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Abstract
In this paper, mathematical analysis is proposed on the synchronization problem for
stochastic reaction-diffusion Cohen-Grossberg neural networks with Neumann
boundary conditions. By introducing several important inequalities and using
Lyapunov functional technique, some new synchronization criteria in terms of
p-norm are derived under periodically intermittent control. Some previous known
results in the literature are improved, and some restrictions on the mixed
time-varying delays are removed. The influence of diffusion coefficients, diffusion
space, stochastic perturbation and control width on synchronization is analyzed by
the obtained synchronization criteria. Numerical simulations are presented to show
the feasibility of the theoretical results.

Keywords: synchronization; stochastic Cohen-Grossberg neural networks; spacial
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1 Introduction
Synchronization introduced by Pecora and Carrol [] means two or more systems which
are either chaotic or periodic and share a common dynamic behavior. Synchronization
problems of Cohen-Grossberg neural networks have been widely researched because of
their extensive applications in secure communication, information processing and chaos
generators design. Up to now, various control methods have been introduced to achieve
synchronization of neural networks including sampled data control [], pinning control
[], adaptive control [], sliding mode control [], impulsive control [], periodically in-
termittent control [–], and so on.

In the process of signal transmission, an external control should be loaded when the
signal becomes weak due to diffusion, and be unloaded when the signal strength reaches
the upper bound considering the cost. Hence, discontinuous control methods including
impulsive control and intermittent control are more economical and effective than contin-
uous control methods. For impulsive control, the external control is added only at certain
points and the control width is zero, but the control width of the intermittent control is
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non-zero. Therefore, intermittent control can be seen as the transition from impulsive
control to continuous control, and it has the advantages of these two methods.

Many results with respect to the synchronization of Cohen-Grossberg neural networks
have been obtained based on periodically intermittent control in recent years (see, for
example, [–]). In [], the exponential synchronization of Cohen-Grossberg neural
networks with time-varying delays was discussed based on periodically intermittent con-
trol:
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where u(t) = (u(t), u(t), . . . , un(t))T denotes the state of the drive system at time t; v(t) =
(v(t), v(t), . . . , vn(t))T denotes the state of the response system at time t; αi(·) represents
the amplification function of the ith neuron; βi(·) is the appropriately behaved function of
the ith neuron; fj(·) denotes the activation function of the jth neuron; aij is the connection
strength between the jth neuron and the ith neuron; bij is the discrete time-varying delay
connection strength of the jth neuron on the ith neuron;  < τj(t) ≤ τ is the discrete time-
varying delay of jth neuron and corresponds to finite speed of axonal signal transmission at
time t; Ji denotes the input from outside of the networks; Ki(t) is a periodically intermittent
controller. The exponential synchronization criteria were obtained by using some analysis
techniques.

Discrete time-varying delays were considered in []. In fact, the neural signals propa-
gate along a multitude of parallel pathways with a variety of axon sizes and lengths over a
period of time. In order to reduce the influence of the distant past behaviors of the state,
distributed delays are introduced to describe this property. In addition, stochastic effects
on the synchronization should be considered in real neural networks since synaptic trans-
mission is completed by releasing random fluctuations from neurotransmitters or other
random causes []. Besides, dynamic behaviors of neural networks derive from the inter-
actions of neurons, which is not only dependent on the time of each neuron but also its
space position []. Hence, it is essential to study the state variables varying with the time
and space variables, especially when electrons are moving in nonuniform electromagnetic
fields. Such phenomena can be described by reaction-diffusion equations. In conclusion,
more realistic neural networks should consider the effects of mixed time-varying delays,
stochastic perturbation and spatial diffusion.

In [], Gan studied the synchronization problem for Cohen-Grossberg neural networks
with mixed time-varying delays, stochastic noise disturbance and spatial diffusion:
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where u(t, x) = (u(t, x), u(t, x), . . . , un(t, x))T denotes the state of the drive system at time t
and in space x; v(t, x) = (v(t, x), v(t, x), . . . , vn(t, x))T denotes the state of the response sys-
tem at time t and in space x; � = {x = (x, x, . . . , xl∗ )T||xk| < mk , k = , , . . . , l∗} ⊂ Rl∗ is a
bound compact set with smooth boundary ∂� and mes � > ; e(t, x) = (e(t, x), e(t, x), . . . ,
en(t, x)) = v(t, x) – u(t, x) is the synchronization error signal; dij is the distributed delay
connection strength between the jth neuron and the ith neuron; fj(·), gj(·) and hj(·) de-
note the activation functions; Dik >  is the diffusion coefficient along the ith neuron;
 < τ ∗

ij (t) ≤ τ ∗ is the distributed time-varying delay between the jth neuron and the ith
neuron; σ = (σij)n×n is the noise intensity matrix; Ki(t, x) is an intermittent controller;
ω(t) = (ω(t),ω(t), . . . ,ωn(t))T ∈ R

n is the stochastic disturbance which is a Brownian mo-
tion defined on the complete probability space (�,F ,P) (where � is the sample, F is the
σ -algebra of subsets of the sample space and P is the probability measure on F ), and
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where E{·} is the mathematical expectation operator with respect to the given probability
measure P . By using Lyapunov theory and stochastic analysis methods, sufficient condi-
tions were given to realize the exponential synchronization based on p-norm.

