
Li Advances in Difference Equations  (2017) 2017:165 
DOI 10.1186/s13662-017-1189-z

R E S E A R C H Open Access

Existence of the non-constant steady
states to a fractional diffusion predator-prey
system including Holling type-II functional
response
Chenglin Li*

*Correspondence:
chenglinli988@163.com
School of Mathematics, Honghe
University, Mengzi, Yunnan 661199,
P.R. China

Abstract
This paper is concerned with a fractional diffusion predator-prey system with Holling
type-II functional response in a bounded domain with no flux boundary condition.
The local and global stabilities are investigated and sufficient conditions of stabilities
are obtained. The existence of the non-constant steady states is considered and the
sufficient conditions of the existence for the non-constant steady states are also
obtained. The results show that the predator and the prey can coexist under some
suitable conditions with fractional diffusion.
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1 Introduction
The population always move from the higher concentration to the lower concentration
by spatial heterogeneity of species. This process is often regarded as Brownian motion,
which is sometimes called Gaussian diffusion or normal diffusion, and this process can be
described by employing the Laplacian operator. Recently, there have been some papers in
being able to reveal the dynamics of the systems with Gaussian diffusion, such as stationary
patterns [–], globally asymptotic stability [, ] and so on. The well-known predator-
prey model with normal diffusion incorporating Holling type-II functional response is as
follows:

∂u
∂t

– d�u = –au + ecuv/( + bv) in (, T) × �,

∂v
∂t

– d�v = r( – v/K)v – cuv/( + bv) in (, T) × �,

∂u
∂ν

=
∂v
∂ν

=  on (, T) × ∂�,
(
u(, x), v(, x)

)
=

(
u(x), v(x)

) ≥ (, ) in �,

(.)

where � is a bounded domain in RN (N ≥  is an integer) with boundary ∂�; u and v
stand for the densities of the predator and the prey, respectively; the positive constants a,
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K , r, e, /c, b/c and /b are the death rate of the predator, the carrying capacity of the prey,
the prey intrinsic growth rate, the conversion rate, the time spent by a predator to catch
a prey, the manipulation time which is a saturation effect for large densities of prey, the
density of prey necessary to achieve one half the rate, respectively.

However, Brownian motion is only a special Lévy process and diffusion process of ani-
mals is always intricate, for instance, animals always run into some obstacles or stay etc.
As a result, the movement of animals cannot often obey the rule of normal diffusion, but it
obeys Lévy diffusion which is described by a fractional Laplacian operator. Furthermore,
the recent research [] has showed that the diffusion of some animals (such as sea turtles,
bony fishes, sharks and penguins) represents Lévy-walk-like behaviors. Therefore, based
on this fact, we shall consider (.) including Lévy diffusion (fractional diffusion) instead
of Gaussian diffusion. Thereinto, this diffusion has been successfully used in the epidemic
model [] and quantum physics [, ]. (–�)α is a corresponding infinitesimal generator
which is a fractional Laplacian operator, and this fractional diffusion generated by (–�)α

describes a pure jump process and is an anomalous diffusion. Moreover, its corresponding
characteristic is given by (, ,ς ) [], where ς is a Lévy measure, i.e., ς (dx) = K (s) dx

|x|N+s for
some positive constant K(s).

Based on the fact above, system (.) equipped with fractional diffusion can be written
as follows:

∂u
∂t

+ (–�)αu = –au + ecuv/( + bv) in (, T) × �,

∂v
∂t

+ (–�)αv = r( – v/K)v – cuv/( + bv) in (, T) × �,

∂u
∂ν

=
∂v
∂ν

=  on (, T) × ∂�,
(
u(, x), v(, x)

)
=

(
u(x), v(x)

) ≥ (, ) in �,

(.)

where α ∈ (, ); � is a bounded convex regular extension domain in RN (N ≥  is an
integer) with boundary ∂�. Obviously, system (.) is an extension of model (.). To our
knowledge, system (.) has not been investigated before.

