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1 Introduction
This work is concerned with oscillation and asymptotic behavior of solutions to a third-
order nonlinear neutral dynamic equation

(
r(t)

((
x(t) + p(t)x

(
g(t)

))��)α)� + f
(
t, x

(
h(t)

))
= , (.)

on an arbitrary time scale T, where α is a quotient of odd positive integers. Since we are
interested in the oscillation and asymptotic behavior of solutions for large t, we assume
that supT = ∞ and define the time scale interval [t,∞)T by [t,∞)T := [t,∞) ∩ T with
t ∈ T. The usual notation and concepts from the time scale calculus as can be found in
Bohner and Peterson [, ] will be used throughout the paper without further mention.

In the rest of the paper we assume that:
(C) r : [t,∞)T →R is a positive rd-continuous function and

∫ ∞
t

r–/α(s)�s = ∞;
(C) p : [t,∞)T →R is an rd-continuous function with p(t) ≥ , and p(t) �≡  for

large t;
(C) g, h : [t,∞)T → T are rd-continuous functions such that g(t) < t, g is strictly

increasing, and limt→∞ g(t) = limt→∞ h(t) = ∞;
(C) f (t, u) : [t,∞)T ×R →R is a continuous function such that uf (t, u) >  for all

u �= , and there exists a positive rd-continuous function q : [t,∞)T → R such
that f (t, u)/uα ≥ q(t).

The cases

g
(
σ (t)

) ≥ h(t) (.)
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and

g
(
σ (t)

) ≤ h(t) (.)

are both considered.
Defining the function

z(t) = x(t) + p(t)x
(
g(t)

)
, (.)

equation (.) can be written as

(
r(t)

(
z��(t)

)α)� + f
(
t, x

(
h(t)

))
= . (.)

Wherever we write ‘t ≥ tn ’ we mean ‘t ∈ [tn,∞)T’.
By a solution of (.) we mean a function x ∈ Crd([tx,∞)T,R) such that

z ∈ C
rd([tx,∞)T,R) and r(z��)α ∈ C

rd([tx,∞)T,R), and which satisfies equation (.) on
[tx,∞)T. Without further mention, we will assume throughout that every solution x(t) of
(.) under consideration here is continuable to the right and nontrivial, i.e., x(t) is defined
on some ray [tx,∞)T, for some tx ≥ t, and sup{|x(t)| : t ≥ T} >  for every T ≥ tx. More-
over, we tacitly assume that (.) possesses such solutions. Such a solution is said to be
oscillatory if it is neither eventually positive nor eventually negative, and it is nonoscilla-
tory otherwise.

In recent years, there has been much research activity concerning the oscillation of so-
lutions of various functional differential equations and functional dynamic equations on
time scales, and we refer the reader to the papers [–] and the references therein as
examples of recent results on this topic. In reviewing the literature, it becomes apparent
that results on the oscillatory and asymptotic behavior of third-order neutral dynamic
equations on time scales are relatively scarce and most such results are concerned with
the cases where  ≤ p(t) < p < , – ≤ p(t) < , and/or  ≤ ∫ b

a p(t,μ)�μ ≤ p < ; see, for
example, [, , , , , , ] and the references cited therein as examples of recent
results on this topic.

However, to the best of our knowledge, there does not appear to be any results for the
third-order neutral dynamic equations on time scales in the case p(t) ≥ . The main aim
of this paper is to establish some new criteria for the oscillation and asymptotic behavior
of solutions of (.) in the case p(t) ≥ . It should be noted that the results in this paper
are new even for α = , r(t) = , f (t, x(h(t))) = q(t)xα(h(t)), and for the constant delays such
as g(t) = t – b and h(t) = t – c with b >  and c > . Furthermore, the results in this pa-
per can easily be extended to more general third-order neutral dynamic equations of the
type (.). It is therefore hoped that the present paper will contribute significantly to the
study of oscillatory and asymptotic properties of solutions of third-order neutral dynamic
equations on time scales.