The exponential synchronization criteria obtained in [] assumed that τ̇ij(t) ≤ 	 <  and
τ̇ ∗

ij (t) ≤ 	∗ <  for all t , that is, the time-varying delays were slowly varying delays. In fact,
the continuous varying of delays may be slow or fast. Hence, these restrictions are un-
necessary and impractical. Furthermore, the boundary conditions in [] are assumed to
be Dirichlet boundary conditions. In engineering applications, such as thermodynamics,
Neumann boundary conditions need to be considered. As far as we know, there are few
results concerning the synchronization of reaction-diffusion stochastic Cohen-Grossberg
neural networks with Neumann boundary conditions.

Based on the above discussion, we are concerned with the combined effects of mixed
time-varying delays, stochastic perturbation and spatial diffusion on the exponential syn-
chronization of Cohen-Grossberg neural networks with Neumann boundary conditions
in terms of p-norm via periodically intermittent control to improve the previous results.
To this end, we discuss the following neural networks:
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where 
 =
∑l∗

k=
∂

∂x
k

is the Laplace operator; Di >  is the diffusion coefficient along the
ith neuron.

The boundary conditions and the initial values of system (.) take the form
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System (.) is called drive system. The response system is described in the following:

dvi(t, x) =

{

Di
vi(t, x) – αi
(
vi(t, x)

)
[

βi
(
vi(t, x)

)
–

n∑

j=

aijfj
(
vj(t, x)

)

–
n∑

j=

bijgj
(
vj

(
t – τij(t), x

))
–

n∑

j=

dij

∫ t

t–τ∗
ij (t)

hj
(
vj(s, x)

)
ds + Ji

]

+ Ki(t, x)

}

dt

+
n∑

j=

σij
(
ej(t, x), ej

(
t – τij(t), x

)
, ej

(
t – τ ∗

ij (t), x
))

dωj(t). (.)

The boundary conditions and initial values of the response system (.) are given in the
following forms:
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where m ∈ N = {, , , . . .}, ki >  (i ∈ �) denote the control strength, T >  denotes the
control period and  < δ < T denotes the control width.

In this paper, the intermittent controller K(t, x) is designed to achieve exponential syn-
chronization of systems (.) and (.). The model is derived under the following assump-
tions.
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The organization of this paper is as follows. In Section , some definitions and lemmas

which will be essential to our derivation are introduced. In Section , by using Lyapunov
functional technique, some new criteria are obtained to achieve the exponential synchro-
nization of systems (.) and (.). Some numerical examples are given to verify the fea-
sibility of the theoretical results in Section . This paper ends with a brief conclusion in
Section .

2 Preliminaries
In this section, we propose some definitions and lemmas used in the proof of the main
results.

Definition . The response system (.) and the drive system (.) are exponential syn-
chronization under the periodically intermittent controller (.) based on p-norm if there
exist constants μ >  and M ≥  such that
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where u(t, x) and v(t, x) are solutions of systems (.) and (.) with differential initial func-
tions φ,ϕ ∈ C , respectively, and
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Proof According to the eigenvalue theory of elliptic operators, the Laplacian –
 on �

with the Neumann boundary conditions is a self-adjoint operator with compact inverse,
so there exists a sequence of nonnegative eigenvalues  = λ < λ < λ < · · · , (limi→∞ λi =
+∞) and a sequence of corresponding eigenfunctions ϑ(x),ϑ(x),ϑ(x), . . . for the Neu-
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Remark  If p = , the integral inequality (.) is the Poincaré integral inequality in [].
The smallest eigenvalue λ of the Neumann boundary problem (.) is determined by the
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boundary of � []. If � = {x = (x, x, . . . , xl∗ )T|m–
k ≤ xk ≤ m+

k , k = , , . . . , l∗} ⊂ Rl∗ , then
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3 Exponential synchronization criterion
In this section, the exponential synchronization criterion of the drive system (.) and the
response system (.) is obtained by designing the suitable T , δ and ki. For convenience,
the following denotations are introduced.
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where ξi, ζi, ρi, 	i, εi and ςi are positive constants.
Consider the following function:

F(ε) = ε – κ + weετ̄ ,

where ε ≥ , w = wτ
∗ + w + w, κ = mini∈�{κi}. If the following holds:

(H) κ > w, then F() < , and Fi(εi) → +∞ as εi → +∞. Noting that F(ε) is continuous
on [, +∞) and F ′(ε) > , using the zero point theorem, we obtain that there exists a unique
positive constant ε̄ such that F(ε̄) = .
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Theorem . Under assumptions (H)-(H), the response system (.) and the drive system
(.) are exponential synchronization under the periodically intermittent controller (.)
based on p-norm, if the following condition holds:

(H) θ > , ε̄ – (T–δ)θ
T > , where θ = κ + maxi∈�{–κi + pki}.

