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Abstract
In this paper, we are concerned with a class of second-order neutral stochastic
functional differential equations driven by a fractional Brownian motion with Hurst
parameter 1/2 < � < 1 on the Hilbert space. By combining some stochastic analysis
theory and new integral inequality techniques, we identify the global attracting sets
of the equations under investigation. Some sufficient conditions ensuring the
exponential decay of mild solutions in the pth moment to the stochastic systems are
obtained. Last, an example is presented to illustrate our theory in the work.
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1 Introduction
This paper is devoted to the study of the global attracting set and exponential decay of
a class of second-order neutral stochastic functional differential equations driven by a
fractional Brownian motion with Hurst parameter / < � < . Second-order stochastic
systems can capture the dynamic behavior of many natural phenomena. In many real-
world scenarios, it seems advantageous to reflect a more complex situation than first-
order stochastic differential equations (SDEs). Recently, there has been increasing interest
in the study of second-order stochastic differential equations due to their important ap-
plications in many areas such as medicine and biology, mathematical physics, electronics
and telecommunications. For instance, Ren and Sakthivel [] investigated the existence,
uniqueness and stability of second-order neutral stochastic evolution equations with infi-
nite delay; Liang and Guo [] probed the behavior for second-order stochastic evolution
equations with memory; Arthi et al. [] discussed the exponential stability for second-
order neutral stochastic differential equations with impulses.

One solution for many SDEs is a semimartingale as well as a Markov process. However,
in the real world, many objects are not always such processes and they may have long-
range aftereffects. Since the work of Mandelbrot and Van Ness [], the researchers have
focused the increasing attention on stochastic models based on the fractional Brownian
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motion. A fractional Brownian motion (fBm) of Hurst parameter � ∈ (, ) is a centered
Gaussian process β� = {β�(t), t ≥ } with the covariance function

R�(t, s) = E
(
β�(t)β�(s)

)
=



(
t� + s� – |t – s|�).

When � = /, the fBm becomes the standard Brownian motion, and the fBm β� is nei-
ther a semimartingale nor a Markov process if � �= /. However, the fBm β�, � > /, is
a long-memory process and presents an aggregation behavior. The long-memory prop-
erty makes the fBm a potential candidate to model noise in mathematical finance (see
[]), in biology (see [, ]), in communication networks (see, for instance, []), the analysis
of global temperature anomaly [] and electricity markets [] etc. Stochastic differen-
tial equations driven by a fractional Brownian motion (fBm) have attracted the interest of
many researchers. For more details on this topic, one can refer to the literature [–].

On the other hand, analysis found that the research mainly analyzed the stability of
second-order equations to prove exponential stability through some strong conditions,
which may be difficult to meet in practice. To find some weaker constraints to ensure
the stability of a system, by using the inequality technique, Xu [] investigated the at-
tracting sets of a class of Volterra differential equations, and the relative stability condi-
tions were further weakened. Attracting sets require the solutions enter some sets at a
time and not exit, no matter what the solutions begin with. Attracting sets of first-order
stochastic dynamical systems have been extensively studied over the last few decades. For
instance, Li and Xu [] investigated the global attracting sets of neutral stochastic par-
tial functional differential equations; Wang and Li [] obtained the global attracting sets
of impulsive stochastic partial differential equations with infinite delays by establishing
some impulsive-integral inequalities. Li [] studied the global attracting sets and expo-
nential decay in the pth moment of impulsive neutral stochastic functional differential
equations driven by fBm. However, it is worth mentioning that the problem of determin-
ing the attracting sets of second-order stochastic partial differential equations driven by
fBm is more complicated owing to its complexity and still remains open for a while. Hence,
techniques and methods for the attracting sets of second-order neutral stochastic partial
differential equations driven by fBm should be developed and explored.

To this end, in this paper, we will consider a class of second-order neutral stochastic
functional differential equations driven by fBm with Hurst parameter � ∈ (/, ). We aim
to investigate the global attracting sets, exponential decay in the pth moment of the kind
of second-order stochastic differential equation driven by fBm. We will first develop some
new integral inequalities. Subsequently, by using the stochastic analysis techniques, the
properties of operator semigroup and combining those new integral inequalities, we will
attempt to give the global attracting sets of the considered system. Last, some sufficient
conditions ensuring exponential decay in the pth moment of the system under investiga-
tion are obtained.

The rest of this paper is organized as follows. In Section , we introduce some necessary
notations and preliminaries. We devote Section  to the global attracting sets of the mild
solutions to the equations under investigation. In Section , we investigate the exponential
decay of equations under investigation. In Section , we give an example to illustrate the
efficiency of the obtained result. In Section , we present our conclusion.
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2 Preliminary
In this section we collect some notions, conceptions and lemmas which will be used
throughout the paper.