The topic of interest for us is whether the various species can coexist in a predator-prey
system. Sometimes, the species coexist in a steady state. The coexistence of population
in the space of homogeneous distribution would be indicated by constant steady states
to the system. In the spatially inhomogeneous case, it is an indication of the richness of
the corresponding partial differential equational dynamics. Many authors have established
the existence of non-constant steady states in normal diffusion population models [, –
]. The main objective of this paper is to investigate the existence of non-constant steady
states which arises from the fractional diffusion system (.). According to the result of
Theorem . in this paper, there exist non-constant steady states for system (.) under
some suitable conditions, that is, the prey and the predator can coexist for a long period
of time under some conditions.

This paper is organized as follows. In Section , the preliminaries are introduced. In
Section , the existence of positive solution of (.) is investigated. In Section , the stability
of positive constant equilibrium is considered. In Section , the existence of non-constant
positive equilibrium is investigated.
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2 Preliminaries
Definition . ([]) Let D̃ be a bounded domain and f : D̃ → R, x → f (x), be a contin-
uous (but not necessarily differentiable) function, and suppose that h >  is a constant
discretization span. Define the translation operator

FW (h)f (x) := f (x + h).

Then the fractional difference of order α,α ∈ R,  < α ≤ , of f (x) is defined by the expres-
sion

�αf (x) := (FW – I)αf (x) =
∞∑

k=

(–)k

(
α

k

)

f
(
x + (α – k)h

)
,

where I is an identity operator.

The eigenvalue problem of the fractional Laplacian operator (–�)α , α ∈ (, ) is given by

(–�)αϕk = μα
k ϕk , x ∈ �,

∂ϕk

∂ν
= , x ∈ ∂�,

(.)

with the domain of definition of (–�)α

D
[
(–�)α

]
=

{

w ∈ L(�) :
∥∥(–�)αw

∥∥
L(�) =

∞∑

k=

∣∣μα
k 〈w,ϕk〉

∣∣ < ∞,
∂w
∂ν

= 

}

,

where μα
k is the corresponding eigenvalue of ϕk ; ϕk is the corresponding eigenfunction of

(–�)α and {ϕk}∞k= is an orthonormal basis of L(�);  = μα
 < μα

 < · · · < μα
k → +∞.

The formula of (–�)αu for u ∈ C∞
c (�) [] is also given by

(–�)αu := p.v.
∫

�

u(x) – u(y)
|x – y|N+α

dy, x ∈ �. (.)

We shall employ the following inequalities of Strook and Varopoulos (Theorem  in []):

∫

�

u(x)(–�)αu(x) dx ≥ , u ∈ D
(
(–�)α

)
, (.)

∫

�

v(x)(–�)αu(x) dx =
∫

�

(–�)α/v(x)(–�)α/u(x) dx. (.)

In the next discussion, the following embedding theorem will be useful.

Lemma . ([]) Assume that α ∈ (, ), p ∈ [,∞) and sp < N . Let q ∈ [, p∗), � ⊂ RN be
a bounded extension domain for W α,p, then the embedding W s,p(�) ↪→ Lq(�) is compact.

Suppose that A is the realization of (–�)α under the homogenous Neumann bound-
ary condition in L(�). Then –A is a sectorial operator and an infinitesimal generator of
analytic semigroups {e–tA}t≥.
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For convenience, we denote x+ := max{, x}, x– := max{, –x} for x, y ∈ R and extend
these notations to real-valued functions. If (V ,≥) is a partially ordered vector space, we
denote by its positive cone V+ := {v ∈ V : v ≥ }. Set X = {L(�)}. Assume w = (u, v) ∈ X,
which is equipped with the norm ‖w‖ = ‖u‖ + ‖v‖.

3 Existence of positive solution of (1.2)
In this section, we shall prove the existence of local mild solution for system (.). Let
f(u, v) = –au + ecuv/( + bv) and f(u, v) = r( – v/K)v – cuv/( + bv).

Definition . Let (u, v) ∈ X and T > . (u, v) ∈ C([, T]; X) is called a mild solution
of (.) if (u, v) satisfies

u(t) = e–tAu +
∫ t


e–(t–s)Af

(
u(s), v(s)

)
ds, t ∈ [, T],

v(t) = e–tAv +
∫ t


e–(t–s)Af

(
u(s), v(s)

)
ds, t ∈ [, T].

