+. We can show that u∗ ∈ P and ‖u∗‖ = b+c
 < c. According

to the definition of γ (u), we get γ (u∗) = b+c
 > b. Hence, u∗ ∈ {u ∈ P(γ , b, d) | γ (u) > b} �= ∅.

On the other hand, if u ∈ P(γ , b, d), then b ≤ min 
k ≤t≤k

u(t)
+tδ– and ‖u‖ ≤ d ≤ c. Hence, for

t ∈ [ 
k , k], we have b ≤ u(t)

+tδ– ≤ c. Then by assumption (H), we get

f
(
s, u(s)

)
= f

(

s,
(
 + sδ–) u(s)

 + sδ–

)

> bρ.

Therefore,

γ (Tu) = min

k ≤t≤k

Tu(t)
 + tδ–

= min

k ≤t≤k

(∫ +∞



G(t, s)
 + tδ– q(s)f

(
s, u(s)

)
ds +

λ

�(δ – )
tδ–

 + tδ–

)

≥
∫ +∞


min


k ≤t≤k

G(t, s)
 + tδ– q(s)f

(
s, u(s)

)
ds

≥ 
k( + kδ–)

∫ +∞


sup
t∈R+

G(t, s)
 + tδ– q(s)f

(
s, u(s)

)
ds

≥ 
k( + kδ–)

∫ k


k

G( 
k , s)

 + ( 
k )δ–

q(s)f
(
s, u(s)

)
ds

>
bρ

�(δ)k( + kδ–)

∫ k


k


 + kδ– q(s) ds

=
bρ

�(δ)k( + kδ–)

∫ k


k

q(s) ds = b.

Hence, for all u ∈ P(γ , b, d), we have γ (Tu) > b, which implies that condition (C) of
Lemma . holds.

Finally, for u ∈ P(γ , b, c) and ‖Tu‖ > d, we have b ≤ min 
k ≤t≤k

u(t)
+tδ– and ‖u‖ ≤ c. Hence,

b ≤ u(t)
+tδ– ≤ c for t ∈ [ 

k , k]. According to assumption (H), we can obtain γ (Tu) > b. Con-
dition (C) of Lemma . holds.

By Lemma ., T has at least three fixed points u, u, u such that ‖u‖ < a, b < γ (u),
a < ‖u‖ and γ (u) < b. These fixed points are positive solutions of (.). �

6 Examples
To illustrate our main results, we present the following examples.

Example . We consider the infinite-point boundary value problem of nonlinear frac-
tional differential equations on the infinite interval

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

D


+ u(t) + e–t–t


 u = , t ∈ (, +∞),

u() = D


+ u(+∞) = ,

D


+ u() =

∑∞
i=


i D



+ u(i) + λ,

(.)
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where δ = 
 , q(t) = e–t , f (t, u) = e–t


 u, it is easy to show that (H) holds. Let g(t) = 

t ,
ξi = i, then

∑∞
i= g(ξi) = π

 is convergent. Let ϕr(t) = r( + t 
 )e–t


 ∈ L(R+). We have

f (t, ( + t 
 )u) ≤ ϕr(t) for u ≤ r and t ∈ R

+. Then f is an L-Carathéodory function and
∫ +∞

 q(s)ϕr(s) ds ≈ .r < +∞. Let k = , we have L =  + 

∑∞

i= g(ξi) =  + π

 , ρ =
�( 

 )
L+ 


≈ ., ρ = �( 

 )(+
√

)
∫ 




e–s ds
≈ ..

f  = lim sup
u→+

sup
t∈R+

f (t, ( + t 
 )u)

u
= lim sup

u→+
sup
t∈R+

e–t

 ( + t 

 )u

u
=  < ρ,

and

f∞ = lim inf
u→+∞ inf

t∈[ 
 ,]

f (t, ( + t 
 )u)

u
= lim inf

u→+∞ inf
t∈[ 

 ,]

e–t

 ( + t 

 )u

u
= +∞ > ρ.

() Choose r = ., let λ < ρr ≈ .. We can obtain f (t, ( + t 
 )u) < ρr for

u ∈ (, .], t ∈ R
+. By Theorems . and ., boundary value problem (.) has a

positive solution for λ ∈ [, .].
() Choose r = ,, let λ > �( 

 )( +  
 )r ≈ ,.. We have f (t, ( + t 

 )u) > ρr

for u ∈ [,, +∞) and t ∈ [ 
 , ]. By Theorems . and ., boundary value problem

(.) does not have a positive solution for λ ∈ (,, +∞).
() According to Theorem ., we know that there exists a constant λ∗ ∈ (., ,)

such that boundary value problem (.) has at least one positive solution for each
λ ∈ [,λ∗], two positive solutions for any λ ∈ (,λ∗), and no positive solutions for
λ ∈ (λ∗, +∞).

Example . We consider the boundary value problem

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

D


+ u(t) + e–t f (t, u(t)) = , t ∈ (, +∞),

u() = D


+ u(+∞) = ,

D


+ u() =

∑∞
i=


(i–)! D



+ u(i) + .,

(.)

where

f (t, u) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

e– t
 u

(+t

 )

,  ≤ u ≤ ,

e– t
 ( u

(+t

 )

+ (u – )),  ≤ u ≤ ,

e– t
 ( u

(+t

 )

+ ), u ≥ .

In this case, δ = 
 , q(t) = e–t , g(t) = 

(t–)! , ξi = i. Then
∑∞

i= g(ξi) = e is convergent. Choose

ϕr(t) = ( r(+t

 )

 + )e– t
 ∈ L(R+). We have f (t, ( + t 

 )u) ≤ ϕr(t) for u ≤ r and t ∈R
+. It is

easy to show that f is an L-Carathéodory function and
∫ +∞

 q(s)ϕr(s) ds ≈ ,
 + .r <

+∞.
Take a = , b = , c = d =  and k = . We can get that L =  + 


∑∞

i= g(ξi) =  + .e,

ρ = �( 
 )

L+δ– ≈ ., ρ = �( 
 )(+

√
)

∫ 



e–s ds
≈ ., λ = . < aρ ≈ ..
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Then the function f satisfies

f
(
t,

(
 + t



)
u
)

<



< aρ ≈ . for t ∈R

+,  ≤ u ≤ ;

f
(
t,

(
 + t



)
u
)

> ,. > bρ ≈ ,. for



≤ t ≤ ,  ≤ u ≤ ;

f
(
t,

(
 + t



)
u
)

<  ×  < cρ ≈ . ×  for t ∈R
+,  ≤ u ≤ .

Then, by Theorem ., we know that boundary value problem (.) has at least three
positive solutions u, u and u such that ‖u‖ < ,  < γ (u),  < ‖u‖ and γ (u) < .
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