Let (�,F ,P) be a complete probability space. Suppose that there is a one-dimensional
fractional Brownian motion β� = {β�(t), t ≥ } with Hurst parameter � ∈ (, ) on
(�,F ,P). Now we state the stochastic integral of a deterministic H-valued function with
respect to the scalar fractional Brownian motion β�, � ∈ (, ). To this end, let T >  and
denote by E the linear space of all H-valued step functions on [, T], that is, f ∈ E if and
only if

f (t) =
n–∑

i=

xi[ti ,ti+)(t), t ∈ [, T],

where [ti ,ti+) is the indicator function on the set [ti, ti+), xi ∈ H , for i ∈ {, . . . , n – } and
 = t < t < · · · < tn = T . For f ∈ E, we define its stochastic integral with respect to β� as

∫ T


f (s) dβ�(s) =

n∑

i=

xi
(
β�(ti+) – β�(ti)

)
. (.)

Let L� : E → L([, T]; H) be the linear map given by

(L�f )(t) = f (t)k�(T , t) +
∫ T

t

(
f (s) – f (t)

)∂k�
∂s

(s, t) ds ∀f ∈ E, (.)

where k�(·, ·) is the kernel function given in

k�(t, s) =

⎧
⎪⎨

⎪⎩

c̃�(t–s)�– 


�(�+ 
 )

+ c̃�( 
 –�)

�(�+ 
 )

∫ t
s (u – s)�– 

 ( – ( s
u ) 

 –�) du if � ∈ (, /),
ĉ�

�(�– 
 )

s 
 –� ∫ t

s (u – s)�– 
 u�– 

 du if � ∈ (/, ),
(.)

where c̃� and ĉ� are positive constants depending only on �.
It is known in this case that

E

∥∥
∥∥

∫ T


f (t) dβ�(t)

∥∥
∥∥



H
= ‖L�f ‖

L([,T];H). (.)

Let (E ,‖ · ‖E ) be the Hilbert space obtained as the completion of the pre-Hilbert space E

under the inner product

〈f , g〉E := 〈L�f , L�g〉L([,T];H) for any f , g ∈ E.

Then stochastic integral (.) is extendable to an arbitrary f ∈ E by isometry (.). If H =
R

, it is known (see []) that in terms of L� the process {β(t) = β�((L�)–([,t])), t ≥ } is
a standard real Brownian motion, and β� has the following integral representation:

β�(t) =
∫ t


k�(t, s) dβ(s), t ≥ .
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Let K be an alternative separable Hilbert space with the inner product 〈·, ·〉K and the
norm ‖ · ‖K , respectively. We denote by L(K , H) the space of all linear bounded operators
from K into H , equipped with the usual operator norm ‖ · ‖ topology. If K = H , we write
L(K) simply for L(K , K).

Definition . Let Q ∈ L(K) be a positive self-adjoint operator. A K-valued Gaussian
process (B�

Q(t), t ≥ ) on (�,F ,P) is called a fractional Q-Brownian motion with Hurst
parameter � ∈ (, ) if it satisfies:

(i) for arbitrary t ≥ , the mapping B�

Q(t) : K → L(�;R) is linear;
(ii) for arbitrary k ∈ K , B�

Q(t)k is a real Gaussian process with mean EB�

Q(t)k =  for any
t ≥ ;

(iii) E(B�

Q(t)k · B�

Q(s)k) = (/)(t� + s� – |t – s|�)〈Qk, k〉K for all s, t ∈ R+ = [,∞)
and k, k ∈ K .

In particular, if Tr Q < ∞, then B�

Q(t) is called a (genuine) fractional Brownian motion with
Hurst parameter � ∈ (, ); and if Q = I , this process is called a cylindrical fractional Brow-
nian motion with Hurst parameter � ∈ (, ).

In general, it is not necessarily true that there exists a K-valued random process B̂�

Q(·)
such that B�

Q(t)(k) = 〈B̂�

Q(t), k〉K for each t ≥ , although this is the case when B�

Q is a gen-
uine fBm. Suppose that there is a complete orthonormal basis (en, n ∈N) of K diagonaliz-
ing operator Q, i.e., there exists a sequence of (λn > , n ∈N) such that Qen = λnen for each
n ∈ N, letting β�

n (t) = √
λn

B�

Q(t)(en) for n ∈ N, t ≥ , the scalar processes (β�

n , n ∈ N) are a
sequence of fractional Brownian motions which are mutually independent and B�

Q can be
uniformly represented as

B�

Q(t) =
∞∑

n=

√
λnβ

�

n (t)en, t ≥ ,

with its increment covariance operator Q. This series does not necessarily converge almost
surely in K . But if Q is a trace class, that is,

∑∞
n= λn < ∞, then the series defines a K-valued

stochastic process. For a fixed � ∈ (, ) and T > , let {F B�
Q

t }≤t≤T be the natural filtration
of the fractional Q-Brownian motion B�

Q(t),  ≤ t ≤ T . For the operator Q, let BQ(t), t ≥ ,
be a K-valued Q-Wiener process.