Proof Subtract (.) from (.), and we obtain the error system

dei(t, x) =

{

Di
ei –
[
αi

(
vi(t, x)

)
βi

(
vi(t, x)

)
– αi

(
ui(t, x)

)
βi

(
ui(t, x)

)]

+ αi
(
vi(t, x)

) n∑

j=

[
aijf ∗

j
(
ej(t, x)

)
+ bijg∗

j
(
ej
(
t – τij(t), x

))

+ dij

∫ t

t–τ∗
ij (t)

h∗
j
(
ej(s, x)

)
ds

]

+ α∗
i
(
ei(t, x)

) n∑

j=

[
aijfj

(
uj(t, x)

)
+ bijgj

(
uj

(
t – τij(t), x

))

+ dij

∫ t

t–τ∗
ij (t)

hj
(
uj(s, x)

)
ds – Ji

]
– kiei(t, x)

}

dt

+
n∑

j=

σij
(
ej(t, x), ej

(
t – τij(t), x

)
, ej

(
t – τ ∗

ij (t), x
))

dωj(t),

(t, x) ∈ [mT , mT + δ) × �, (.)

dei(t, x) =

{

Di
ei –
[
αi

(
vi(t, x)

)
βi

(
vi(t, x)

)
– αi

(
ui(t, x)

)
βi

(
ui(t, x)

)]

+ αi
(
vi(t, x)

) n∑

j=

[
aijf ∗

j
(
ej(t, x)

)
+ bijg∗

j
(
ej
(
t – τij(t), x

))

+ dij

∫ t

t–τ∗
ij (t)

h∗
j
(
ej(s, x)

)
ds

]

+ α∗
i
(
ei(t, x)

) n∑

j=

[
aijfj

(
uj(t, x)

)
+ bijgj

(
uj

(
t – τij(t), x

))

+ dij

∫ t

t–τ∗
ij (t)

hj
(
uj(s, x)

)
ds – Ji

]}

dt

+
n∑

j=

σij
(
ej(t, x), ej

(
t – τij(t), x

)
, ej

(
t – τ ∗

ij (t), x
))

dωj(t),

(t, x) ∈ [
mT + δ, (m + )T

) × �, (.)

where

ei(t, x) = vi(t, x) – ui(t, x),

α∗
i
(
ei(·, x)

)
= αi

(
vi(·, x)

)
– αi

(
ui(·, x)

)
,

f ∗
j
(
ej(·, x)

)
= fj

(
vj(·, x)

)
– fj

(
uj(·, x)

)
,
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g∗
j
(
ej(·, x)

)
= gj

(
vj(·, x)

)
– gj

(
uj(·, x)

)
,

h∗
j
(
ej(·, x)

)
= hj

(
vj(·, x)

)
– hj

(
uj(·, x)

)
.

Define

V (t) =
∫

�

n∑

i=

∣
∣ei(t, x)

∣
∣p dx. (.)

For (t, x) ∈ [mT , mT + δ) × �, by (.), Itô’s differential formula (.) and the Dini right-
upper derivative, we get

D+E
{

V (t)
}

≤ E

{∫

�

n∑

i=

{

p
∣
∣ei(t, x)

∣
∣p–

[
Di


∣
∣ei(t, x)

∣
∣ – ki

∣
∣ei(t, x)

∣
∣

–
∣∣αi

(
vi(t, x)

)
βi

(
vi(t, x)

)
– αi

(
ui(t, x)

)
βi

(
ui(t, x)

)∣∣

+
∣∣αi

(
vi(t, x)

)∣∣
n∑

j=

[
|aij|

∣∣f ∗
j
(
ej(t, x)

)∣∣ + |bij|
∣∣g∗

j
(
ej
(
t – τij(t), x

))∣∣

+ |dij|
∫ t

t–τ∗
ij (t)

∣
∣h∗

j
(
ej(s, x)

)∣∣ds
]

+
∣
∣α∗

i
(
ei(t, x)

)∣∣
n∑

j=

[
|aij|

∣
∣fj

(
uj(t, x)

)∣∣ + |bij|
∣
∣gj

(
uj

(
t – τij(t), x

))∣∣

+ |dij|
∫ t

t–τ∗
ij (t)

∣∣h∗
j
(
uj(s, x)

)∣∣ds + |Ji|
]]

+



p(p – )
∣
∣ei(t, x)

∣
∣p–

n∑

j=

σ 
ij
(
ej(t, x), ej

(
t – τij(t), x

)
, ej

(
t – τ ∗

ij (t), x
))

}

dx

}

.(.)

