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Abstract
The solvability of the following system of difference equations

zn+1 = αzanw
b
n , wn+1 = βwc

n–2z
d
n–2, n ∈ N0,

where a,b, c,d ∈ Z, α,β ,w–2,w–1,w0, z–2, z–1, z0 ∈C \ {0}, is studied in detail by using
several methods. The system has the most complex structure of solutions of all the
related systems studied so far, and some of the forms of solutions appear for the first
time.
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1 Introduction
Various types of difference equations and systems have been investigated in the last twenty
years [–]. Many of the systems studied there, such as the ones in [, , –, –, –
, –, –], were essentially obtained as some sorts of symmetrization of scalar
ones, and were studied first by Papaschinopoulos and Schinas. One of the basic problems
investigated in the field is the solvability (see, e.g., [–] for widely known methods). For
some recent results, see, e.g., [, , , –, –]. Recently several papers presenting
formulas for solutions to some difference equations and systems, but without mentioning
any theory, have appeared. A theoretical explanation of formulas for such an equation
given in our note [] has attracted some attention. The note shows that the equation is
closely related to a known solvable one, and the main idea has been used and developed
later in many papers (see, for example, [, , , , , ] and the references therein).

During the study of some equations and systems (for example, those in [] and []), we
have noticed the importance of some classes of solvable ones in their investigation. Elim-
inating the constant addends in the equations and systems in these two papers, product-
type ones were obtained. It is known that product-type equations and systems are solvable
if initial values are positive. But the standard method for solving them by using the loga-
rithm is not suitable if some of the values are not positive. The corresponding product-type
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system in [] is a special case of the following one:

xn = xa
n–kyb

n–l, yn = xd
n–sy

c
n–m, n ∈N,

where k, l, m, s ∈ N. This observation has motivated us to investigate the solvability of
product-type systems with non-positive initial values. However, there are several obsta-
cles in the investigation. An obvious one is that the functions fa(z) = za, when a is not an
integer, are multi-valued. The obstacle naturally suggests the choice a ∈ Z in dealing with
the systems. Our first paper on product-type systems [] investigated the case k = m = ,
l = s = , and our original intention was to study, as usual, the long-term behavior of their
solutions. Not so long after that we realized that a related system with three dependent
variables was also solvable [], and that the case k = m = , l = s = , was solvable ei-
ther []. Bearing in mind that calculations in these papers were quite technical, we put
aside the problem of investigating the long-term behavior of their solutions, and concen-
trated our efforts on studying the solvability of related systems. In the next phase of the
investigation we realized that adding the constant multipliers kept the solvability of such a
system [], which was also verified for an extension of the system in [], in our paper [].
Our further investigation showed that the solutions of solvable product-type systems can
have several different forms for different values of parameters a, b, c, d, and that the forms
can be obtained by a detailed analysis, which we did for the first time in [] and []. Later
we investigated another system in [] where such analysis was unnecessary. A technical
difficulty in studying the solvability problem led us to finding another method for getting
solutions in []. Paper [] was the first paper which successfully dealt with an associated
polynomial to a product-type system of the fourth order in detail. We would also like to
say that the max-type system in [] was also solved by using product-type systems, as
well as some equations in [].

An important fact connected to the investigation is that there are only several solvable
product-type systems with two dependent variables due to the finite number of combina-
tions of the sums of two delays which cannot exceed four. Our general task is to present
all solvable product-type systems with two dependent variables.

Here we show that the following system

zn+ = αza
nwb

n, wn+ = βwc
n–zd

n–, n ∈N, ()

where a, b, c, d ∈ Z, α,β ∈ C and w–, w–, w, z–, z–, z ∈ C, is solvable, complementing
our previous results in [, , –, –]. In fact, we will consider the case when
α,β , w–, w–, w, z–, z–, z ∈C \ {}, since otherwise trivial or not well-defined solutions
to system () are obtained. The system has the most complex structure of solutions to all
the related systems studied so far, and some of the forms of solutions appear for the first
time. The complexity forced us to use and develop almost all methods and tricks that we
have used so far. We have to also mention that we regard that

∑k–
i=k ai = , k ∈ Z.

2 Auxiliary results
Here we quote three lemmas which we employ in the section that follows. The first one
contains what was proved in [], formulated in a compact form.
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Lemma  Let

P(t) = t + bt + ct + dt + e,

� = c – bd + e, � = c – bcd + be + d – ce,

� =



(
�

 – �

)
,

P = c – b, Q = b + d – bc, D = e – c + bc – bd – b.

(a) If � < , then two zeros of P are real and different, and two are complex conjugate;
(b) If � > , then all the zeros of P are real or none is. More precisely,

◦ if P <  and D < , then all four zeros of P are real and different;
◦ if P >  or D > , then there are two pairs of complex conjugate zeros of P.

(c) If � = , then and only then P has a multiple zero. The following cases can occur:

◦ if P < , D <  and � �= , then two zeros of P are real and equal and two are real
and simple;

◦ if D >  or (P >  and (D �=  or Q �= )), then two zeros of P are real and equal
and two are complex conjugate;

◦ if � =  and D �= , there is a triple zero of P and one simple, all real;
◦ if D = , then

.◦ if P <  there are two double real zeros of P;
.◦ if P >  and Q = , there are two double complex conjugate zeros of P;
.◦ if � = , then all four zeros of P are real and equal to –b/.