We introduce the subspace KQ = Ran Q/ ⊂ K , the range of Q/, which is a Hilbert space
endowed with the inner product

〈k, k〉KQ =
〈
Q–/k, Q–/k

〉
K for any k, k ∈ KQ.

Let L(KQ, H) denote the space of all Hilbert-Schmidt operators from KQ into H . Then
L(KQ, H) turns out to be a separable Hilbert space, equipped with the norm

‖�‖
L(KQ ,H) = Tr

[
�Q�∗] for any � ∈ L(KQ, H).

For T ≥ , we denote by U
�

([, T];L(KQ, H)) the space of all Borel measurable mappings
f : [, T] → L(KQ, H) such that f (·)x ∈ E for each x ∈ K and L�f ∈ L([, T];L(KQ; H)).
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Let (en, n ∈ N) be a complete orthonormal basis diagonalizing operator Q. For any f ∈
U
�

([, T];L(KQ, H)), the stochastic integral
∫ T

 f (t) dB�

Q(t) is defined as

∫ T


f (t) dB�

Q(t) :=
∞∑

n=

√
λn

∫ T


f (t)en dβ�

n (t), (.)

provided the infinite series converges in L(�; H). It may be verified that this stochastic
integral does not depend on the choice of the complete orthonormal basis {en}∞n=.

Let R+ = [, +∞) and C(X, Y ) denote the space of continuous mappings from the topo-
logical space X to the topological space Y . Especially, for the given constant r > , C :=
C([–r, ];R) denotes the family of all continuous R-valued functions φ defined on [–r, ]
with the norm ‖φ‖C = sup–r≤θ≤ |φ(θ )|. Denote C = C([–r, ]; H) equipped with the norm
‖φ‖C = sup–r≤θ≤ ‖φ(θ )‖H . Define BCb

F
as the family of all bounded F-measurable, C-

valued random variables φ, satisfying ‖φ‖p
Lp = sup–r≤θ≤ E‖φ(θ )‖p

H < ∞ for p > .
Consider the following second-order neutral stochastic functional differential equation

driven by fBm with Hurst parameter / < � < :

⎧
⎪⎪⎨

⎪⎪⎩

d[x′(t) + G(t, xt)]

= [Ax(t) + f (t, xt)] dt + g(t, xt) dω(t) + σ (t) dB�

Q(t), t ≥ ,

x(t) = ϕ(t) ∈ BCb
F

([–r, ]; H), t ∈ [–r, ], x′() = φ,

(.)

where A : D(A) ⊂ H → H is the infinitesimal generator of a strongly continuous cosine
family on H , B�

Q is a fractional Brownian motion with Hurst parameter � ∈ (/, ) and
ω is a standard Wiener process on a real and separable Hilbert space K . The delay term
xt : [–r, ] → H defined by xt(θ ) for t ≥  belongs to the space C . G, f : [, +∞) × C → H ,
g : [, +∞) × C → L(KQ, H), σ : [, +∞) → L(KQ, H) are some appropriate mappings
specified later.

Now, let us recall some basic concepts and facts on cosine families of operators (see
[]).

Definition . One parameter family (T(t))t≥ is called a strongly continuous cosine fam-
ily if the following conditions hold:

(i) T() = I ;
(ii) T(t)x is continuous in t on R for all x ∈ H ;

(iii) T(t + s) + T(t – s) = T(t)T(s) for all t, s ∈R.

We also need consider the corresponding strongly continuous sine family (S(t))t≥,
which is defined as S(t)x =

∫ t
 T(s) ds, t ∈ R, x ∈ H . As for the infinitesimal generator

A : D(A) ⊂ H → H of a cosine family of operators (T(t))t≥, define Ax = d

dt T(t)x|t=. A
is also a closed and densely defined operator on H .

Throughout this paper, we impose the following assumptions:
(H) The cosine family of operators (T(t))t≥ and its corresponding sine family

(S(t))t≥ satisfy the following conditions for all t ≥ :

∥
∥T(t)

∥
∥

H ≤ Me–λt ,
∥
∥S(t)

∥
∥

H ≤ Me–λt , M ≥ ,λ,λ > .
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(H) The function σ : [, +∞) →L
(K , H) satisfies the following conditions: for the

complete orthonormal basis {en}n∈N in K , we have

(σ)
∑∞

n= ‖σ (t)Q/en‖L([,T],H) < ∞;
(σ)

∑∞
n= ‖σ (t)Q/en‖H is uniformly convergent for t ∈ [, T].

(H) There exist constants Lf > , Lg > , LG > , bf > , bg >  and bG >  such that for
any x, y ∈ C and t ≥ ,

∥∥f (t, xt) – f (t, yt)
∥∥

H ≤ Lf ‖x – y‖C ,
∥∥f (t, )

∥∥ ≤ bf ,
∥
∥g(t, xt) – g(t, yt)

∥
∥

L(KQ ,H) ≤ Lg‖x – y‖C ,
∥
∥g(t, )

∥
∥ ≤ bg ,

∥∥G(t, xt) – G(t, yt)
∥∥

H ≤ LG‖x – y‖C ,
∥∥G(t, )

∥∥ ≤ bG.