2 Main results
The next four lemmas will be used to prove our main results. For convenience, we will use
the following notations:

β�
+ (t) := max

{
,β�(t)

}
,
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R(t, t) :=
∫ t

t

�s
r/α(s)

for t ≥ t, R(t, t) :=
∫ t

t

R(s, t)�s for t ≥ t > t,

ψ(t) :=

{
θ (t),  < α ≤ ,
θα(t), α > ,

θ (t) :=
R(t, t)

R(σ (t), t)
.

Throughout this paper, we assume that

ξ(t) :=


p(g–(t))

(
 –


p(g–(g–(t)))

)
>  (.)

and

ξ(t) :=


p(g–(t))

(
 –


p(g–(g–(t)))

R(g–(g–(t)), t)
R(g–(t), t)

)
> , (.)

for all sufficiently large t, where g– is the inverse function of g .

	(t) := β
(
σ (t)

)
q(t)

(
ξ

(
h(t)

))α

(
R(g–(h(t)), t)

R(σ (t), t)

)α

and

	(t) := β
(
σ (t)

)
q(t)

(
ξ

(
h(t)

))α

(
R(σ (t), t)
R(σ (t), t)

)α

.

Lemma . ([]) If U and V are nonnegative and λ > , then

λUV λ– – Uλ ≤ (λ – )V λ,

where equality holds if and only if U = V .

Lemma . Assume that conditions (C)-(C) hold, and let x(t) be a positive solution of
(.) with z(t) defined as in (.). Then, for sufficiently large t, either

(I) z(t) > , z�(t) > , z��(t) > , and (r(t)(z��(t))α)� < , or
(II) z(t) > , z�(t) < , z��(t) > , and (r(t)(z��(t))α)� < .

Proof The proof is standard and so the details will be omitted. �

Lemma . Assume that conditions (C)-(C) and (.) hold, and let x(t) be an eventually
positive solution of (.) with z(t) satisfying Case (II) of Lemma .. If

∫ t

t

∫ ∞

v


r/α(u)

(∫ ∞

u
q(s)

(
ξ

(
h(s)

))α
�s

)/α

�u�v = ∞, (.)

then limt→∞ x(t) = .

Proof Let x(t) be an eventually positive solution of (.). Then there exists t ∈ [t,∞)T
such that x(t) > , x(g(t)) > , and x(h(t)) >  for t ≥ t. Now, in view of (C), equation (.)
or (.) takes the form

(
r(t)

(
z��(t)

)α)� + q(t)xα
(
h(t)

) ≤  for t ≥ t. (.)
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From (.) (see also (.) in []), we have

x(t) =


p(g–(t))
(
z
(
g–(t)

)
– x

(
g–(t)

))

=
z(g–(t))
p(g–(t))

–


p(g–(t))p(g–(g–(t)))
(
z
(
g–(g–(t)

))
– x

(
g–(g–(t)

)))

≥ z(g–(t))
p(g–(t))

–


p(g–(t))p(g–(g–(t)))
z
(
g–(g–(t)

))
. (.)

Since z(t) is decreasing and g(t) < t, we get

z
(
g–(t)

) ≥ z
(
g–(g–(t)

))
,

and so from (.) we obtain

x(t) ≥ ξ(t)z
(
g–(t)

)
for t ≥ t. (.)

Since limt→∞ h(t) = ∞, we can choose t ≥ t such that h(t) ≥ t for all t ≥ t. Thus, from
(.), we have

x
(
h(t)

) ≥ ξ
(
h(t)

)
z
(
g–(h(t)

))
for t ≥ t. (.)

In view of (.), equation (.) can be written as

(
r(t)

(
z��(t)

)α)� + q(t)
(
ξ

(
h(t)

))αzα
(
g–(h(t)

)) ≤  for t ≥ t. (.)

Since z(t) >  and z�(t) < , there exists a constant M such that

lim
t→∞ z(t) = M < ∞,

where M ≥ . If M > , then there exists t ≥ t such that g–(h(t)) > t and

z(t) ≥ M for t ≥ t. (.)