Two different proofs of the following known lemma can be found, for example, in []
and [].

Lemma  If λj, j = , k, are mutually different zeros of the polynomial

P(t) = aktk + ak–tk– + · · · + at + a,

with aka �= , then

k∑

j=

λl
j

P′(λj)
= 

for l = , k – , and

k∑

j=

λk–
j

P′(λj)
=


ak

.

The following lemma contains some known summation formulas which we employ in
this paper (see, e.g., [, ]). For a general method for calculating this type of sums,
see [].
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Lemma  Let i ∈N and

s(i)
n (z) =  + iz + iz + · · · + nizn–, n ∈N, ()

where z ∈ C.
Then

s()
n (z) =

 – zn

 – z
, ()

s()
n (z) =

 – (n + )zn + nzn+

( – z) , ()

s()
n (z) =

 + z – (n + )zn + (n + n – )zn+ – nzn+

( – z) , ()

s()
n (z) =

nzn(z – ) – nzn(z – ) + nzn(z – ) – (zn – )(z + z + )
( – z) ()

for every z ∈C \ {} and n ∈ N.

3 Main results
This section formulates and proves our main results. The first two results deal with the
case when c =  and one of the parameters b and d is also zero.

Theorem  Assume that a, d ∈ Z, b = c = , α,β , w–, w–, w, z–, z–, z ∈ C \ {}. Then
the following statements are true.

(a) If a �= , then the solution to system () is given by

zn = α
–an
–a zan

 , n ∈N, ()

wn = βαd –an–
–a zdan–

 , n ≥ . ()

(b) If a = , then the solution to system () is given by

zn = αnz, n ∈ N, ()

wn = βαd(n–)zd
, n ≥ . ()

Proof Since b = c = , we have

zn+ = αza
n, wn+ = βzd

n–, n ∈ N, ()

from which the following is obtained:

zn = α
∑n–

j= aj
zan

 , n ∈N. ()

Employing () in the second equation in (), we get

wn = βα
d

∑n–
j= aj

zdan–
 , n ≥ . ()

From () and (), formulas ()-() easily follow. �
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Theorem  Assume that a, b ∈ Z, c = d = , α,β , z, w ∈C\ {}. Then the following state-
ments are true.

(a) If a �= , then the solution to system () is given by

zn = α
–an
–a βb –an–

–a zan
 wban–

 , n ≥ , ()

wn = β , n ∈N. ()

(b) If a = , then the solution to system () is given by () and

zn = αnβb(n–)zwb
, n ≥ . ()

Proof Since c = d = , we have

zn+ = αza
nwb

n, wn+ = β , n ∈N. ()

Employing the second equation in () in the first one, we get

zn+ = αβbza
n, n ∈N,

from which, along with the fact z = αza
wb

, it follows that

zn =
(
αβb)

∑n–
j= aj

zan–
 = α

∑n–
j= aj

β
b
∑n–

j= aj
zan

 wban–
 , n ≥ . ()

From (), formulas () and () easily follow. �

Theorem  Assume that a, b, c, d ∈ Z, ac �= bd, α,β , w–, w–, w, z–, z–, z ∈C\{}. Then
system () is solvable in closed form.

Proof The assumption α,β , w–, w–, w, z–, z–, z ∈C \ {} along with () implies znwn �=
, n ≥ –. Hence, from () we have

wb
n =

zn+

αza
n

, n ∈N, ()

and

wb
n+ = βbwbc

n–zbd
n–, n ∈ N, ()

which together imply

zn+ = α–cβbza
n+zc

n–zbd–ac
n– , n ≥ . ()

We also have

z = αza
wb

, z = α+aβbzbd
–za

 wbc
–wab

 ,

z = α+a+a
βb(+a)zabd

– zbd
–za

 wabc
– wbc

–wab
 .

()
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Now we follow our method presented, for example, in [], p. , and [], Theorem ..
Let δ = α–cβb,

a = a, b = , c = c, d = bd – ac, y = , ()

then

zn+ = δy za
n+zb

n zc
n–zd

n–, n ≥ . ()

Further, from () we have

zn+ = δy
(
δza

n zb
n–zc

n–zd
n–

)a zb
n zc

n–zd
n–

= δy+a zaa+b
n zba+c

n– zca+d
n– zda

n–

= δy za
n zb

n–zc
n–zd

n–, ()

for n ≥ , where

a := aa + b, b := ba + c, c := ca + d,

d := da, y := y + a.
()

Suppose

zn+ = δyk zak
n+–kzbk

n+–kzck
n–kzdk

n–k– ()

for k ∈N \ {} and every n ≥ k + , and

ak = aak– + bk–, bk = bak– + ck–,

ck = cak– + dk–, dk = dak–,
()

yk = yk– + ak–. ()

Employing (), where n is replaced by n – k in (), it follows that

zn+ = δyk
(
δza

n+–kzb
n–kzc

n–k–zd
n–k–

)ak zbk
n+–kzck

n–kzdk
n–k–

= δyk +ak zaak +bk
n+–k zbak +ck

n–k zcak +dk
n–k– zdak

n–k–

= δyk+ zak+
n+–kzbk+

n–k zck+
n–k–zdk+

n–k–, ()

for n ≥ k + , where

ak+ := aak + bk , bk+ := bak + ck , ck+ := cak + dk , dk+ := dak , ()

yk+ := yk + ak . ()

From (), (), ()-() and the induction, we conclude that ()-() hold for k, n ∈N

such that  ≤ k ≤ n – .