Then system (.) can be rewritten as the following equation:

dz
dt

= Qz + F(z), t ∈ (, +∞),

z() = z,
(.)

where z = (u(t, x), v(t, x))T , z = (u, v)T ,

Q =

(
–A –  

 –A – 

)

and F(z) =

(
f(u, v) + u
f(u, v) + v

)

(.)

with

D(Q) =
{

(u, v) ∈ D
(
(–�)α

) × D
(
(–�)α

)
,
∂u
∂ν

∣∣
∣∣
∂�

=
∂v
∂ν

∣∣
∣∣
∂�

= 
}

.

In the following, we shall prove that system (.) has a local solution. Firstly, we present
the following lemma.

Lemma . For very z ∈ X+, the Cauchy problem (.) has a unique maximal local solu-
tion

z ∈ C
(
[, Tmax); X

) ∩ C([, Tmax); X
) ∩ C

(
[, Tmax); D(A)

)

which satisfies the following Duhamel formula for t ∈ [, Tmax]:

z(t) = etQ̃z +
∫ t


e(t–s)Q̃F

[
z(s)

]
ds,

where Q̃ is an operator and the closure of Q in X . Moreover, if Tmax < ∞, then
lim supT–

max
‖z(t)‖ = ∞.
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Proof The operator Q̃ can generate an analytic, condensed, strong continuous operator
semigroup etQ̃ in X since it is the closure of Q. Furthermore, for t > , we have

∥∥etQ̃w
∥∥ ≤ e–t‖w‖, ∀w ∈ X. (.)

Moreover, one can easily check that F : D(Q) → X is locally Lipschitz on a bounded set.
Using Theorem .. in [], we obtain that (.) has a unique maximal local solution. �

Lemma . The solution (u(t, x), v(t, x)) of the initial-boundary problem (.) is non-
negative.

Proof We first consider the following system:

∂u′

∂t
= –(–�)αu′ + u′

+
[
–a + ecv′

+/
(
 + bv′

+
)]

in (, T) × �,

∂v′
+

∂t
= –(–�)αv′ + v′

+
[
r
(
 – v′

+/K
)

– cu′
+/

(
 + bv′

+
)]

in (, T) × �,

∂u′

∂ν
=

∂v′

∂ν
=  on (, T) × ∂�,

(
u′(, x), v′(, x)

)
=

(
u(x), v(x)

) ≥ (, ) in �.

(.)

Multiplying (.) by u′
– and v′

–, respectively, and integrating on �, we have

–



d
dt

∫

�

∣∣u′∣∣ dx =
∫

�

u′(–�)αu′ dx,

–



d
dt

∫

�

∣∣v′
–
∣∣ dx =

∫

�

v′
–(–�)αv′

– dx.
(.)

By using (.), for t ∈ (, Tmax), we have

∥
∥u′(t, ·)∥∥

 +
∥
∥v′(t, ·)∥∥

 ≤ ∥
∥u′(, ·)∥∥

 +
∥
∥v′(, ·)∥∥

 = ,

which derives that

u′(t, x) ≥ , v′(t, x) ≥ .

It follows that (u′(t, x), v′(t, x)) is a solution of (.). By using Lemma ., we obtain that

u(t, x) = u′(t, x) ≥ , v′(t, x) ≥ , t ∈ (, Tmax). �

Next, we shall prove that there exists a positive global solution for system (.). Accord-
ing to Lemmas . and ., we need to prove that the solution of (.) is uniformly bounded,
i.e., dissipation. For this end, we first give out the following lemma.
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Lemma . Assume that z(t, x) satisfies the following system:

∂z
∂t

= –(–�)αz + z(r – z) in (, T) × �,

∂z
∂ν

=  in (, T) × �,

z(x, ) = z(x) ≥ , in �.

(.)

Then limt→∞ z(t, x) = r for any x ∈ �.

This lemma is easy to prove by using the definition of (–�)αu and inequalities of Strook
and Varopoulos, so we omit it.

Remark . Suppose that z(t, x) satisfies the following equation:

∂z
∂t

= –(–�)αz + (r – z) in (, T) × �,

∂z
∂ν

=  in (, T) × �,

z(x, ) = z(x) ≥ , in �.

(.)

Then limt→∞ z(t, x) = r for any x ∈ �.