3 Global attracting set and exponential p-stability
In this section, we shall get the global attracting sets of stochastic differential equation
(.). First, we give the following definition of mild solutions to equation (.).

Definition . An H-valued continuous stochastic process {x(t), t ∈ [–r, T]},  < T < ∞
is called a mild solution of (.) if x(t) = ϕ(t) ∈ BCb

F
([–r, ]; H), t ∈ [–r, ], x′() = φ, and

the following conditions hold:
(i) x(t) is a measurable, Ft-adapted process with E

∫ T
 ‖x(t)‖

H dt < ∞;
(ii) x(t) satisfies the following integral equation:

x(t) = T(t)ϕ() + S(t)
(
φ – G(, x)

)

+
∫ t


T(t – s)G(s, xs) ds +

∫ t


S(t – s)f (s, xs) ds

+
∫ t


S(t – s)g(s, xs) dω(s) +

∫ t


S(t – s)σ (s) dBH

Q (s). (.)

Remark . Under assumptions (H)-(H), the existence and uniqueness of mild solution
to system (.) are easily shown by using Picard’s iterative method (see Revathi et al. []).

Definition . (see []) A set S ⊂ H is called the global attracting set of (.) if for any
initial value ψ ∈ BCb

F
([–r, ]; H), the solution process x(t,ψ) of (.) converges to S as

t → ∞, i.e.,

dist
(
x(t,ψ), S

) →  as t → ∞,

where dist(x, S) = infy∈S E‖x – y‖H .

In order to get the global attractivity of equation (.), we need the following important
integral inequalities.

Lemma . Let y(t) ∈ C(R,R+) be a solution of the delay integral inequality

y(t) ≤

⎧
⎪⎪⎨

⎪⎪⎩

be–λt + be–λt

+ b
∫ t

 e–λ(t–s)‖ys‖C ds + b
∫ t

 e–λ(t–s)‖ys‖C ds + b, t ≥ ,

ϕ(t), t ∈ [–r, ],

(.)



Xu et al. Advances in Difference Equations  (2017) 2017:134 Page 7 of 16

where ϕ(t) ∈ C([–r, ];R+), b, . . . , b are nonnegative constants and λ, λ > . If

ρ :=
b

λ
+

b

λ
< , (.)

then there are constants λ ∈ (,λ ∧ λ) and N ≥  such that

y(t) ≤ Ne–λt +
λ

 – ρ
, ∀t ≥ , (.)

where λ and N satisfy that

∥
∥ϕ()

∥
∥

C < N , and
b + b

N
+ eλr b

λ – λ
+ eλr b

λ – λ
< . (.)

Proof To prove (.), we first prove that for any h > ,

y(t) < hNe–λt +
λ

 – ρ
, ∀t ≥ . (.)

If (.) is not true, by virtue of the continuity of y(t), then there exists t >  such that

y(t) = hNe–λt +
λ

 – ρ
, (.)

and

y(t) ≤ hNe–λt +
λ

 – ρ
, t ∈ [–r, t]. (.)

On the other hand, from condition (.) and ϕ(t) ∈ C([–r, ];R+), we can verify that there
exist positive constants λ and N such that (.) holds. Thus, from (.), (.) and (.), we
can obtain

y(t) ≤ be–λt + be–λt + b

∫ t


e–λ(t–s)‖ys‖C ds + b

∫ t


e–λ(t–s)‖ys‖C ds + b

≤ be–λt + be–λt + b

∫ t


e–λ(t–s)[hNeλre–λs + ( – ρ)–b

]
ds

+ b

∫ t


e–λ(t–s)[hNeλre–λs + ( – ρ)–b

]
ds + b

≤ be–λt + be–λt + b

∫ t


hNe–λ(t–s)eλre–λs ds

+ b

∫ t


hNe–λ(t–s)eλre–λs ds +

(
b

λ
+

b

λ

)
( – ρ)–b + b

≤ hNe–λt
b + b

N
+ hNe–λt eλrb

∫ t


e–λ(t–s)e–λ(t–s) ds

+ hNe–λt eλrb

∫ t


e–λ(t–s)e–λ(t–s) ds + ( – ρ)–b

≤ hNe–λt

(
b + b

N
+ eλr b

λ – λ
+ eλr b

λ – λ

)
+ ( – ρ)–b

< hNe–λt + ( – ρ)–b,
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which contradicts equality (.). So, (.) holds for all t ≥ . Letting h →  in (.), we
have (.). The proof is complete. �

We also need the following lemma.