Integrating (.) two times from t to ∞, we have

–z�(t) ≥ M
∫ ∞

t


r/α(u)

(∫ ∞

u
q(s)

(
ξ

(
h(s)

))α
�s

)/α

�u.

An integration of the last inequality from t to t yields

z(t) ≥ M
∫ t

t

∫ ∞

v


r/α(u)

(∫ ∞

u
q(s)

(
ξ

(
h(s)

))α
�s

)/α

�u�v,

which contradicts (.), and so we have M = . Hence, limt→∞ z(t) = . Since  < x(t) ≤ z(t)
on [t,∞)T, we get limt→∞ x(t) = . This completes the proof of Lemma .. �
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Lemma . Assume that conditions (C)-(C) and (.) hold, and x(t) is an eventually
positive solution of (.) with z(t) satisfying Case (I) of Lemma .. Then z(t) satisfies the
inequality

(
r(t)

(
z��(t)

)α)� + q(t)
(
ξ

(
h(t)

))αzα
(
g–(h(t)

)) ≤  (.)

for large t.

Proof Let x(t) be an eventually positive solution of (.) such that x(t) > , x(g(t)) > , and
x(h(t)) > , and z(t) satisfies Case (I) for t ≥ t for some t ≥ t. Proceeding exactly as in
Lemma ., we see that (.) and (.) hold. Since r(t)(z��(t))α is decreasing, we have

z�(t) = z�(t) +
∫ t

t

(r(s)(z��(s))α)/α

r/α(s)
�s

≥ (
r(t)

(
z��(t)

)α)/αR(t, t) for t ≥ t. (.)

Thus

(
z�(t)

R(t, t)

)�

≤ . (.)

Hence there exists t ∈ [t,∞)T such that

z(t) = z(t) +
∫ t

t

z�(s)
R(s, t)

R(s, t)�s

≥ R(t, t)
R(t, t)

z�(t), (.)

which implies that

(
z(t)

R(t, t)

)�

≤  for t ≥ t. (.)

Noting that g–(t) ≤ g–(g–(t)), we have by (.) that

R(g–(g–(t)), t)z(g–(t))
R(g–(t), t)

≥ z
(
g–(g–(t)

))
. (.)

Using (.) in (.), we obtain

x(t) ≥ ξ(t)z
(
g–(t)

)
for t ≥ t. (.)

Since limt→∞ h(t) = ∞, we can choose t ≥ t such that h(t) ≥ t for all t ≥ t. Hence, from
(.), we have

x
(
h(t)

) ≥ ξ
(
h(t)

)
z
(
g–(h(t)

))
for t ≥ t. (.)

Substituting (.) into (.), we arrive at (.) and this completes the proof of
Lemma .. �
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We now give oscillation results for the case where (.) holds.

Theorem . Assume that conditions (C)-(C), (.), (.)-(.) hold and there exists a
positive function β ∈ C

rd([t,∞)T,R) such that

lim sup
t→∞

∫ t

T

[
	(s) –

β�
+ (s)

(R(s, t))α

]
�s = ∞ (.)

for all sufficiently large t ∈ [t,∞)T and for T > t > t. Then a solution x of equation (.)
either oscillates or satisfies limt→∞ x(t) = .

Proof Let x be a nonoscillatory solution of (.). Without loss of generality, we may assume
that there exists t ∈ [t,∞)T such that x(t) > , x(g(t)) > , and x(h(t)) > , (.)-(.) hold,
and z(t) satisfies either Case (I) or Case (II) for t ≥ t. We only consider this case, since the
proof when x is eventually negative is similar.

If Case (II) holds, then by Lemma . we have limt→∞ x(t) = .
Next, assume that Case (I) holds, and proceeding as in the proof of Lemma ., we again

arrive at (.), (.), (.), (.), and (.). Now define the Riccati-type substitution

w(t) = β(t)
r(t)(z��(t))α

(z�(t))α
for t ≥ t. (.)