If (H)-(H) hold, it is easy to show that

D+E
{

V (t)
}

≤ E

{∫

�

n∑

i=

{

p
∣∣ei(t, x)

∣∣p–
[

Di

∣∣ei(t, x)

∣∣ – γi
∣∣ei(t, x)

∣∣ – ki
∣∣ei(t, x)

∣∣

+ α∗
i

n∑

j=

[
|aij|Lj

∣∣ej(t, x)
∣∣ + |bij|Mj

∣∣ej
(
t – τij(t), x

)∣∣ + |dij|
∫ t

t–τ∗
ij (t)

Nj
∣∣ej(s, x)

∣∣ds
]

+ ᾱi
∣∣ei(t, x)

∣∣
n∑

j=

[|aij|L∗
j + |bij|M∗

j + |dij|N∗
j τ ∗ + |Ji|

]
]

+



p(p – )
∣
∣ei(t, x)

∣
∣p–

n∑

j=

ηij
[∣∣ej(t, x)

∣
∣ +

∣
∣ej

(
t – τij(t)

)∣∣

+
∣
∣ej

(
t – τ ∗

ij (t)
)∣∣]

}

dx

}

. (.)
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From the boundary conditions (.), (.) and Lemma ., we get

p
∫

�

∣∣ei(t, x)
∣∣p–Di


∣∣ei(t, x)
∣∣dx

= p
∫

�

∣∣ei(t, x)
∣∣p–Di

l∗∑

k=

∂

∂xk

(
∂|ei(t, x)|

∂xk

)
dx

= p

(∫

∂�

∣∣ei(t, x)
∣∣p–Di

l∗∑

k=

∂|ei(t, x)|
∂xk

cos(xk , n) ds

–
∫

�

l∗∑

k=

Di
∂|ei(t, x)|

∂xk
· ∂|ei(t, x)|p–

∂xk
dx

)

= –p(p – )Di

∫

�

∣∣ei(t, x)
∣∣p–

l∗∑

k=

∂|ei(t, x)|
∂xk

· ∂|ei(t, x)|
∂xk

dx

= –p(p – )Di

∫

�

∣∣ei(t, x)
∣∣p–∣∣∇∣∣ei(t, x)

∣∣∣∣ dx

≤ –pλDi

∫

�

∣
∣ei(t, x)

∣
∣p dx. (.)

It follows from Lemma . that




(p – )p
∣∣ei(t, x)

∣∣p–
n∑

j=,j 	=i

ηij
∣∣ej(t, x)

∣∣

≤ 


(p – )(p – )
∣∣ei(t, x)

∣∣p
n∑

j=,j 	=i

	jηij + (p – )
n∑

j=,j 	=i

ηij

	
p–


j

∣∣ej(t, x)
∣∣p,




p(p – )
∣
∣ei(t, x)

∣
∣p–

n∑

j=

ηij
∣
∣ej

(
t – τij(t)

)∣∣

≤ 


(p – )(p – )
∣∣ei(t, x)

∣∣p
n∑

j=

εjηij + (p – )
n∑

j=

ηij

ε
p–


j

∣∣ej
(
t – τij(t)

)∣∣p,




p(p – )
∣
∣ei(t, x)

∣
∣p–

n∑

j=

ηij
∣
∣ej

(
t – τ ∗

ij (t)
)∣∣

≤ 


(p – )(p – )
∣∣ei(t, x)

∣∣p
n∑

j=

ςjηij + (p – )
n∑

j=

ηij

ς
p–


j

∣∣ej
(
t – τ ∗

ij (t)
)∣∣p,

(.)

α∗
i p

∣∣ei(t, x)
∣∣p–

n∑

j=,j 	=i

|aij|Lj
∣∣ej(t, x)

∣∣

≤ (p – )α∗
i
∣
∣ei(t, x)

∣
∣p

n∑

j=,j 	=i

Lj|aij|ξj + α∗
i

n∑

j=,j 	=i

Lj|aij|
ξ

p–
j

∣
∣ej(t, x)

∣
∣p,

α∗
i p

∣
∣ei(t, x)

∣
∣p–

n∑

j=

|bij|Mj
∣
∣ej

(
t – τij(t), x

)∣∣
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≤ (p – )α∗
i
∣∣ei(t, x)

∣∣p
n∑

j=

Mj|bij|ζj + α∗
i

n∑

j=

Mj|bij|
ζ

p–
j

∣∣ej
(
t – τij(t), x

)∣∣p,

α∗
i p

∣
∣ei(t, x)

∣
∣p–

n∑

j=

|dij|
∫ t

t–τ∗
ij (t)

Nj
∣
∣ej(s, x)

∣
∣ds

≤ (p – )α∗
i
∣∣ei(t, x)

∣∣p
n∑

j=

Nj|dij|ρj + α∗
i

n∑

j=

Nj|dij|
ρ

p–
j

[∫ t

t–τ∗
ij (t)

∣∣ej(s, x)
∣∣ds

]p

.

Substituting (.)-(.) into (.), we have

D+E
{

V (t)
}

≤ E

{∫

�

n∑

i=

{[

–pλDi – pγi – pki + pα∗
i |aii|Li + α∗

i

n∑

j=,j 	=i

Li|aji|
ξ

p–
i

+ pᾱi

n∑

j=

[|aij|L∗
j + |bij|M∗

j + |dij|N∗
j τ ∗ + |Ji|

]

+ (p – )α∗
i

n∑

j=,j 	=i

Lj|aij|ξj + (p – )α∗
i

n∑

j=

Mj|bij|ζj + (p – )α∗
i

n∑

j=

Nj|dij|ρj

+ (p – )
n∑

j=,j 	=i

ηji

	
p–


i

+



p(p – )ηii +



(p – )(p – )
n∑

j=,j 	=i

	jηij

+



(p – )(p – )
n∑

j=

εjηij +



(p – )(p – )
n∑

j=

ςjηij

]
∣
∣ei(t, x)