Lemma . ([]) For any σ : [, +∞) → L
(K , H) such that (H) holds and

supt≥ ‖σ (t)‖L


< ∞, and for any p ≥ , t > ,

E

∥
∥∥
∥

∫ t


S(t – s)σ (s) dB�

Q(s)
∥
∥∥
∥

p

H
≤ C sup

t≥

∥∥σ (t)
∥∥p
L


,

where C >  is a constant depending only on �, M, p and r.

Theorem . Assume that (H)-(H) and supt≥ ‖σ (t)‖L


< ∞ hold, then S = {φ ∈
H|‖φ‖p

H ≤ ( – ρ)–J} is a global attracting set of system (.) if the following inequality

ρ := p–Mpλ
–p
 Lp

G + p–Mpλ
–p
 Lp

f

+ p–MpLp
g λ

p/–


(
p(p – )



) p

(

p – 
(p – )

) p
 –

<  (.)

holds for p > , and

J := p–Mpλ
–p
 bp

G + p–Mpλ
–p
 bp

f

+ p–Mp
(

p(p – )


) p

(

p – 
(p – )

) p
 –

λ
– p


 bp

g + p–C sup
t≥

∥
∥σ (s)

∥
∥p
L


.

Proof From (.), we have

E
∥∥x(t)

∥∥p = E

∥
∥∥
∥T(t)ϕ() + S(t)

(
φ – G(, x)

)

+
∫ t


T(t – s)G(s, xs) ds +

∫ t


S(t – s)f (s, xs) ds

+
∫ t


S(t – s)g(s, xs) dω(s) +

∫ t


S(t – s)σ (s) dBH

Q (s)
∥∥
∥∥

p

H

≤ p–
E

∥∥T(t)ϕ()
∥∥p

H + p–
E

∥∥S(t)
(
φ – G(, x)

)∥∥p
H

+ p–
E

∥
∥∥
∥

∫ t


T(t – s)G(s, xs) ds

∥
∥∥
∥

p

H
+ p–

E

∥
∥∥
∥

∫ t


S(t – s)f (s, xs) ds

∥
∥∥
∥

p

H

+ p–
E

∥∥S(t – s)g(s, xs) dω(s)
∥∥p

H + p–
E

∥
∥∥
∥

∫ t


S(t – s)σ (s) dBH

Q (s)
∥
∥∥
∥

p

H

:= p–(J(t) + J(t) + J(t) + J(t) + J(t) + J(t)
)
. (.)

First, it is easy to see from (H) that for any t ≥ ,

J(t) = E
∥∥T(t)ϕ()

∥∥p
H ≤ Mpe–λt

E
∥∥ϕ()

∥∥p
H (.)
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and

J(t) = E
∥∥S(t)

(
φ – G(, x)

)∥∥p
H

≤ Mpe–pλt
E

∥∥φ – G(, x)
∥∥p

H

≤ Mpe–pλtp–
E

(‖φ‖p
H + LG

∥∥ϕ()
∥∥p
C + bp

G
)
. (.)

By virtue of (H), (H) and Hölder’s inequality, we can obtain for any t ≥  that

J(t) = E

∥
∥∥∥

∫ t


T(t – s)G(s, xs) ds

∥
∥∥∥

p

H

≤ E

(∫ t


Me–λ(t–s)∥∥G(s, xs)

∥∥
H ds

)p

≤ E

(∫ t


Me–λ(t–s)(LG‖xs‖C + bG

)
ds

)p

≤ p–MpLp
G

(∫ t


e–λ(t–s)

)p–

·
∫ t


e–λ(t–s)

E‖xs‖p
C ds + p–Mpλ

–p
 bp

G

≤ p–Mpλ
–p
 Lp

G

∫ t


e–λ(t–s)

E‖xs‖p
C ds + p–Mpλ

–p
 bp

G. (.)

For term J(t), similarly to J(t), by virtue of (H), (H) and Hölder’s inequality, we also
have for any t ≥  that

J(t) = E

∥∥
∥∥

∫ t


S(t – s)f (s, xs) ds

∥∥
∥∥

p

H

≤ E

(∫ t


Me–λ(t–s)(Lf ‖xs‖C + bf

)
ds

)p

≤ p–Mpλ
–p
 Lp

f

∫ t


e–λ(t–s)

E‖xs‖p
C ds + p–Mpλ

–p
 bp

f . (.)

Now, let us estimate the terms J(t). By using Burkhölder-Davis-Gundy’s inequality, as-
sumptions (H) and (H) and Hölder’s inequality, we obtain for p > 

J(t) = E

∥
∥∥
∥

∫ t


S(t – s)g(s, xs) dω(s)

∥
∥∥
∥

p

≤ Mp
(

p(p – )


) p

(∫ t



(
e–λ(t–s)

E
∥
∥g(s, xs)

∥
∥
L



)
ds

) p


≤ Mp
(

p(p – )


) p

(∫ t


e– λ(p–)

p– (t–s) ds
) p

 – ∫ t


e–λ(t–s)E

∥
∥g(s, xs)

∥
∥p
L


ds

≤ p–MpLp
g

(
p(p – )



) p

(

p – 
λ(p – )

) p
 – ∫ t


e–λ(t–s)E‖xs‖p

C ds

+ p–Mp
(

p(p – )


) p

(

p – 
(p – )

) p
 –

λ
– p


 bp

g . (.)
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Last, by Lemma ., we have

J(t) = E

∥∥
∥∥

∫ t


S(t – s)σ (s) dB�

Q(s)
∥∥
∥∥

p

≤ C sup
t≥

∥
∥σ (s)

∥
∥p
L


. (.)