Clearly, w(t) > , and from (.) and (.), we see that

w�(t) ≤ β�
+ (t)

r(t)(z��(t))α

(z�(t))α
– β

(
σ (t)

)
q(t)

(
ξ

(
h(t)

))α zα(g–(h(t)))
(z(σ (t)))α

(z(σ (t)))α

(z�(σ (t)))α

– β
(
σ (t)

) r(t)(z��(t))α((z�(t))α)�

(z�(t))α(z�(σ (t)))α
for t ≥ t. (.)

From g–(h(t)) ≤ σ (t), we obtain from (.) that

z(g–(h(t)))
z(σ (t))

≥ R(g–(h(t)), t)
R(σ (t), t)

. (.)

By virtue of (.) and the fact that t ≤ σ (t), we have

z(σ (t))
z�(σ (t))

≥ R(σ (t), t)
R(σ (t), t)

. (.)

Using (.) and (.) in (.), we get

w�(t) ≤ β�
+ (t)

r(t)(z��(t))α

(z�(t))α
– β

(
σ (t)

)
q(t)

(
ξ

(
h(t)

))α

(
R(g–(h(t)), t)

R(σ (t), t)

)α

– β
(
σ (t)

) r(t)(z��(t))α((z�(t))α)�

(z�(t))α(z�(σ (t)))α
. (.)

From [], Theorem ., we have

((
z�(t)

)α)� ≥
{

α(z�)α–(σ (t))z��(t), if  < α ≤ ,
α(z�)α–(t)z��(t), if α > .

(.)
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If  < α ≤ , then we obtain by (.) and (.) that

w�(t) ≤ β�
+ (t)

r(t)(z��(t))α

(z�(t))α
– β

(
σ (t)

)
q(t)

(
ξ

(
h(t)

))α

(
R(g–(h(t)), t)

R(σ (t), t)

)α

– αβ
(
σ (t)

) r(t)(z��(t))α+

(z�(t))α+
z�(t)

z�(σ (t))
. (.)

If α > , then we obtain from (.) and (.) that

w�(t) ≤ β�
+ (t)

r(t)(z��(t))α

(z�(t))α
– β

(
σ (t)

)
q(t)

(
ξ

(
h(t)

))α

(
R(g–(h(t)), t)

R(σ (t), t)

)α

– αβ
(
σ (t)

) r(t)(z��(t))α+

(z�(t))α+
(z�(t))α

(z�(σ (t)))α
. (.)

By the fact that t ≤ σ (t), it follows from (.) that

z�(t)
z�(σ (t))

≥ R(t, t)
R(σ (t), t)

. (.)

Next, in view of (.), combining (.) and (.), we obtain, for α > ,

w�(t) ≤ β�
+ (t)

r(t)(z��(t))α

(z�(t))α
– β

(
σ (t)

)
q(t)

(
ξ

(
h(t)

))α

(
R(g–(h(t)), t)

R(σ (t), t)

)α

– αβ
(
σ (t)

)
ψ(t)

r(t)(z��(t))α+

(z�(t))α+ for t ≥ t. (.)

From (.), we have

r(t)(z��(t))α

(z�(t))α
≤ 

(R(t, t))α
. (.)

Thus, from (.), z�(t) >  and z��(t) > , inequality (.) yields

w�(t) ≤ β�
+ (t)

Rα
 (t, t)

– β
(
σ (t)

)
q(t)

(
ξ

(
h(t)

))α

(
R(g–(h(t)), t)

R(σ (t), t)

)α

. (.)

An integration of (.) from t to t yields

∫ t

t

[
β
(
σ (s)

)
q(s)

(
ξ

(
h(s)

))α

(
R(g–(h(s)), t)

R(σ (s), t)

)α

–
β�

+ (s)
Rα

 (s, t)

]
�s ≤ w(t),

which contradicts (.), therefore any solution x(t) of equation (.) is either oscillatory
or tends to zero as t → ∞. This completes the proof of Theorem .. �

Theorem . Suppose that conditions (C)-(C), (.), and (.)-(.) are satisfied. If there
exists a positive function β ∈ C

rd([t,∞)T,R) such that

lim sup
t→∞

∫ t

T

[
	(s) –


(α + )α+

r(s)(β�
+ (s))α+

[β(σ (s))ψ(s)]α

]
�s = ∞ (.)
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for all sufficiently large t ∈ [t,∞)T and for T > t > t, then any solution of (.) is either
oscillatory or tends to zero as t → ∞.