Stević Advances in Difference Equations  (2017) 2017:140 Page 7 of 23

Setting k = n –  in () and employing (), we get

zn+ = δyn– zan–
 zbn–

 zcn–
 zdn–



=
(
α–cβb)yn–(

α+a+a
βb(+a)zabd

– zbd
–za

 wabc
– wbc

–wab


)an–

× (
α+aβbzbd

–za
 wbc

–wab


)bn–(
αza

wb

)cn– zdn–



= α(–c)yn–+(+a+a)an–+(+a)bn–+cn–βbyn–+b(+a)an–+bbn–

× zabdan–+bdbn–
– zbdan–

– zaan–+abn–+acn–+dn–


× wabcan–+bcbn–
– wbcan–

– waban–+abbn–+bcn–


= αyn+–cyn–βbyn+ zbdan
– zbdan–

– zan+–can–
 wbcan

– wbcan–
– wban+

 ()

for n ≥ .
The equalities in () show that for k ≥ 

ak = aak– + bak– + cak– + dak–. ()

The same equation is also satisfied by sequences bk , ck and dk , k ∈ N, due to the relations
bk = ak+ – aak , ck = bk+ – bak , dk = dak–.

The assumption d = bd – ac �= , along with () and (), shows that it must be

a– = a– = a– = , a = , ()

and

y– = y– = y– = y = , y = , ()

(see, for example, the corresponding calculations in []).
From () and since y = a, we obtain

yk =
k–∑

j=

aj, k ∈ N. ()

It is clear that closed-form formulas for solutions to problem ()-() can be easily
found, from which along with () and Lemma  closed-form formulas for yn can also be
found, from which along with () the solvability of system () follows.

Further, we have

zd
n– =

wn+

βwc
n–

, n ∈N ()

and

zd
n+ = αdzad

n wbd
n , n ∈N, ()
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which together imply

wn+ = αdβ–awa
n+wc

n+wbd–ac
n , n ∈ N. ()

We also have

w = βwc
–zd

–, w = βwc
–zd

– and w = βwc
zd

. ()

Following the lines of the above method, it is proved that

wn+ = ηyk wak
n+–kwbk

n+–kwck
n+–kwdk

n+–k , ()

for k, n ∈ N, n ≥ k – , where η = αdβ–a, (ak)k∈N, (bk)k∈N, (ck)k∈N and (dk)k∈N satisfy ()
and (), and where (yk)k∈N satisfies () and ().

From () with k = n +  and by using (), we get

wn+ = ηyn+ wan+
 wbn+

 wcn+
 wdn+



=
(
αdβ–a)yn+(

βwc
zd


)an+(

βwc
–zd

–
)bn+(

βwc
–zd

–
)cn+ wdn+



= αdyn+β (–a)yn++an++bn++cn+ wccn+
– wcbn+

– wcan++dn+


× zdcn+
– zdbn+

– zdan+


= αdyn+βyn+–ayn+ wc(an+–aan+)
– wc(an+–aan+)

– wan+–aan+


× zd(an+–aan+)
– zd(an+–aan+)

– zdan+
 ()

for n ∈N.
From this and since the closed-form formulas for ak and yk can be found as above, the

solvability of () follows. It is easily checked that () and () present a solution to sys-
tem (). �

Corollary  Assume that a, b, c, d ∈ Z, ac �= bd, α,β , w–, w–, w, z–, z–, z ∈ C\{}. Then
the general solution to system () is given by () and (), where (ak)k≥– satisfies () and
(), while (yk)k≥– is given by () and ().

Now we conduct a detailed analysis of the form of sequences ak and yk appearing in the
proof of Theorem . The reason why equation () is solvable when ac �= bd is based on
the fact that its characteristic polynomial

p(λ) = λ – aλ – cλ + ac – bd ()

is of the forth degree, so, solvable by radicals. The equation p(λ) =  is equivalent to

(

λ –
a

λ +

s


)

–
((

a


+ s

)

λ –
(

as


– c
)

λ +
s


+ bd – ac

)

= . ()
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Now choose parameter s so that (as – c) = (a + s)(s + bd – ac) (see, for example,
[]), that is,

s + ps + q = , ()

where p = bd – ac and q = (bd – ac)a – c.
Then () becomes

(

λ –
a

λ +

s


)

–
(√

a + s


λ –
as – c


√

a + s

)

= , ()

which implies that

λ –
(

a


+
√

a + s


)

λ +
s


+
as – c


√

a + s
= , ()

or

λ –
(

a


–
√

a + s


)

λ +
s


–
as – c


√

a + s
= . ()