∣
∣p

+
n∑

j=

[
α∗

i
Mj|bij|
ζ

p–
j

+ (p – )
ηij

ε
p–


j

]∣∣ej
(
t – τij(t), x

)∣∣p

+ (p – )
n∑

j=

ηij

ς
p–


j

∣∣ej
(
t – τ ∗

ij (t)
)∣∣p + α∗

i

n∑

j=

Nj|dij|
ρ

p–
j

[∫ t

t–τ∗
ij (t)

∣∣ej(s, x)
∣∣ds

]p
}

dx

}

= E

{∫

�

n∑

i=

{

–κi
∣∣ei(t, x)

∣∣p +
n∑

j=

[
α∗

i
Mj|bij|
ζ

p–
j

+ (p – )
ηij

ε
p–


j

]∣∣ej
(
t – τij(t), x

)∣∣p

+ (p – )
ηij

ς
p–


j

∣∣ej
(
t – τ ∗

ij (t)
)∣∣p + α∗

i

n∑

j=

Nj|dij|
ρ

p–
j

[∫ t

t–τ∗
ij (t)

∣∣ej(s, x)
∣∣ds

]p
}

dx

}

≤ E
{

–κV (t) + wV (t)
}

, (.)

where

V (t) = sup
s∈[t–τ̄ ,t]

V (s) = sup
s∈[t–τ̄ ,t]

∫

�

n∑

i=

∣∣ei(s, x)
∣∣p dx.

Similarly, for (t, x) ∈ [mT + δ, (m + )T) × �, we derive that

D+E
{

V (t)
} ≤ E

{
σV (t) + wV (t)

}
. (.)
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Denote Q(t) = H(t) – hU , where

H(t) = eε̄tV (t), U = sup
s∈[–τ̄ ,]

V (s), h > , t ≥ .

Evidently,

Q(t) < , ∀t ∈ [–τ̄ , ]. (.)

Now, we prove that

Q(t) < , ∀t ∈ [, δ). (.)

Otherwise, there exists t ∈ [, δ) such that

Q(t) = , D+E
{

Q(t)
} ≥ , Q(t) < , ∀t ∈ [–τ̄ , t). (.)

It follows from (.) that

D+E
{

Q(t)
}

= ε̄H(t) + eε̄t D+E
{

V (t)
}|t

≤ ε̄H(t) + eεt
(
–κV (t) + wV (t)

)

= (ε̄ – κ)H(t) + weε̄t V (t). (.)

By (.), we conclude that

V (t) < sup
s∈[t–τ̄ ,t]

hUe–ε̄s ≤ H(t)e–ε̄(t–τ̄ ). (.)

Hence, we know from (.) and (.) that

D+E
{

Q(t)
}

<
(
ε̄ – κ + weε̄τ̄

)
H(t) = , (.)

which contradicts (.). Then (.) holds.
Next, we show that

Q̃(t) = H(t) – hUe(t–δ)θ < , t ∈ [δ, T). (.)

Otherwise, there exists t ∈ [δ, T) such that

Q̃(t) = , D+E
{

Q̃(t)
} ≥ , Q̃(t) < , ∀t ∈ [δ, t). (.)

By (.), we have

V (t) = e–ε̄t hUe(t–δ)θ , V (t) < hUe(t–δ)θ e–ε̄t , ∀t ∈ [δ, t). (.)

For τ̄ > , if (t – τ̄ ) ∈ [δ, t), we derive from (.) that

V (t) < sup
s∈[t–τ̄ ,t]

hUe(s–δ)θ e–ε̄s < e–ε̄(t–τ̄ )hUe(t–δ)θ = eε̄τ̄ V (t).
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If t – τ̄ ∈ [–τ̄ , δ), by (.) and (.), we see that

V (t) = max
{

sup
s∈[t–τ̄ ,δ)

V (s), sup
s∈[δ,t]

V (s)
}

< max
{

sup
s∈[t–τ̄ ,δ)

hUe–ε̄s, sup
s∈[δ,t]

hUe(s–δ)θ e–ε̄s
}

≤ max
{

V (t)eε̄τ̄ e–(t–δ)θ , V (t)eε̄(t–δ)}

< max
{

V (t)eε̄τ̄ , V (t)eε̄(t–δ)}

= eε̄τ̄ V (t).

Therefore, for any τ̄ > ,

V (t) < eε̄τ̄ V (t). (.)

Then, we conclude from (.), (.) and (.) that

D+E
{

Q̃(t)
} ≤ E

{
ε̄H(t) + eε̄t

(
σV (t) + wV (t)

)
– θhUe(t–δ)θ}

< E
{
ε̄H(t) + eε̄tσV (t) + eε̄t weε̄τ̄ V (t) – θhUe(t–δ)θ}

= E
{(

ε̄ + σ + weε̄τ̄ – θ
)
H(t)

}

= E
{(

ε̄ – κ + weε̄τ̄
)
H(t)

}
= ,

which contradicts (.). Then equality (.) holds. That is, for t ∈ [δ, T),

H(t) < hUe(t–δ)θ < hUe(T–δ)θ .