Proof It is obvious that system (.) always has a constant solution r. Let z be the positive
solution of (.), and define the Lyapunov function V (z) =

∫
�

[z – r – r ln(z/r)] dx, then

dV (z)
dt

= –
∫

�

[(
 –

r
z

)
(–�)αz

]
dx –

∫

�

(
 –

r
z

)
(z – r) dx

= –
∫

�

(–�)α/
(

 –
r
z

)
(–�)α/z dx –

∫

�


z

(r – z) dx

= –r
∫

�

[(
p.v.

∫

�

z(x) – z(y)
|x – y|N+α

dy
)

×
(

p.v.
∫

�

z(x) – z(y)
z(x)z(y)|x – y|N+α

)
dy

]
dx

–
∫

�


z

(r – z) dx

≤ .

Therefore, z = r is globally asymptotically stable. �

Lemma . Assume that (u, v) is the solution of (.), then

lim sup
t→∞

max
x∈�

u(t, x) ≤ e
(

r
a

+ 
)

K , lim sup
t→∞

max
x∈�

v(t, x) ≤ K . (.)
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Proof Using the second equation of model (.), we obtain

∂v
∂t

≤ –(–�)αv + r( – v/K)v in (, T) × �,

∂v
∂ν

=  on (, T) × ∂�,

v(, x) = v(x) in �.

(.)

By using comparison theory and Lemma ., one can easily obtain that

lim sup
t→∞

max
x∈�

v(t, x) ≤ K .

Multiplying the second equation by e and adding it to the first equation in (.), we have

∂ω

∂t
≤ (–�)αω + er( – v/K)v – au in (, T) × �,

∂ω

∂ν
=  on (, T) × ∂�,

ω(, x) = ω(x) in �,

(.)

where ω = u + ev. Since

er( – v/K)v – au = e(r + a)v – erv/K – aω ≤ e(r + a)(K + ε) – aω

in [T ,∞] × �. Therefore, by using Lemma ., we obtain

lim sup
t→∞

max
x∈�

u(t, x) ≤ e(r/a + )(K + ε)

on �, which implies the second desired assertion by the continuity as ε → . �

Now, by Lemmas ., . and ., we have the following theorem.

Theorem . System (.) has a unique, non-negative and bounded solution (u(t, x), v(t, x))
such that

(
u(t, x), v(t, x)

) ∈ C
(
[,∞)

, X) ∩ C((,∞), X
) ∩ C

(
(,∞), D(Q)

)
. (.)

4 Stability of the equilibria
In this section we shall prove the stability of the positive constant solution to model (.).
Note that (.) has the following three non-negative constant solutions:

(i) the trivial solution (, );
(ii) the semi-trivial solution (, K);
(iii) the unique positive constant solution w∗ =: (u∗, v∗), where

u∗ =
er

K(ec – ab)

[
K(ec – ab) – a

]
, v∗ =

a
ec – ab

.
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For the existence of positive constant solution w∗, it is necessary to assume that

 <
a

K(ec – ab)
< .

Let E(μα
i ) (i = , , , . . .) be the eigenvalue space corresponding to μα

i in C(�), and ϕ is
the set of eigenfunctions corresponding to μα .

Notation . (i) Xij := {Cϕij : C ∈ R}, where {ϕij} is the orthonormal basis of S(μα
i ) for

j = , . . . , dim[S(μα
i )].

(ii) X := {(u, v) ∈ Hα(�) × Hα(�) : ∂u
∂ν

= ∂v
∂ν

on ∂�}, so that

X =
∞⊕

i=

dim[S(μi)]⊕

j=

Xij.

The following theorem shows that the positive constant w∗ of (.) is locally asymptot-
ically stable under certain condition.

Theorem . If b
ec + 

ecK < 
K (ec–ab) , then the positive constant solution w∗ of (.) is locally

asymptotically stable.

Proof The linearized problem of (.) at (u∗, v∗) can be expressed by

wt =
(
D + Fw(w∗)

)
w,

where

w =
(
u(t, x), v(t, x)

)T , w∗ =
(
u∗(t, x), v∗(t, x)

)T ,

F =
(

–au +
ecuv

 + bv
, r

(
 –

v
K

)
v –

cuv
 + bv

)
,

Fw(w∗) =

(
 ecu∗

(+bv∗)

– cv∗
+bv∗ r – r

K v∗ – cu∗
(+bv∗)

)

,

(.)

and

D =

(
–(–�)α 

 –(–�)α

)

.