Proof Let x be a nonoscillatory solution of (.). Without loss of generality, we may assume
that there exists t ∈ [t,∞)T such that x(t) > , x(g(t)) > , and x(h(t)) > , (.)-(.) hold,
and z(t) satisfies either Case (I) or Case (II) for t ≥ t. We only consider this case since the
proof when x is eventually negative is similar.

If Case (II) holds, then by Lemma . we have limt→∞ x(t) = .
Assume that Case (I) holds. Proceeding exactly as in Theorem ., we again arrive at

(.). In view of (.), inequality (.) takes the form

w�(t) ≤ β�
+ (t)
β(t)

w(t) – β
(
σ (t)

)
q(t)

(
ξ

(
h(t)

))α

(
R(g–(h(t)), t)

R(σ (t), t)

)α

– αβ
(
σ (t)

)
ψ(t)


β (α+)/α(t)r/α(t)

w
α+
α (t) for t ≥ t. (.)

If we apply Lemma . with

U =
[αβ(σ (t))ψ(t)]/λ

[βλ(t)r/α(t)]/λ w(t), λ =
α + 

α
,

and

V =
[

α

α + 
[βλ(t)r/α(t)]/λ

[αβ(σ (t))ψ(t)]/λ
β�

+ (t)
β(t)

]α

,

we see that

β�
+ (t)
β(t)

w(t) – αβ
(
σ (t)

)
ψ(t)


β (α+)/α(t)r/α(t)

w
α+
α (t) ≤ 

(α + )α+
r(t)(β�

+ (t))α+

(β(σ (t))ψ(t))α
,

substituting this into (.) gives

w�(t) ≤ 
(α + )α+

r(t)(β�
+ (t))α+

(β(σ (t))ψ(t))α
– β

(
σ (t)

)
q(t)

(
ξ

(
h(t)

))α

(
R(g–(h(t)), t)

R(σ (t), t)

)α

.

Integrating the last inequality from t to t yields

∫ t

t

[
	(s) –


(α + )α+

r(s)(β�
+ (s))α+

[β(σ (s))ψ(s)]α

]
�s ≤ w(t),

which contradicts (.), therefore any solution x(t) of equation (.) is either oscillatory
or tends to zero as t → ∞. This proves the theorem. �

Theorem . Suppose that α ≥ , and conditions (C)-(C), (.) and (.)-(.) hold. If
there is a positive function β ∈ C

rd([t,∞)T,R) such that

lim sup
t→∞

∫ t

T

[
	(s) –

r/α(s)(β�
+ (s))

αβ(σ (s))ψ(s)[R(s, t)]α–

]
�s = ∞ (.)

for all sufficiently large t ∈ [t,∞)T and for T > t > t, then any solution of (.) either
oscillates or converges to zero as t → ∞.
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Proof Let x be a nonoscillatory solution of (.). Without loss of generality, we may assume
that there exists t ∈ [t,∞)T such that x(t) > , x(g(t)) > , and x(h(t)) > , (.)-(.) hold,
and z(t) satisfies either Case (I) or Case (II) for t ≥ t. We only consider this case, since the
proof when x is eventually negative is similar.

If Case (II) holds, then from Lemma . we have limt→∞ x(t) = .
Assume that Case (I) holds and proceeding as in the proof of Theorem ., we again

arrive at (.), which can be rewritten as

w�(t) ≤ β�
+ (t)
β(t)

w(t) – β
(
σ (t)

)
q(t)

(
ξ

(
h(t)

))α

(
R(g–(h(t)), t)

R(σ (t), t)

)α

– αβ
(
σ (t)

)
ψ(t)

w 
α –(t)

β (α+)/α(t)r/α(t)
w(t) for t ≥ t. (.)