On the other hand, it follows from (.) and (.) that for t ∈ [–τ̄ , δ),

H(t) < hU < hUe(T–δ)θ .

Therefore, for all t ∈ [–τ̄ , T),

H(t) < hUe(T–δ)θ .

Similar to the proof of (.) and (.), respectively, we can show that

H(t) < hUe(T–δ)θ , t ∈ [T , T + δ),

H(t) < hUe(T–δ)θ e(t–(T+δ))θ = hUe(t–δ)θ , t ∈ [T + δ, T)

Using the mathematical induction method, the following inequalities can be proved to be
true for any nonnegative integer l.

H(t) ≤ hUel(T–δ)θ , t ∈ [lT , lT + δ). (.)

H(t) ≤ hUe(t–(l+)δ)θ , t ∈ [
lT + δ, (l + )T

)
. (.)
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If t ∈ [lT , lT + δ), then l ≤ t/T , we derive from (.) that

H(t) < hUe(T–δ)θ t/T .

If t ∈ [lT + δ, (l + )T), then l +  > t/T , we conclude from (.) that

H(t) < hUe(t–tδ/T)θ = hUe(T–δ)θ t/T .

Hence, for any t ∈ [, +∞),

H(t) < hUe(T–δ)θ t/T . (.)

Note that

U = sup
s∈[–τ̄ ,]

V (s) =
∫

�

n∑

i=

sup
–τ̄≤s<

∣
∣ei(t, x)

∣
∣p dx = ‖ψ – φ‖p

p,

V (t) =
∫

�

n∑

i=

∣∣ei(t, x)
∣∣p dx =

∥∥v(t, x) – u(t, x)
∥∥p

p.

(.)

From (.) and (.), we have

∥
∥v(t, x) – u(t, x)

∥
∥

p < h

p ‖ψ – φ‖p

pe–μt ,

where

μ =

p

[
ε̄ –

(T – δ)θ
T

]
> .

Hence, the response system (.) and the drive system (.) are exponential synchroniza-
tion under the periodically intermittent controller (.) based on p-norm. This completes
the proof of Theorem .. �

Remark  In this paper, by introducing the important inequality (.) in Lemma . and
using Lyapunov functional theory, the exponential synchronization criteria relying on dif-
fusion coefficients and diffusion space are derived for the proposed Cohen-Grossberg neu-
ral networks with Neumann boundary conditions under the periodically intermittent con-
trol. References [–] also researched the synchronization of reaction-diffusion neural
networks with Neumann boundary conditions. The corresponding synchronization cri-
teria obtained in these papers are all irrelevant to the diffusion coefficients and diffusion
space. The influence of the reaction-diffusion terms on the synchronization of neural net-
works cannot be found. Hence, our results have wider application prospects.

Remark  In [, ] and [], the authors have obtained the exponential synchronization
criteria for neural networks by assuming that τ̇ij(t) ≤ 	 <  and τ̇ ∗

ij (t) ≤ 	∗ <  for all t. These
restrictions are removed in this paper. Therefore, the synchronization criteria obtained in
this paper are less conservative.
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4 Numerical simulations
In this section, some examples are given to demonstrate the feasibility of the proposed
synchronization criteria in Theorem ..

System (.) with n = , k =  takes the form

∂ui(t, x)
∂t

= Di
∂ui(t, x)

∂x – αi
(
ui(t, x)

)
[

βi
(
ui(t, x)

)
–

∑

j=

aijfj
(
uj(t, x)

)

–
∑

j=

bijgj(uj
(
t – τ (t), x

)
–

∑

j=

dij

∫ t

t–τ∗(t)
hj

(
uj(s, x)

)
ds

]

, (.)

where α(u(t, x)) = . + .
+u

 (t,x) , α(u(t, x)) =  + .
+u

(t,x) , β(u(t, x)) = .u(t, x),
β(u(t, x)) = .u(t, x), fj(uj(t, x)) = gj(uj(t, x)) = hj(uj(t, x)) = tanh(uj(t, x)), τ (t) = .π +
.π cos t, τ ∗(t) = . + . sin(t – .). The parameters of (.) are assumed to be
D = ., D = ., a = ., a = –., a = ., a = ., b = –., b = –.,
b = –., b = ., d = ., d = –., d = ., d = –., x ∈ � = [–, ]. The
initial conditions of system (.) are chosen as

u(s, x) = . cos

(
x + 


π

)
, u(s, x) = . cos

(
x + 


π

)
, (.)

where (s, x) ∈ [–.π , ] × �. Numerical simulation illustrates that system (.) with
boundary condition (.) and initial condition (.) shows chaotic phenomenon (see Fig-
ure ).

The response system takes the form

dvi(t, x) =

{

Di
∂vi(t, x)

∂x – αi
(
vi(t, x)

)
[

βi
(
vi(t, x)

)
–

∑

j=

aijfj
(
vj(t, x)

)

–
∑

j=

bijgj
(
vj

(
t – τ (t), x

))
–

∑

j=

dij

∫ t

t–τ∗(t)
hj

(
vj(s, x)

)
ds

]

+ Ki(t, x)

}

dt

+
∑

j=

σij
(
ej(t, x), ej

(
t – τ (t), x

)
, ej

(
t – τ ∗(t), x

))
dωj(t), (.)