Substituting (.)-(.) into (.), we obtain

E
∥∥x(t)

∥∥p ≤ p–Mpe–λt
E

∥∥ϕ()
∥∥p

H

+ p–Mpe–λt
E

(‖φ‖p
H + LG

∥∥ϕ()
∥∥p
C + bp

G
)

+ p–Mpλ
–p
 Lp

G

∫ t


e–λ(t–s)

E‖xs‖p
C ds + p–Mpλ

–p
 bp

G

+ p–Mpλ
–p
 Lp

f

∫ t


e–λ(t–s)

E‖xs‖p
C ds + p–Mpλ

–p
 bp

f

+ p–MpLp
g

(
p(p – )



) p

(

p – 
λ(p – )

) p
 – ∫ t


e–λ(t–s)E‖xs‖p

C ds

+ p–Mp
(

p(p – )


) p

(

p – 
(p – )

) p
 –

λ
– p


 bp

g

+ p–C sup
t≥

∥
∥σ (s)

∥
∥p
L


. (.)

Let b := p–Mp
E‖ϕ()‖p

H , b := p–Mp
E(‖φ‖p

H +LG‖ϕ()‖p
C +bp

G), b := p–Mpλ
–p
 Lp

G,
and

b := p–Mpλ
–p
 Lp

f + p–MpLp
g

(
p(p – )



) p

(

p – 
λ(p – )

) p
 –

.

From (.), we know ρ := b
λ

+ b
λ

< . Since ϕ ∈ PCB
F

([–r, ]; H), so there exist N > ,
λ ∈ (,λ ∧ λ) such that

∥∥ϕ()
∥∥

C < N , and
b + b

N
+ eλr b

λ – λ
+ eλr b

λ – λ
< .

It follows from Lemma . that

E
∥
∥x(t)

∥
∥p

H ≤ Ne–λt +
b

 – ρ
.

So, by Definition . we know that S is a global attracting set of the mild solution to (.).�

Remark . Notice that (.) has no meaning if p = . But we can re-estimate J(t) if
p = . Thus, we have also the following corollary.

Corollary . Assume that (H)-(H) and supt≥ ‖σ (t)‖L


< ∞ hold. If the following in-
equality

ρ := Mλ–
 L

G + Mλ–
 L

f + Mλ–
 L

g <  (.)
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and

J := Mλ–
 b

G + Mλ–
 b

f + ML
gλ

–
 b

g + C sup
t≥

∥
∥σ (s)

∥
∥
L



hold, then S = {φ ∈ H|‖φ‖
H ≤ ( – ρ)–J} is a global attracting set of system (.).

Proof We only need re-estimate J(t). By

J(t) = E

∥∥
∥∥

∫ t


S(t – s)g(s, xs) dω(s)

∥∥
∥∥



≤ M
∫ t


e–λ(t–s)

E
∥∥g(s, xs)

∥∥
L


ds

≤ ML
g

∫ t


e–λ(t–s)E‖xs‖

C ds + ML
gλ

–
 b

g . (.)

Then, by letting p =  in (.)-(.) and (.) and using (.), we can obtain

E
∥∥x(t)

∥∥ ≤ Me–λt
E

∥∥ϕ()
∥∥

H + Me–λt
E

(‖φ‖
H + LG

∥∥ϕ()
∥∥
C + b

G
)

+ Mλ–
 L

G

∫ t


e–λ(t–s)

E‖xs‖
C ds + Mλ–

 b
G

+ Mλ–
 L

f

∫ t


e–λ(t–s)

E‖xs‖
C ds + Mλ–

 b
f

+ ML
g

∫ t


e–λ(t–s)E‖xs‖

C ds + ML
gλ

–
 b

g + C sup
t≥

∥∥σ (s)
∥∥
L


. (.)

Similar to the proof of Theorem ., by using Lemma ., we can deduce that the desired
results are true. The proof is complete. �

4 Exponential decay
In this section, we shall focus on the exponential decay in the pth moment of the mild
solution of equation (.).

Definition . The mild solution of (.) with initial φ ∈ C([–r, ]; H) is said to have ex-
ponential decay in the pth moment if there exists a pair of positive constants λ >  and
M = M(ϕ) ≥  such that

E
∥
∥x(t,ϕ)

∥
∥p

H ≤ Me–λt , t ≥ .