By (.) and (.), we see that

w

α –(t) =

(
β(t)r(t)

) 
α –

(
(z��(t))α

(z�(t))α

) 
α –

≥ (
β(t)r(t)

) 
α –[r/α(t)R(t, t)

]α–

= β

α –(t)

[
R(t, t)

]α–. (.)

Using (.) in (.), we conclude that

w�(t) ≤ β�
+ (t)
β(t)

w(t) – β
(
σ (t)

)
q(t)

(
ξ

(
h(t)

))α

(
R(g–(h(t)), t)

R(σ (t), t)

)α

–
αβ(σ (t))ψ(t)[R(t, t)]α–

β(t)r/α(t)
w(t) for t ≥ t. (.)

Completing square with respect to w, it follows from (.) that

w�(t) ≤ –β
(
σ (t)

)
q(t)

(
ξ

(
h(t)

))α

(
R(g–(h(t)), t)

R(σ (t), t)

)α

+
r/α(t)(β�

+ (t))

αβ(σ (t))ψ(t)[R(t, t)]α– .

Integrating this inequality from t to t gives

∫ t

t

[
	(s) –

r/α(s)(β�
+ (s))

αβ(σ (s))ψ(s)[R(s, t)]α–

]
�s ≤ w(t),

which contradicts (.), therefore any solution x(t) of equation (.) is either oscillatory
or tends to zero as t → ∞. The proof is complete. �

Next, we give oscillation results in the case where (.) holds.

Theorem . Assume that conditions (C)-(C), (.), and (.)-(.) are satisfied. If there
is a positive function β ∈ C

rd([t,∞)T,R) such that

lim sup
t→∞

∫ t

T

[
	(s) –

β�
+ (s)

(R(s, t))α

]
�s = ∞ (.)
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for all sufficiently large t ∈ [t,∞)T and for T > t > t, then a solution x of equation (.)
either oscillates or satisfies limt→∞ x(t) = .

Proof Let x be a nonoscillatory solution of (.). Without loss of generality, we may assume
that there exists t ∈ [t,∞) such that x(t) > , x(g(t)) > , and x(h(t)) > , (.)-(.) hold,
and z(t) satisfies either Case (I) or Case (II) for t ≥ t. We only consider this case, since the
proof when x is eventually negative is similar.

If Case (II) holds, then from Lemma . we have limt→∞ x(t) = .
Assume that Case (I) holds. Proceeding as in the proof of Theorem ., we again arrive

at (.) and (.). Since

σ (t) ≤ g–(h(t)
)
, (.)

we get

z(g–(h(t)))
z(σ (t))

≥ . (.)

Using (.) and (.) in (.), we obtain

w�(t) ≤ β�
+ (t)

r(t)(z��(t))α

(z�(t))α
– β

(
σ (t)

)
q(t)

(
ξ

(
h(t)

))α

(
R(σ (t), t)
R(σ (t), t)

)α

– β
(
σ (t)

) r(t)(z��(t))α((z�(t))α)�

(z�(t))α(z�(σ (t)))α
for t ≥ t. (.)

The remainder of the proof is similar to that of Theorem ., and so the details are omit-
ted. �

Theorem . Assume that conditions (C)-(C), (.), (.)-(.) hold and there exists a
positive function β ∈ C

rd([t,∞)T,R) such that

lim sup
t→∞

∫ t

T

[
	(s) –


(α + )α+

r(s)(β�
+ (s))α+

[β(σ (s))ψ(s)]α

]
�s = ∞ (.)

for all sufficiently large t ∈ [t,∞)T and for T > t > t. Then any solution of (.) is either
oscillatory or tends to zero as t → ∞.

Proof The proof follows easily from (.) and Theorem .. �

Theorem . Let α ≥  and conditions (C)-(C), (.) and (.)-(.) hold. If there exists
a positive function β ∈ C

rd([t,∞)T,R) such that

lim sup
t→∞

∫ t

T

[
	(s) –

r/α(s)(β�
+ (s))

αβ(σ (s))ψ(s)[R(s, t)]α–

]
�s = ∞ (.)

for all sufficiently large t ∈ [t,∞)T and for T > t > t, then a solution of (.) is either
oscillatory or converges to zero as t → ∞.