Consider the following eigenvalue problem:

(
D + Fw(w∗)

)
(

φ

ψ

)

= λ

(
φ

ψ

)

.

λ is an eigenvalue of D + Fw(w∗) if and only if λ is an eigenvalue of the matrix –μα
k I +

Fw(w∗) for each k ≥ . Therefore, to study the local stability at w∗, it is necessary to inves-
tigate the characteristic polynomial

det
(
λI + μα

k I – Fw(w∗)
)

= λ + Bλ + B,
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where

B = μα
k –

(
r –

r
K

v∗ –
cu∗

( + bv∗)

)
,

B =
ecu∗v∗
 + bv∗) + μα

k

(
μα

k –
(

r –
r
K

v∗ –
cu∗

( + bv∗)

))
.

Using the condition of Theorem ., we obtain

r –
r
K

v∗ –
cu∗

( + bv∗) = ra
(

b
ec

+


ecK
–


K(ec – ab)

)
< .

The two eigenvalues of D+Fw(w∗) have negative real parts. Therefore the positive constant
solution w∗ of (.) is locally asymptotically stable, and thus no bifurcation occurs. �

The following theorem is the global stability result of the positive constant solution w∗.

Theorem . Assume that bK ≤ ec
ec–ab , then the positive constant solution w∗ = (u∗, v∗) of

(.) is globally asymptotically stable.

Proof . Let (u(x, t), v(x, t)) be a positive solution of (.) and define the following Lyapunov
function:

E(t) =
∫

�

[
h
(

u – u∗ – u∗ ln
u
u∗

)
+

(
v – v∗ – v∗ ln

v
v∗

)]
dx,

where h =: +bv∗
e > . Then we have

E′(t) =
∫

�

[
h
(

 –
u∗
u

)
ut +

(
 –

v∗
v

)
vt

]
dx,

E′(t) = E(t) +
∫

�

h(u – u∗)
(

–a +
ecv

 + bv

)
dx +

∫

�

(v – v∗)
(

r –
rv
K

–
cu

 + bv

)
dx

= E(t) +
∫

�

h(u – u∗)
(

–a +
ecv

 + bv
+ a –

ecv∗
 + bv∗

)
dx

+
∫

�

(v – v∗)
(

r –
rv
K

–
cu

 + bv
– r +

rv∗
K

+
cu∗

 + bv∗

)
dx

= E(t) +
∫

�

(u – u∗)(v – v∗)
( + bv)( + bv∗)

[
–c( + bv∗ – eh)

]
dx

+
∫

�

(v – v∗)
(

–
r
K

+
cbu∗

( + bv)( + bv∗)

)
dx

≤ E(t) +
∫

�

(v – v∗)
(

–
r
K

+
cbu∗

( + bv)( + bv∗)

)
dx,

where

E(t) = –h
∫

�

[(
 –

u∗
u

)
(–�)αu

]
dx –

∫

�

[(
 –

v∗
v

)
(–�)αv

]
dx

= –h
∫

�

(–�)α/
(

 –
u∗
u

)
(–�)α/u dx –

∫

�

(–�)α/
(

 –
v∗
v

)
(–�)α/v dx
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= –hu∗
∫

�

[(
p.v.

∫

�

u(x) – u(y)
|x – y|N+α

dy
)

×
(

p.v.
∫

�

u(x) – u(y)
u(x)u(y)|x – y|N+α

dy
)]

dx

– v∗
∫

�

[(
p.v.

∫

�

v(x) – v(y)
|x – y|N+α

dy
)

×
(

p.v.
∫

�

v(x) – v(y)
v(x)v(y)|x – y|N+α

dy
)]

dx

≤ .

In the above derivation, note that –a + ecv∗
+bv∗ =  and r – rv∗

K – cu∗
+bv∗ = .

–
r
K

+
cbu∗

( + bv)( + bv∗)
< –

r
K

+
cbu∗

 + bv∗

= –
r
K

+ cbu∗ · ec – ab
ec

= –
r
K

+
br

K(ec – ab)
[
K(ec – ab) – a

]

= –
r
K

(
 – bK +

ab
ec – ab

)
≤ ,

and thus E′(t) ≤ , which implies the desired assertion since the equality holds only when
(u, v) = (u∗, v∗). By the regular argument, one can derive that w∗ = (u∗, v∗) of (.) is globally
asymptotically stable. �

Remark . Assume that bK ≤ ec
ec–ab , then the positive constant solution w∗ = (u∗, v∗) is

globally asymptotically stable to (.), that is to say, model (.) does not have non-constant
positive steady states.