Figure 1 Chaotic behaviors of Cohen-Grossberg neural networks (4.1).
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where

σ = .e(t, x) + .e
(
t – τ (t), x

)
+ .e

(
t – τ ∗(t), x

)
, σ = ,

σ = , σ = .e(t, x) + .e
(
t – τ (t), x

)
+ .e

(
t – τ ∗(t), x

)
.

The initial conditions for response system (.) are chosen as

v(s, x) = . cos

(
x + 


π

)
, v(s, x) = . cos

(
x + 


π

)
,

where (s, x) ∈ [–.π , ] × �.
It is easy to know that L∗

i = M∗
i = N∗

i = Li = Mi = Ni = , i = , , ᾱ = ., ᾱ = ., α∗
 =

., α∗
 = ., γ = ., γ = ., η = ., η = , η = , η = ., τ = .π , τ ∗ =

., λ = .. Therefore, assumptions (H)-(H) hold for systems (.) and (.).
Let p = , ξi = ζi = ρi = 	i = εi = ςi =  for i = , , l = , , and choose the control parame-

ters k = , k = , δ = ., T = , then κ = ., w = ., θ = .. Therefore,
ε̄ = .. Obviously, systems (.) and (.) satisfy assumptions (H)-(H). Hence, by
Theorem ., systems (.) and (.) are exponentially synchronized as shown in Figure 
by numerical simulation.

Remark  Clearly, if the control width δ increases, assumptions (H)-(H) can be satis-
fied easily. Hence, the exponential synchronization of Cohen-Grossberg neural networks
with the larger control width is more easily realized. Dynamic behaviors of the synchro-
nization errors between systems (.) and (.) with differential control width are shown
in Figure .

Remark  It follows from (H) that the larger stochastic perturbation is, the more difficult
(H) can be satisfied. Hence, the exponential synchronization of Cohen-Grossberg neu-
ral networks with the smaller stochastic perturbation is more easily achieved. Dynamic
behaviors of the synchronization errors between systems (.) and (.) with differential
stochastic perturbation are shown in Figure .

Remark  For the given control strength ki = k(i ∈ �), as long as Di is large enough or |xk|
is small enough, assumptions (H) and (H) can always be satisfied. Hence, it is beneficial

Figure 2 Asymptotic behaviors of the synchronization errors.
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Figure 3 Asymptotic behaviors of the synchronization errors with differential control width.

Figure 4 Asymptotic behaviors of the synchronization errors with differential stochastic
perturbation.

Figure 5 Asymptotic behaviors of the synchronization errors with differential diffusion coefficients.

for reaction-diffusion Cohen-Grossberg neural networks to realize the synchronization by
increasing diffusion coefficients or reducing diffusion space. Dynamic behaviors of the er-
rors between systems (.) and (.) with differential diffusion coefficients and differential
diffusion space are shown in Figures  and .
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Figure 6 Asymptotic behaviors of the synchronization errors with differential diffusion space.

Remark  In many cases, two-neuron networks show the same behavior as large size net-
works, and many research methods used in two-neuron networks can be applied to large
size networks. Therefore, a two-neuron networks can be used as an example to improve
our understanding of our theoretical results. In addition, the parameter values are selected
randomly to ensure that neural networks (.) exhibit a chaotic behavior.

5 Conclusion
In this paper, a periodically intermittent controller was designed to achieve the expo-
nential synchronization for stochastic reaction-diffusion Cohen-Grossberg neural net-
works with Neumann boundary conditions and mixed time-varying delays based on p-
norm. By constructing the Lyapunov functional, the exponential synchronization cri-
teria dependent on diffusion coefficients, diffusion space, stochastic perturbation and
control width were obtained. Theory analysis revealed that stochastic reaction-diffusion
Cohen-Grossberg neural networks can achieve exponential synchronization more eas-
ily by increasing diffusion coefficients and control width or reducing diffusion space and
stochastic perturbation. Compared with the previous works [, , , –], the ob-
tained synchronization criteria are less conservative and have wider application prospects.

Note that the important inequality (.) in Lemma . holds under the assumption that
p ≥ . Hence, it is our future work to study the exponential synchronization of stochas-
tic reaction-diffusion Cohen-Grossberg neural networks with Neumann boundary condi-
tions for p =  or p = ∞.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
All authors have read and approved the final manuscript.

Author details
1Institute of Applied Mathematics, Shijiazhuang Mechanical Engineering College, No. 97 Heping West Road, Shijiazhuang,
Hebei Province 050003, P.R. China. 2Institute of Applied Mathematics, Hebei Academy of Sciences, No. 46 South Youyi
Street, Shijiazhuang, Hebei Province 050081, P.R. China.

Acknowledgements
This work was supported by the National Natural Science Foundation of China (11371368).