In particular, system (.) is said to have exponential decay in the mean square when p = .

Theorem . Assume that (H)-(H) with bG = bf = bg =  and

∫ +∞


eλs∥∥σ (s)

∥
∥
L


ds < ∞ (.)
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hold, and the following inequality

ρ := p–Mpλ
–p
 Lp

G + p–Mpλ
–p
 Lp

f + p–MpLp
g λ

p/–


(
p(p – )



) p

(

p – 
(p – )

) p
 –

<  (.)

holds for p > . Then the mild solution of system (.) has exponential decay in the pth
moment.

Proof From (.), we have

E
∥
∥x(t)

∥
∥p = E

∥∥
∥∥T(t)ϕ() + S(t)

(
φ – G(, x)

)

+
∫ t


T(t – s)G(s, xs) ds +

∫ t


S(t – s)f (s, xs) ds

+
∫ t


S(t – s)g(s, xs) dω(s) +

∫ t


S(t – s)σ (s) dB�

Q(s)
∥
∥∥
∥

p

H

≤ p–
E

∥∥T(t)ϕ()
∥∥p

H + p–
E

∥∥S(t)
(
φ – G(, x)

)∥∥p
H

+ p–
E

∥∥
∥∥

∫ t


T(t – s)G(s, xs) ds

∥∥
∥∥

p

H
+ p–

E

∥∥
∥∥

∫ t


S(t – s)f (s, xs) ds

∥∥
∥∥

p

H

+ p–
E

∥
∥S(t – s)g(s, xs) dω(s)

∥
∥p

H + p–
E

∥∥
∥∥

∫ t


S(t – s)σ (s) dB�

Q(s)
∥∥
∥∥

p

H

:= p–(J(t) + J(t) + J(t) + J(t) + J(t) + J(t)
)
. (.)

Since for every t > ,
∫ t

 S(t – s)σ (s) dB�

Q(s) is a centered Gaussian random variable and by
Kahane-Khintchine’s inequality, there exists a constant Cp such that

J(t) = E

∥∥
∥∥

∫ t


S(t – s)σ (s) dB�

Q(s)
∥∥
∥∥

p

≤ Cp

(
E

∥∥
∥∥

∫ t


S(t – s)σ (s) dB�

Q(s)
∥∥
∥∥

)p/

.

Choosing suitable ε >  small enough such that (λ – ε)p ≥ λ and δ := λ – ε > , by
assumption (H) and Lemma  of [], we derive that

E

∥∥
∥∥

∫ t


S(t – s)σ (s) dB�

Q(s)
∥∥
∥∥



≤ Mc��(� – )t�–
∫ t


e–λ(t–s)∥∥σ (s)

∥
∥
L


ds

≤ Mc��(� – )t�–
∫ t


e–λ(t–s)∥∥σ (s)

∥∥
L


ds

≤ e–δtMc��(� – )t�–e–εt
∫ t


eλs∥∥σ (s)

∥
∥
L


ds. (.)

Therefore, (.) ensures the existence of a positive constant K such that

Mc��(� – )t�–e–εt
∫ t


eλs∥∥σ (s)

∥
∥
L


ds ≤ K for all t ≥ .
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Then

J(t) ≤ CpKp/e–λt . (.)

Notice that bG = bf = bg = , then substituting (.)-(.) and (.) into (.), we obtain

E
∥
∥x(t)

∥
∥p ≤ p–Mpe–λt

E
∥
∥ϕ()

∥
∥p

H

+ p–Mpe–λt
E

(‖φ‖p
H + LG

∥
∥ϕ()

∥
∥p
C
)

+ p–CpKp/e–λt

+ p–Mpλ
–p
 Lp

G

∫ t


e–λ(t–s)

E‖xs‖p
C ds

+ p–Mpλ
–p
 Lp

f

∫ t


e–λ(t–s)

E‖xs‖p
C ds

+ p–MpLp
g

(
p(p – )



) p

(

p – 
λ(p – )

) p
 – ∫ t


e–λ(t–s)E‖xs‖p

C ds. (.)

Let b := p–Mp
E‖ϕ()‖p

H , b := p–Mp
E(‖φ‖p

H + LG‖ϕ()‖p
C) + p–CpKp/, b :=

p–Mpλ
–p
 Lp

G, and

b := p–Mpλ
–p
 Lp

f + p–MpLp
g

(
p(p – )



) p

(

p – 
λ(p – )

) p
 –

.

From (.), we know ρ := b
λ

+ b
λ

< . Since ϕ ∈ PCB
F

([–r, ]; H), so there exist N > ,
λ ∈ (,λ ∧ λ) such that

∥∥ϕ()
∥∥

C < N , and
b + b

N
+ eλr b

λ – λ
+ eλr b

λ – λ
< .

It follows from Lemma . that

E
∥∥x(t)

∥∥p
H ≤ Ne–λt .