Recall that solutions to () are found in the following form: s = u + v, by posing the
condition uv = –p/. Since u + v = –q and uv = –p/, we have that u and v are
solutions to the equation z + qz – p/ = , from which it follows that

s =


√

–
q


–
√

q


+

p


+



√

–
q


+
√

q


+

p


, ()

which, by using the change of variables p = –�/ and q = –�/, is written in the fol-
lowing form:

s =


 √

(


√

� –
√

�
 – �

 + 

√

� +
√

�
 – �



)
. ()

For this s quadratic equations () and () are solved, from which it follows that the zeros
of p are

λ =
a


+
√

a + s


+



√
a


– s –

Q

√

a + s
, ()

λ =
a


+
√

a + s


–



√
a


– s –

Q

√

a + s
, ()

λ =
a


–
√

a + s


+



√
a


– s +

Q

√

a + s
, ()

λ =
a


–
√

a + s


–



√
a


– s +

Q

√

a + s
, ()



Stević Advances in Difference Equations  (2017) 2017:140 Page 10 of 23

where

� = (ac – bd), ()

� = 
(
ac – abd + c), ()

Q = –a – c. ()

According to Lemma , we see that the nature of λi’s, i = , , depends on the signs of

� =



(
�

 – �

)
, ()

P = –a ()

and

D = ac – bd – a. ()

All zeros of p are different and none of them is equal to . By Lemma  we see that such
a situation appears if � �=  and p() �= . From () we see that � is certainly negative if
� < , that is, if ac < bd. For example, if a = , c =  and bd = , then � < , p() = – �=
 and

p(λ) = λ – λ – λ – .

Since due to (), P cannot be positive, p cannot have two pairs of complex-conjugate
zeros.

It is well known that in the case the general solution to () has the form

an = γλ
n
 + γλ

n
 + γλ

n
 + γλ

n
, n ∈N, ()

where γi, i = , , are constants.
By Lemma  we also have

∑

j=

λl
j

p′
(λj)

=  for l = ,  and
∑

j=

λ
j

p′
(λj)

= . ()

From this and (), it is obtained

an =
λn+


(λ – λ)(λ – λ)(λ – λ)

+
λn+


(λ – λ)(λ – λ)(λ – λ)

+
λn+


(λ – λ)(λ – λ)(λ – λ)

+
λn+


(λ – λ)(λ – λ)(λ – λ)

()

for n ≥ –.
Using () into () and applying () four times, we get

yn =
n–∑

j=

∑

i=

λ
j+
i

p′
(λi)

=
∑

i=

λ
i (λn

i – )
p′

(λi)(λi – )
, n ∈N, ()

since λi �= , i = , . In fact, () shows that () holds also for n = –j, j = , .
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All zeros of p are different and one of them is equal to . Polynomial p has  as a zero if
p() =  – a – c + ac – bd = , that is, if

(a – )(c – ) = bd. ()

Hence

p(λ) = λ – aλ – cλ + a + c – 

= (λ – )
(
λ + ( – a)λ + ( – a)λ +  – a – c

)
. ()

We may assume that λ = . To calculate the other three zeros of p, the following equation
should be solved:

λ + ( – a)λ + ( – a)λ +  – a – c = . ()

By using the change of variables λ = s + a–
 , equation () is transformed in () with

p =
( – a)(a + )


and q =  – a – c –

(a – )


–

(a – )


. ()

Hence

λj =
a – 


+ sj, j = , , ()

where

sj =


√

–
q


–
√

q


+

p


εj– +



√

–
q


+
√

q


+

p


εj–, j = , , ()

ε is a complex zero of the equation t = , and p and q are given in ().
For example, if a =  and c = , then bd =  and � �= , so by Lemma , p has four

different zeros such that exactly one of them is equal to , and

p(λ) = λ – λ – λ +  = (λ – )
(
λ – λ – λ – 

)
. ()

Formula () holds with λ = . Further, we have

yn =
n–∑

j=


p′

()
+

n–∑

j=

∑

i=

λ
j+
i

p′
(λi)

=
n

 – a – c
+

∑

i=

λ
i (λn

i – )
p′

(λi)(λi – )
()

for n ∈N. In fact, using () it is shown that () also holds for n = –j, j = , .
From this and by Corollary , we get the following result.

Corollary  Assume that a, b, c, d ∈ Z, ac �= bd, � �= , and α,β , z–, z–, z, w–, w–, w ∈
C \ {}. Then the following statements are true.
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(a) If (a – )(c – ) �= bd, then the general solution to system () is given by () and (),
where (an)n≥– is given by (), (yn)n≥– is given by (), while λj, j = , , are given by
()-().

(b) If (a – )(c – ) = bd and  – a – c �= , then the general solution to system () is given
by () and (), where (an)n≥– is given by () with λ = , (yn)n≥– is given by (),
λ = , while λj, j = , , are given by () and ().

p has exactly one double zero which is different from . If a = , c =  and bd = –, then

p(λ) = λ – λ +  = (λ – )(λ + λ + 
)
,

is a polynomial with exactly one double zero λ, =  �=  and two complex conjugate zeros
λ, = – ± i

√
.