Remark . If

b
ec

+


ecK
>


K(ec – ab)

,

then, in view of Theorem ., there may exist non-constant positive steady states to
model (.).

Remark . Using the condition bK < ec
ec–ab of Theorem ., we can easily obtain that the

inequality b
ec + 

ecK < 
K (ec–ab) holds.

5 The existence of non-constant positive steady states
In this section, we shall investigate the existence of non-constant positive solution for (.).

5.1 A priori estimates of positive solution
The corresponding steady-state system of (.) is as the following fractional diffusion sys-
tem:

(–�)αu = –au + ecuv/( + bv) x ∈ �,

(–�)αv = r( – v/K)v – cuv/( + bv) x ∈ �,

∂u
∂ν

=
∂v
∂ν

=  x ∈ ∂�.

(.)
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In the following, the generic constants A, A∗
 and A will depend on the domain �.

The main purpose of this subsection is to give a priori positive upper and lower bounds
for the positive solutions to system (.). To this goal, we shall make use of the following
two propositions.

Proposition . (Harnack’s inequality [, ]) Let c(x) ∈ C(�) and w(x) be a positive
solution to (–�)αw(x) + c(x)w(x) =  in �. Then there exists a positive constant C∗ which
depends only on α, dimension and c(x) such that

max
�

w ≤ C∗ min
�

w.

Proposition . (Maximum principle) Let g ∈ C(� × R).
(i) If w ∈ C(�) satisfies (–�)αw(x) + g(x, w(x)) ≥  in �, and w(x) = min� w, then

g(x, w(x)) ≥ .
(ii) If w ∈ C satisfies (–�)αw(x) + g(x, w(x)) ≤  in �, and w(x) = max� w, then

g(x, w(x)) ≤ .

Proof By using the definition of the fractional Laplacian operator (.), one can easily
obtain these results. �

Lemma . The positive solution of (.) satisfies

max
x∈�

u(x) ≤ e
(

r
a

+ 
)

K , max
x∈�

v(x) ≤ K . (.)

Proof By using the comparison argument to the second equation of (.), one can easily
obtain maxx∈� v(x) ≤ K . Multiplying the second equation by e and adding it to the first
equation in (.), then using the comparison argument, we obtain maxx∈� u(x) ≤ e( r

a +
)K . �

Lemma . For any positive solution (u, v) of (.), there exists a positive constant C such
that

min
x∈�

u(x) ≥ C, min
x∈�

v(x) ≥ C. (.)

Proof Multiplying the first equation of (.) by u and integrating on �, by (.), we get
∫
�

u(–a + ecv
+bv ) dx ≥ . Therefore, there exists y ∈ � such that –a – abv(y) + ecv(y) ≥ ,

which implies that v(y) ≥ a
ec . This, combined with max

�
v

min
�

v ≤ A, yields that

min
�

v ≥ max� v
A

≥ v(y)
A

≥ a
ecA

> .

Now, we prove that min� u(x) > C. Assume on the contrary that there exists a solution
sequence wm = (um, vm) to (.) satisfying

lim
m→∞ min

�

um = .
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Using the first equation of system (.) and Harnack’s inequality, we obtain max� um ≤
A min� um. Therefore we have max� um →  and um →  uniformly as m → ∞.

We may assume, by passing to a subsequence if necessary, that as m → ∞, (um, vm) →
(u, v), where u and v are non-negative functions.

Therefore, by passing to a subsequence if necessary, we obtain that v satisfies

(–�)αv = r( – v/K)v x ∈ �,

∂v
∂ν

=  x ∈ ∂�.
(.)

Using the maximum principle, we have v ≡ K . Let the first equation to (.) be divided
by max� um. Then, by a similar argument as that in (.), we get um

max
�

um
→ u uniformly.

Combined with um
max

�
um

≥ min
�

um
max

�
um

≥ 
A∗


, this yields that u ≥ 

A∗


. Then, integrating, we have

∫

�

um

max� um

(
–a +

ecvm

 + bvm

)
dx = .