The proof is complete. �

Similar to Corollary ., we also have the following Corollary ..

Corollary . Assume that (H)-(H) are satisfied with bG = bf = bg = ,

∫ +∞


eλs∥∥σ (s)

∥∥
L


ds < ∞ (.)

and the following inequality

ρ := Mλ–
 L

G + Mλ–
 L

f + Mλ–
 L

g <  (.)

holds. Then the mild solution of system (.) has exponential decay in the mean square.
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Proof We only need re-estimate J(t). By Burkhölder-Davis-Gundy’s inequality, we have

J(t) = E

∥∥∥
∥

∫ t


S(t – s)g(s, xs) dω(s)

∥∥∥
∥



≤ M
∫ t


e–λ(t–s)

E
∥∥g(s, xs)

∥∥
L


ds

≤ ML
g

∫ t


e–λ(t–s)E‖xs‖

C ds. (.)

Notice that bG = bf = bg = , then let p =  in (.)-(.) and (.), we can obtain

E
∥∥x(t)

∥∥ ≤ Me–λt
E

∥∥ϕ()
∥∥

H

+ Me–λt
E

(‖φ‖
H + LG

∥∥ϕ()
∥∥
C
)

+ Mλ–
 L

G

∫ t


e–λ(t–s)

E‖xs‖
C ds

+ Mλ–
 L

f

∫ t


e–λ(t–s)

E‖xs‖
C ds

+ ML
g

∫ t


e–λ(t–s)E‖xs‖

C ds + Ke–λt . (.)

Similar to the proof of Theorem ., by using Lemma ., we can deduce that the desired
results are true. The proof is complete. �

5 Example
Example . We consider the following second-order neutral stochastic partial func-
tional differential equation driven by the fractional Brownian motion:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂[ ∂
∂t u(t, x) + vu(t, x(t – ))]

= [ ∂

∂x u(t, x) + vu(t, x(t – ))] dt

+vu(t, x(t – )) dω(t) + σ (t) dB�

Q(t),  ≤ x ≤ π , t ≥ ,

u(t, x) = ϕ(t, x), s ∈ [–, ], x ∈ [,π ],

u(t, ) = u(t,π ) = ,
∂
∂t u(, x) = u(x), x ∈ [,π ],

(.)

where vi ≥ , i = , , , are constants, ϕ(s, ·) ∈ H , ϕ(·, x) ∈ BCb
F

([–, ]; H), H = L[,π ],
ω(t) is a Wiener process and B�

Q(t) is a fractional Brownian motion.
Define the infinitesimal operator A : H → H by A = ∂

∂X , whose domain D(A) = {x ∈ H :
x, x′ are absolutely continuous, x() = , x′ ∈ H}, then

Ax = –
∞∑

n=

n〈x, en〉Hen, x ∈ D(A),

where en(x) =
√


π

sin nx, n = , , . . . , is a complete orthonormal set of eigenvectors of A.



Xu et al. Advances in Difference Equations  (2017) 2017:134 Page 15 of 16

Let

G
(
t, x(t – )

)
= vu

(
t, x(t – )

)
,

f
(
t, x(t – )

)
= vu

(
t, x(t – )

)
,

g
(
t, x(t – )

)
= vu

(
t, x(t – )

)
.

Then we can get (H) is satisfied with M =  and λ = λ = π , and (H) is satisfied with
LG = v, Lf = v, Lg = v and bG = bf = bg = . Assume that σ (t) satisfies assumption (H)
such that supt≥ ‖σ (s)‖

L


< ∞. Thus, by virtue of Corollary ., we know that

S =
{

x ∈ H : ‖x‖H ≤
√

( – ρ̂)– Ĵ
}

is a global attracting set of system (.) with Ĵ = C supt≥ ‖σ (s)‖
L


provided that ρ̂ :=

π–v + π–v + π–v < .
In addition, if

∫ +∞
 eλs‖σ (s)‖

L


ds < ∞ and ρ̂ < , then by Corollary ., we know the
mild solution of system (.) has exponential decay in the mean square.

6 Conclusion
In this paper, by establishing new integral inequalities, we obtain the global attracting
sets and exponential decay of second-order neutral stochastic functional differential equa-
tions driven by fBm with Hurst parameter H ∈ (/, ). By estimating the pth moment of
fractional Brownian noise and using new integral inequalities, we obtain some sufficient
conditions ensuring the exponential decay in the pth moment of the mild solution of the
considered equations. In our next paper, we will explore the global attracting sets and
the exponential decay in the pth moment of second-order neutral stochastic functional
differential equations driven by the fractional Brownian motion with Hurst parameter
H ∈ (, /) and the global attracting sets and the exponential decay in the pth moment
of second-order neutral stochastic functional differential equations driven by a multifrac-
tional Brownian motion. Besides, we also will attempt to explore the global attracting sets
and the exponential decay in the pth moment of second-order stochastic differential in-
clusions with time-delay.
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