In such cases, that is, when λ = λ, λi �= λj,  ≤ i, j ≤ , we have

an = (γ + γn)λn
 + γλ

n
 + γλ

n
, n ∈N, ()

where γi, i = , , are constants, and the solution satisfying () can be obtained, for exam-
ple, by letting λ → λ in (), which yields (see [])

an =
λn+

 ((n + )(λ – λ)(λ – λ) – λ(λ – λ – λ))
(λ – λ)(λ – λ)

+
λn+


(λ – λ)(λ – λ)

+
λn+


(λ – λ)(λ – λ)

. ()

Combining () and () and using Lemma , we have

yn =
n–∑

j=

(
λ

j+
 ((j + )(λ – λ)(λ – λ) – λ(λ – λ – λ))

(λ – λ)(λ – λ)

+
λ

j+


(λ – λ)(λ – λ)
+

λ
j+


(λ – λ)(λ – λ)

)

=
λ

 – nλn+
 + (n – )λn+


(λ – λ)(λ – λ)( – λ)

+
(λ

 – λ
λ – λ

λ + λ
λλ)(λn

 – )
(λ – λ)(λ – λ)(λ – )

+
λ

(λn
 – )

(λ – λ)(λ – λ)(λ – )
+

λ
(λn

 – )
(λ – λ)(λ – λ)(λ – )

. ()

p has exactly one double zero equal to . Polynomial p has  as a double zero if ()
holds and

p′
() =  – a – c = , ()

that is, c =  – a, which implies that

p(λ) = λ – aλ + (a – )λ +  – a = (λ – )(λ – (a – )λ +  – a
)
. ()
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It will be exactly a double zero if p′′
() =  – a �= , that is, a �= .

We may assume that λ, = . Then from () it follows that

λ, =
a –  ± √

a + a – 


. ()

In this case we have ([])

an =
n( – λ)( – λ) + λλ – λ – λ + 

( – λ)( – λ)

+
λn+


(λ – )(λ – λ)

+
λn+


(λ – )(λ – λ)

()

and

yn =
n–∑

j=

(
j( – λ)( – λ) + λλ – λ – λ + 

( – λ)( – λ)

+
λ

j+


(λ – )(λ – λ)
+

λ
j+


(λ – )(λ – λ)

)

=
(n – )n

( – λ)( – λ)
+

n(λλ – λ – λ + )
( – λ)( – λ)

+
λ

(λn
 – )

(λ – )(λ – λ)
+

λ
(λn

 – )
(λ – )(λ – λ)

. ()

Corollary  Assume that a, b, c, d ∈ Z, ac �= bd, � =  and α,β , z–, z–, z, w–, w–, w ∈
C \ {}. Then the following statements are true.

(a) If only one of the zeros of characteristic polynomial () is double, say λ = λ and
(a – )(c – ) �= bd, then the general solution to system () is given by () and (),
where (an)n≥– is given by (), while (yn)n≥– is given by ().

(b) If only a double zero of characteristic polynomial () is equal to , say λ = λ = ,
then the general solution to system () is given by () and (), where (an)n≥– is
given by (), (yn)n≥– is given by (), while λ, are given by ().

p has two pairs of different double zeros. By Lemma  in this case it must be D =  which
is equivalent to bd = ac – a and � =  which is equivalent to


(


(

ac – 
(




ac –



a

)))

=
(


(

ac – a
(




ac –
a



)

+ c
))

,

that is,

a = ±
(




a + ac + c
)

.

Hence




a + ac + c = , ()
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or

(
a + c

) = . ()

If it were a =  or c = , then from () or () we would get a = c = , which would imply
bd = , which is impossible. If it were a, c ∈ Z \ {}, from () we would get a/c = (– ±
i)/, which is also not possible.

If ac �= , then from () it follows that c = –a/. Let λ = at, then

p(λ) = λ – aλ +
a


λ +

a



= a
(

t – t +
t


+




)

= at
((

t –

t

)

–
(

t –

t

)

+



)

= at
(

t –

t

–



)

= a
(

t –
t


–



)

=
(

λ –
aλ


–

a



)

.

Thus

λ, =
a


( ± √
) ()

are two double zeros of p for each a �= .
Hence, for every a �= , polynomial p has two pairs of equal zeros. It will have integer

coefficients only if a = â, for some â ∈ Z \ {}. Note that since a( ± √
)/ �= , for every

a ∈ Z,  cannot be a double zero of p.
In such cases the general solution to () has the following form:

an = (γ + γn)λn
 + (γ + γn)λn

, n ∈N, ()

where γi, i = , , are constants, and the solution satisfying () is ([])

an =
λn+

 (n(λ – λ) + λ
 – λλ + λ

)
(λ – λ)

+
λn+

 (n(λ – λ) + λ
 – λλ + λ

)
(λ – λ) , ()

from which along with () and by Lemma , it follows that

yn =
n–∑

j=

(
λ

j+
 (j(λ – λ) + λ

 – λλ + λ
)

(λ – λ)

+
λ

j+
 (j(λ – λ) + λ

 – λλ + λ
)

(λ – λ)

)
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=
λ

 – nλn+
 + (n – )λn+


(λ – λ)( – λ) +

(λ
 – λ

λ + λ
λ


)(λn

 – )
(λ – λ)(λ – )

+
λ

 – nλn+
 + (n – )λn+


(λ – λ)( – λ) +

(λ
 – λλ


 + λ

λ

)(λn

 – )
(λ – λ)(λ – )

. ()

Corollary  Assume that a, b, c, d ∈ Z, ac �= bd, � = D = , and α,β , z–, z–, z, w–, w–,
w ∈C \ {}. Then the following statements are true.