Let m → ∞, and we get K = a
ec–ab , which is a contradiction to a

K (ec–ab) < . Therefore,
min� u(x) ≥ C if a

K (ec–ab) < . �

5.2 The existence of non-constant positive steady states
By Lemmas . and ., there exists a positive constant C such that C– < u, v < C. Define

X+ =
{

(u, v)T ∈ X | u > , v > , x ∈ �
}

,

B(C) =
{

(u, v)T ∈ X | C– < u, v < C, x ∈ �
}

,

then X =
⊕∞

i= Xi, where Xi =
⊕dim E(μi)

j= Xij. Employing the notation in Section , (.) can
be written as

(–�)αw = F(w) in �,

∂w
∂ν

=  on ∂�.
(.)

Therefore w is a positive solution of (.) if and only if

G(w) � w – (I – D)–[F(w) + w
]

= , w ∈ X+,

where (I – D)– is the inverse of I – D in X. As G(·) is a compact perturbation of the identity
operator by Lemma ., for any B � B(C), the Leray-Schauder degree deg(G(·), , B) is well
defined if G(w) �=  on ∂B. Moreover, we note that

DwG(w∗) = I – (I – D)–{Fw(w∗) + I
}

,

where w∗ = (u∗, v∗)T . We recall that if DwG(w∗) is invertible, the index of G at w∗ is defined
as the index (G(·), w∗) = (–)γ , where γ is the number of negative eigenvalues of DwG(w∗).
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We note that for each integer i ≥  and each integer  ≤ j ≤ dim E(μα
i ), Xij is invari-

ant under DwG(w∗), namely DwG(w∗)w ∈ Xij for all w ∈ Xij. Thus, λ is an eigenvalue of
DwG(w∗) on Xij if and only if it is an eigenvalue of the matrix

I –


 + μα
i

{
Fw(w∗) + I

}
=


 + μα

i

{
μα

i I – Fw(w∗)
}

.

Thus, DwG(w∗) is invertible if and only if, for all i ≥ , the matrix

I –


 + μα
i

{
Fw(w∗) + I

}

is non-singular. Writing

H
(
μα

)
� H

(
w∗,μα

)
= det

[
μαI – Fw(w∗)

]
, (.)

furthermore, we note that the sign of det{I – 
+μα

i
[Fw(w∗) + I]} depends on the number of

negative eigenvalues of I – 
+μα

i
[Fw(w∗) + I], and both H(μα

i ) and det{I – 
+μα

i
[Fw(w∗) + I]}

have the same signs. Therefore, if H(μα
i ) �= , then for each integer  ≤ j ≤ dim E(μα

i ), the
number of negative eigenvalues of DwG(w∗) on Xij is odd if and only if H(μα

i ) < .
In conclusion, we have the following.

Lemma . Suppose that, for all i ≥ , the matrix μα
i I – Fw(w∗) is non-singular. Then

index
(
G(·), w∗

)
= (–)γ , where γ =

∑

i≥,H(μα
i )<

dim E
(
μα

i
)
.

To facilitate our computation of index(G(·), w∗), we shall consider carefully the sign of
H(μi). Note that

H
(
μα

)
= det

[
μαI – Fw(w∗)

]
, (.)

so we shall only need to consider det[μαI – Fw(w∗)].
In the following, by analyzing the two roots of H(μα) = , we discuss the sign of H(μα

i ).
As

Fw(w∗) =

(
 ecu∗

(+bv∗)

– cv∗
+bv∗ r – r

K v∗ – cu∗
(+bv∗)

)

,

we obtain

det
{
μαI – Fw(w∗)

}
= μα + B̃μα + C̃,

where

B̃ = –
(

r –
r
K

v∗ –
cu∗

( + bv∗)

)
, C̃ =

ecu∗v∗
( + bv∗) > .
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When B̃ – C̃ > , let μ̃ and μ̃ be two of det{μαI – Fw(w∗)} =  with μ̃(d) < μ̃(d).
Therefore, if B̃ > , μ̃ and μ̃ are non-positive; whereas if both μ̃ and μ̃ are positive and
μ̃ �= μ̃, then it is necessary that B̃ <  and B̃ – C̃ > .