Proof The proof follows easily from (.) and Theorem .. �
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Remark . In condition (C), if condition g(t) < t is replaced by g(t) > t, then again results
analogous to Theorems .-. can easily be modeled.

Example . Let T := qZ = {qk : k ∈ Z, q > } ∪ {} and consider the third-order neutral
dynamic equation

[((
x(t) + x(t/)

)��)]� + t(t – )x(t/) = , t ∈ Z, t ≥ t := . (.)

Here we have α = , g(t) = h(t) = t/, q(t) = t(t – ), r(t) = , f (t, u) = q(t)uα , and p(t) = .
It is clear that conditions (C)-(C) and (.) hold, and

ξ(t) = / > . (.)

Since

 –


p(g–(g–(t)))
R(g–(g–(t)), t)

R(g–(t), t)
=

t – 
t – 

,

we see that

ξ(t) ≥ 


for t ≥ t = . (.)

By (.), condition (.) becomes

∫ t

t

∫ ∞

v


r/α(u)

(∫ ∞

u
q(s)

(
ξ

(
h(s)

))α
�s

)/α

�u�v

=
∫ t



∫ ∞

v

(∫ ∞

u
s(s – )(/)�s

)/

�u�v = ∞

due to
∫ ∞

u s(s – )�s = ∞ for u ≥ , and so condition (.) holds.
With β(t) = t and the fact that (.), we see that

∫ t

T

[
β
(
σ (s)

)
q(s)

(
ξ

(
h(s)

))α

(
R(g–(h(s)), t)

R(σ (s), t)

)α

–
β�

+ (s)
(R(s, t))α

]
�s

≥
∫ t



[
s(s – )(/)

(
s – s + 

s – 

)

–


(s – )

]
�s

=
∫ t



[
(/)s(s – s + 

) –


(s – )

]
�s = ∞,

due to
∫ t




(s–) �s < ∞ and
∫ t

 s(s – s + )�s = ∞, so condition (.) holds. Thus, all
conditions of Theorem . are satisfied. Therefore, by Theorem ., any solution of (.)
is either oscillatory or converges to zero.

Example . Consider the neutral differential equation

(


t/

((
x(t) +

t + 
t + 

x
(

t


))′′)/)′
+

(
t + 

)
x/(t – ) = , t ≥ . (.)
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Here we have T = R, α = /, g(t) = t/, h(t) = t –, q(t) = t +, r(t) = /t/, f (t, u) = q(t)uα ,
and p(t) = (t + )/(t + ). It is clear that conditions (C)-(C) and (.) hold. In view of
the fact that

 ≤ p(t) < ,

we see that

ξ(t) ≥ 


> . (.)

Since


p(g–(g–(t)))

R(g–(g–(t)), t)
R(g–(t), t)

≤ t – t + 
t – t + 

≤ 


for t ≥ t = ,

we obtain

ξ(t) ≥ 
,

. (.)

By (.), condition (.) becomes

∫ t

t

∫ ∞

v


r/α(u)

(∫ ∞

u
q(s)

(
ξ

(
h(s)

))α
�s

)/α

�u�v

≥ (/)
∫ t



∫ ∞

v
u
(∫ ∞

u

(
s + 

)
�s

)

�u�v = ∞

due to
∫ ∞

u (s + )�s = ∞ for u ≥ , and so condition (.) holds.
With β(t) = c >  is a constant and the fact that (.), condition (.) becomes

∫ t

T

[
β(s)q(s)

(
ξ

(
h(s)

))α

(
R(s, )
R(s, )

)α

–


(α + )α+
r(s)(β ′

+(s))α+

(β(s)ψ(s))α

]
ds

≥
∫ t


c
(
s + 

)
(/,)/

(
s – s + 

(s – )

)/

ds

≥ c(/,)/
∫ t


s/(s – s + 

)/ ds = ∞,

so condition (.) holds. Hence, by Theorem ., any solution of (.) is either oscilla-
tory or converges to zero.
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