(a) If (a – )(c – ) �= bd, then the general solution to system () is given by () and (),
where (an)n≥– is given by (), (yn)n≥– is given by (), while λ, are given by ().

(b) Characteristic polynomial () cannot have two pairs of double zeros such that one
of them is equal to .

p has a triple zero. In this case it must be � = � =  which is equivalent to � = � = ,
that is, if bd = ac/ and

� = c
(
a + c

)
/.

If c = , then bd =  and consequently ac = bd, which is impossible. If c = –a/, then
bd = –a/. Let λ = at, then

p(λ) = λ – aλ +
a


λ –

a



= a
(

t – t +
t


–




)

= a
(

t – t +



)(

t –



)

= a
(

t –



)(

t +



)

=
(

λ –
a


)(

λ +
a


)

.

Hence, for every a �= , a/ is a triple zero of p, and p cannot have a zero of the fourth
order. For a = â, â ∈ Z \ {}, polynomial p has integer coefficients, and for a =  it has
a triple zero equal to , which could be also obtained by further analyzing the polynomial
in ().

Let λj, j = , , be the zeros of polynomial p. In the case, we may assume that λ = λ = λ

and λ �= λ. Then, in the case, the general solution to () has the following form:

an =
(
c + cn + cn)λn

 + cλ
n
, n ∈N, ()

where ci, i = , , are arbitrary constants.
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Since () must hold, the following system also holds:

c + c = ,

c – c + c + cλ
– = ,

c – c + c + cλ
– = ,

c – c + c + cλ
– = ,

()

where λ = λ/λ.
By solving system (), we get

c =  –
λ

(λ – ) , c =
 – λ

(λ – ) , c =


( – λ)
, c =

λ

(λ – ) ,

from which along with () it follows that

an =
(

 –
λ

(λ – ) +
 – λ

(λ – ) n +


( – λ)
n

)

λn
 +

λ

(λ – ) λn
.

Hence, if λ = , we have

an =  –
λ


(λ – ) +

 – λ

(λ – ) n +


( – λ)
n +

λn+


(λ – ) ()

for n ≥ –, whereas if λ �= , we have

an =
(

 –
λ


(λ – λ) +

λ(λ – λ)
(λ – λ) n +

λ

(λ – λ)
n

)

λn
 +

λn+


(λ – λ) ()

for n ≥ –.
Combining () and (), using Lemma  and by some calculation, we get

yn =
(

 –
λ


(λ – )

)

n +
( – λ)(n – )n

(λ – ) +
(n – )n(n – )

( – λ)

+
λ

(λn
 – )

(λ – ) ()

(recall that λ cannot be equal to  in this case).
Combining () and (), using Lemma  and by some calculation, we get

yn =
(

 –
λ


(λ – λ)

)
λn

 – 
λ – 

+
λ

 (λ – λ)( – nλn–
 + (n – )λn

 )
(λ – λ)( – λ)

+
λ

 ( + λ – nλn–
 + (n – n – )λn

 – (n – )λn+
 )

(λ – λ)( – λ)

+
λ

(λn
 – )

(λ – λ)(λ – )
()

for n ∈N.
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Corollary  Assume that a, b, c, d ∈ Z, ac �= bd � = � = , D �= , and α,β , z–, z–, z,
w–, w–, w ∈C \ {}. Then the following statements are true.

(a) If the triple zero of polynomial () is different from , then the general solution to
system () is given by () and (), where (an)n≥– is given by (), (yn)n≥– is given
by (), λj = a/, j = ,  and λ = –a/.

(b) If the triple zero of polynomial () is equal to , say λ = λ = λ = , which is
equivalent to a = , c = – and bd = –, then the general solution to system () is
given by () and (), where (an)n≥– is given by (), (yn)n≥– is given by (), while
λ = –.

Now we deal with the case ac – bd = , c �= .

Theorem  Assume that a, b, c, d ∈ Z, ac = bd, c �=  and α,β , z–, z–, z, w–, w–, w ∈
C \ {}. Then system () is solvable in closed form.

Proof As above, the condition α,β , w–, w–, w, z–, z–, z ∈ C \ {} along with () implies
znwn �= , n ≥ –. Hence, ()-() hold, which along with the condition ac = bd yields

zn+ = α–cβbza
n+zc

n–, n ≥ . ()

Let δ = α–cβb,

a = a, b = , c = c, y = . ()

Then equation () can be written as

zn+ = δy za
n+zb

n zc
n–, n ≥ . ()

Further, from (), we get

zn+ = δy
(
δza

n zb
n–zc

n–
)a zb

n zc
n–

= δy+a zaa+b
n zba+c

n– zca
n–

= δy za
n zb

n–zc
n–, ()

for n ≥ , where

a := aa + b, b := ba + c, c := ca, y := y + a. ()

Suppose

zn+ = δyk zak
n+–kzbk

n+–kzck
n–k ()

for k ∈N \ {} and every n ≥ k + , and

ak = aak– + bk–, bk = bak– + ck–, ck = cak–, ()
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yk = yk– + ak–. ()

Then, by using relation () with n → n – k into (), we obtain

zn+ = δyk
(
δza

n+–kzb
n–kzc

n–k–
)ak zbk

n+–kzck
n–k

= δyk +ak zaak +bk
n+–k zbak +ck

n–k zcak
n–k–

= δyk+ zak+
n+–kzbk+

n–k zck+
n–k–, ()

for n ≥ k + , where

ak+ := aak + bk , bk+ := bak + ck , ck+ := cak , ()

yk+ := yk + ak . ()

From (), (), ()-() and the induction is obtained that ()-() hold for k, n ∈
N such that  ≤ k ≤ n – .