Lemma . Suppose that b
ec + 

ecK > 
K (ec–ab) and B̃ – C̃ > , then there exist positive in-

tegers k and k such that μα
k

≤ μ̃ < μα
k+ and μα

k
< μ̃ < μα

k+.

To sum up, we obtain the following.

Lemma . If  < μ̃ < μα
i < μ̃ for some i ≥ , then H(μα

i ) < ; whereas H(μα
i ) >  provided

μα
i < μ̃ or μα

i > μ̃ for some i ≥ .

Next, we shall discuss the global existence of non-constant positive solution (.) with
respect to fractional diffusion, as other parameters r, e, c, b and K are fixed. Our results
are as follows.

Theorem . Let the parameters r, e, c, b, K satisfy b
ec + 

ecK > 
K (ec–ab) and B̃ – C̃ > . If

there exist k ≥  and k ≥ k such that the sum δn =
∑k

i=k+ dim E(μα
i ) is odd, then (.)

has at least one non-constant positive solution.

Proof The proof, which is by contradiction, is based on the homotopy invariance of the
topological degree. Suppose on the contrary that the assertion is not true.

Let d be a positive constant which is large enough such that

–B̃d +
√

dB̃ – dC̃
d < μα

 .

For t ∈ [, ], define

D(t) =

(
t + ( – t)d 

 t + ( – t)d

)

,

and consider the problem

– Dw = D
–(t)F(w) in �,

∂w
∂ν

=  on ∂�.
(.)

Then w is a non-constant positive solution of problem (.) if and only if it is a solution
of (.) for t = . It is obvious that w∗ is the unique constant positive solution of (.) for
any  ≤ t ≤ . For any  ≤ t ≤ , w is a positive solution of (.) if and only if

G(t; w) � w – (I – D)–{
D(t)–F(w) + w

}
= , w ∈ X+.

It is obvious that G(; w) = G(w). By a direct computation, we obtain

DwG(t; w∗) = I – (I – D)–{
D

–(t)Fw(w∗) + I
}

.
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In particular

DwG(; w∗) = I – (I – D)–{D̃–Fw(w∗) + I
}

,

DwG(; w∗) = I – (I – D)–{Fw(w∗) + I
}

= DwG(w∗),

where

D̃ =

(
d 
 d

)

.

It is easy to check that, for any μα
i ,

H
(
μα

i
)

= det
{

D̃–}det
{
μα

i D̃ – Fw(w∗)
}

> .

Obviously, zero is not an eigenvalue of the matrix μα
i I – Fw(w∗) for all i ≥ , and

∑

i≥,H(μα
i )<

dim E
(
μα

i
)

=
k∑

i=k+

E
(
μα

i
)

= δk ,

which is odd. Using Lemma ., we have

index
(
G(; ·), w∗

)
= (–)γ = (–)δk = –.

On the other hand, since H(μi) >  for all i ≥ , we have

index
(
G(; ·), w∗

)
= (–) = .

By Lemmas . and ., there exists a positive constant C such that, for all  ≤ t ≤ , the
positive solutions of (.) satisfy /C < u, v < C. Therefore, G(t; w) �=  on ∂B(C) for all
 ≤ t ≤ . By the homotopy invariance of the topological degree,

deg
(
G(; ·), , B(C)

)
= deg

(
G(; ·), , B(C)

)
.

Since both equations G(; w) =  and G(; w) =  have only the positive solution w∗ in
B(C), we have

deg
(
G(; ·), , B(C)

)
= index

(
G(; ·), w∗

)
= ,

deg
(
G(; ·), , B(C)

)
= index

(
G(; ·), w∗

)
= –.

This contradiction yields the desired result. �

Example . If we take a = ., e = ., c = ., K = , b = ., r =  and α = ., by direct
computations, then we have u∗ = ., v∗ = ., B̃ = –. < , C̃ = .,
B̃ – C̃ = . > , b

ec + 
ecK = ., 

K (ec–ab) = .. Therefore, in some suitable
environments, the conditions of Theorem . are all satisfied, then (.) has at least one
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non-constant positive solution, which implies that the predator and the prey can coexist
and this gives rise to a spatial pattern.

For a certain sea area in which there are reef islands, the diffusion of the predating fish
and the predated fish is fractional diffusion. In this area, if all conditions of Theorem .
are fulfilled for system (.), then the predating fish and the predated fish can coexist and
multiply.
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