Setting k = n –  in () and employing (), we obtain

zn+ = δyn– zan–
 zbn–

 zcn–


=
(
α–cβb)yn–(

α+a+a
βb(+a)zabd

– zbd
–za

 wabc
– wbc

–wab


)an–

× (
α+aβbzbd

–za
 wbc

–wab


)bn–(
αza

wb

)cn–

= α(–c)yn–+(+a+a)an–+(+a)bn–+cn–βbyn–+b(+a)an–+bbn–

× zabdan–+bdbn–
– zbdan–

– zaan–+abn–+acn–


× wabcan–+bcbn–
– wbcan–

– waban–+abbn–+bcn–


= αyn+–cyn–βbyn+ zbdan
– zbdan–

– zaan+
 wbcan

– wbcan–
– wban+

 ()

for n ≥ .
From (), we get

ak = aak– + bak– + cak–, k ≥ , ()

which along with bk = ak+ – aak and ck = cak– implies that bk and ck also satisfy the
equation.

Using the condition c = c �=  along with () and (), we easily get

a– = , a– = , a =  ()

and

y– = y– = y = , y = . ()
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From (), () and since y = a, we obtain

yk =
k–∑

j=

aj, k ∈ N. ()

It is clear that closed-form formulas for solutions to () can be easily found, from
which along with () and Lemma  closed-form formulas for yn can be also found, from
which along with () the solvability of () follows.

On the other hand, we also have that ()-() hold, from which along with the condition
ac = bd it follows that

wn+ = αdβ–awa
n+wc

n+ ()

for n ∈N.
As above, it can be proved that for all k, n ∈N such that  ≤ k ≤ n

wn+ = ηyk wak
n+–kwbk

n+–kwck
n+–k , n ≥ k – , ()

where η = αdβ–a, (ak)k∈N, (bk)k∈N and (ck)k∈N satisfy () and (), while (yk)k∈N satisfies
() and ().

From () with k = n +  and by using (), we get

wn+ = ηyn+ wan+
 wbn+

 wcn+


=
(
αdβ–a)yn+(

βwc
zd


)an+(

βwc
–zd

–
)bn+(

βwc
–zd

–
)cn+

= αdyn+β (–a)yn++an++bn++cn+ wccn+
– wcbn+

– wcan+


× zdcn+
– zdbn+

– zdan+


= αdyn+βyn+–ayn+ wc(an+–aan+)
– wc(an+–aan+)

– wcan+


× zd(an+–aan+)
– zd(an+–aan+)

– zdan+
 ()

for n ∈N.
From this and since the closed-form formulas for (ak)k≥– and (yk)k≥– can be found as

above, the solvability of () follows. It is easily checked that () and () present a
solution to system () in this case. �

Now we conduct a detailed analysis of the form of sequences ak and yk appearing in the
proof of Theorem . The reason why equation () is solvable when c �=  is based on the
fact that its characteristic polynomial

p(λ) = λ – aλ – c ()

is of the third degree, so, solvable by radicals.
By using the change of variables λ = s + a

 , the equation p(λ) =  is transformed into the
following one:

s –
a


s –

a + c


= . ()
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By using formula (), we get () with

� = a and � = a + c. ()

Hence

λj =
a


+


 √

(
εj 

√

� –
√

�
 – �

 + εj 

√

� +
√

�
 – �



)
, j = , , ()

where ε is a complex third root of the unity, are the zeros of p.
All zeros of p are different and none of them is equal to . In this case it must be � �=

, that is, �
 �= �

, from which it follows that a �= (a + c), which is equivalent
to c(a + c) �= . Hence, if  �= c �= –a/, then all the zeros of p are different. If,
additionally, p() �= , that is, a + c �= , then none of them is equal to . For example, such
a situation appears if a = c = k ∈N.

All zeros of p are different and one of them is equal to . Polynomial p will have a zero
equal to  if a + c = , so that

p(λ) = λ – aλ + a –  = (λ – )
(
λ – (a – )λ – (a – )

)
.

Since p′
() =  – a /∈ Z, for every a ∈ Z, it follows that  cannot be a double zero of p.

Solving the equation p(λ) = , we get λ = ,

λ, =
a –  ± √

a + a – 


. ()

The general solution to () in this case has the following form:

an = αλ
n
 + αλ

n
 + αλ

n
, n ∈N, ()

where αi, i = , , are constants, which due to c = c �=  can be prolonged for every non-
positive index.

From Lemma  with p(t) =
∏

j=(t – λj), we have

∑

j=

λl
j

p′
(λj)

=  for l = ,  and
∑

j=

λ
j

p′
(λj)

= . ()

This along with () implies that

an =
λn+


(λ – λ)(λ – λ)

+
λn+


(λ – λ)(λ – λ)

+
λn+


(λ – λ)(λ – λ)

()

for n ≥ –.
From () and () and the fact a = , we have

yn =
n–∑

i=

(
λi+


(λ – λ)(λ – λ)

+
λi+


(λ – λ)(λ – λ)

+
λi+


(λ – λ)(λ – λ)

)

()

for n ∈N.
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If λi �= , i = , , then from formula () it follows that

yn =
λ

 (λn
 – )

(λ – λ)(λ – λ)(λ – )
+

λ
(λn

 – )
(λ – λ)(λ – λ)(λ – )

+
λ

(λn
 – )

(λ – λ)(λ – λ)(λ – )
()

for n ∈N (in fact, () holds for every n ≥ –).
If one of the zeros is equal to one, say λ, then  �= λ �= λ �= , and we have

yn =
λ

 (λn
 – )

(λ – λ)(λ – ) +
λ

(λn
 – )

(λ – λ)(λ – ) +
n

(λ – )(λ – )
()

for n ∈N (in fact, () holds for every n ≥ –).

Corollary  Assume that a, b, c, d ∈ Z, ac = bd, c �= , �
 �= �

 and α,β , z–, z–, z, w–,
w–, w ∈C \ {}. Then the following statements are true.

(a) If a + c �= , then the general solution to () is given by () and (), where (an)n≥–

is given by (), (yn)n≥– is given by (), while λj, j = ,  are given by ().
(b) If one of the zeros of characteristic polynomial () is equal to , say λ, i.e., if

a + c =  and a �= , then the general solution to () is given by formulas () and
(), where (an)n≥– is given by () with λ = , (yn)n≥– is given by (), and λ,

are given by ().

One of the zeros is double. In this case it must be �
 = �

, that is, c(a + c) = .
Since the case c �=  is excluded, it must be c = –a/, from which it follows that

p(λ) = λ – aλ +



a.

Since in this case it must be also p′
(λ) = , it follows that λ, = a/ is a double zero and

p(λ) =
(

λ –
a


)(

λ +
a


)

.

In order that c ∈ Z, it is clear that it must be a = â for some â ∈ Z. Since a/ �=  when
a ∈ Z, the polynomial cannot have  as a double zero, and consequently cannot have  as
a triple zero.

If λ �= λ = λ, then the general solution to () has the following form:

an = α̂λ
n
 + (α̂ + α̂n)λn

, n ∈N, ()

where α̂i ∈ R, i = , . Since, in our case, condition () must be satisfied, the solution
(an)n≥– to () can be found by letting λ → λ in (), so that

an =
λn+

 + (λ – λ + n(λ – λ))λn+


(λ – λ) ()

for n ≥ – (see []).
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From () and () and the fact that a = , we have

yn =
n–∑

j=

aj =
n–∑

j=

λ
j+
 + (λ – λ + j(λ – λ))λj+


(λ – λ) ()

for every n ∈N.
From () and Lemma , it follows that

yn =
λ

 (λn
 – )

(λ – λ)(λ – )
+

(λ – λ)λ(λn
 – )

(λ – λ)(λ – )

+
λ

( – nλn–
 + (n – )λn

)
(λ – λ)(λ – ) ()

for n ∈N (in fact, () holds also for every n ≥ –).
If we assume that λ =  and λ = λ �= , which is possible if a = –, then from () it

follows that

yn =
n

(λ – ) +
(λ – )λ(λn

 – )
(λ – ) +

λ
( – nλn–

 + (n – )λn
)

(λ – ) ()

for every n ∈N (in fact, () holds also for every n ≥ –).

Corollary  Assume that a, b, c, d ∈ Z, ac = bd, c �= , �
 = �

, and α,β , z–, z–, z, w–,
w–, w ∈C \ {}. Then the following statements are true.

(a) If a + c �= , then the general solution to () is given by () and (), where (an)n≥–

is given by (), (yn)n≥– is given by (), λ = –a/ and λ, = a/.
(b) If only one of the zeros of polynomial () is equal to one, say λ, that is, if a = –

and c = , then the general solution to system () is given by () and (), where
(an)n≥– is given by () with λ = , (yn)n≥– is given by (), λ =  and λ, = –.

(c) It is not possible that two zeros of polynomial () are equal to one.

Triple zero case. In this case it must be p(λ) = p′
(λ) = p′′

(λ) = . From p′′
(λ) =  it is

obtained that λ = a/. Since p′
(λ) = λ – aλ, we see that a/ is its root only if a = ,

which would imply that p(λ) = λ – c, but this polynomial has a triple zero if and only
if c = , which contradicts the assumption c �= . Hence, polynomial () cannot have a
triple zero.

Competing interests
The author declares that he has no competing interests.

Author’s contributions
The author has contributed solely to the writing of this paper. He read and approved the manuscript.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 28 February 2017 Accepted: 24 April 2017

References
1. Andruch-Sobilo, A, Migda, M: On the rational recursive sequence xn+1 = axn–1/(b + cxnxn–1). Tatra Mt. Math. Publ. 43,

1-9 (2009)



Stević Advances in Difference Equations  (2017) 2017:140 Page 23 of 23
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