Wang et al. Advances in Difference Equations  (2017) 2017:141 Page 20 of 20

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 24 December 2016 Accepted: 1 May 2017

References
1. Pecora, LM, Carrol, TL: Control synchronization in chaotic system. Phys. Rev. Lett. 64, 821-824 (1990)
2. Li, R, Wei, HZ: Synchronization of delayed Markovian jump memristive neural networks with reaction-diffusion terms

via sampled data control. Int. J. Mach. Learn. Cyb. 7, 157-169 (2016)
3. Ghaffari, A, Arebi, S: Pinning control for synchronization of nonlinear complex dynamical network with suboptimal

SDRE controllers. Nonlinear Dyn. 83, 1003-1013 (2016)
4. Wu, HQ, Zhang, XW, Li, RX: Synchronization of reaction-diffusion neural networks with mixed time-varying delays. Int.

J. Control. Autom. Syst. 25, 16-27 (2015)
5. Cao, JB, Cao, BG: Neural network sliding mode control based on on-line identification for electric vehicle with

ultracapacitor-battery hybrid power. Int. J. Control. Autom. Syst. 7, 409-418 (2009)
6. Zhao, H, Li, LX, Peng, HP: Impulsive control for synchronization and parameters identification of uncertain multi-links

complex network. Nonlinear Dyn. 83, 1437-1451 (2016)
7. Mei, J, Jiang, MH, Wu, Z, Wang, XH: Periodically intermittent controlling for finite-time synchronization of complex

dynamical networks. Nonlinear Dyn. 79, 295-305 (2015)
8. Liu, XW, Chen, TP: Cluster synchronization in directed networks via intermittent pinning control. IEEE Trans. Neural

Netw. 22, 1009-1020 (2011)
9. Liu, XW, Chen, TP: Synchronization of nonlinear coupled networks via aperiodically intermittent pinning control. IEEE

Trans. Neural Netw. Learn. Syst. 26, 113-126 (2015)
10. Liu, XW, Chen, TP: Synchronization of complex networks via aperiodically intermittent pinning control. IEEE Trans.

Autom. Control 60, 3316-3321 (2015)
11. Yang, SJ, Li, CD, Hunag, TW: Exponential stabilization and synchronization for fuzzy model of memristive neural

networks by periodically intermittent control. Neural Netw. 75, 162-172 (2016)
12. Li, N, Cao, JD: Periodically intermittent control on robust exponential synchronization for switched interval coupled

networks. Neurocomputing 131, 52-58 (2014)
13. Hu, C, Yu, J, Jiang, HJ, Teng, ZD: Exponential synchronization for reaction-diffusion networks with mixed delays in

terms of p-norm via intermittent control. Neural Netw. 31, 1-11 (2012)
14. Gan, QT, Zhang, H, Dong, J: Exponential synchronization for reaction-diffusion neural networks with mixed

time-varying delays via periodically intermittent control. Nonlinear Anal. Model. Control. 19, 1-25 (2014)
15. Yu, J, Hu, C, Jiang, HJ, Teng, ZD: Exponential synchronization of Cohen-Grossberg neural networks via periodically

intermittent control. Neurocomputing 74, 1776-1782 (2011)
16. Haykin, S: Neural Networks. Prentice-Hall, Englewood Cliffs (1994)
17. Song, HH, Chen, DD, Li, WX, Qu, YB: Graph-theoretic approach to exponential synchronization of

stochastic reaction-diffusion Cohen-Grossberg neural networks with time-varying delays. Neurocomputing 177,
179-187 (2016)

18. Gan, QT: Exponential synchronization of stochastic Cohen-Grossberg neural networks with mixed time-varying
delays and reaction-diffusion via periodically intermittent control. Neural Netw. 31, 12-21 (2012)

19. Wang, K: Stochastic Biomathematics Model. The Science Publishing Company, Beijing (2010)
20. Gu, CH, Li, DQ, Chen, SX, Zheng, SM, Tan, YJ: Equations of Mathematical Physics. Higher Education Press, Beijing

(2002)
21. Pan, J, Liu, XZ, Zhong, SM: Stability criteria for impulsive reaction-diffusion Cohen-Grossberg neural networks with

time-varying delays. Math. Comput. Model. 51, 1037-1050 (2010)
22. Mei, J, Jiang, MH, Wang, B, Liu, Q, Xu, WM, Liao, T: Exponential p-synchronization of non-autonomous

Cohen-Grossberg neural networks with reaction-diffusion terms via periodically intermittent control. Neural Process.
Lett. 40, 103-126 (2014)

23. Yang, XY, Cui, BT: Asymptotic synchronization of a class of neural networks with reaction-diffusion terms and
time-varying delays. Comput. Math. Appl. 52, 897-904 (2006)

24. Wang, YY, Cao, JD: Synchronization of a class of delayed neural networks with reaction-diffusion terms. Phys. Lett. A
369, 201-211 (2007)

25. Sheng, L, Yang, HZ, Lou, XY: Adaptive exponential synchronization of delayed neural networks with reaction-diffusion
terms. Chaos Solitons Fractals 40, 930-939 (2009)

26. Liu, XW: Synchronization of linearly coupled neural networks with reaction-diffusion terms and unbounded time
delays. Neurocomputing 73, 2681-2688 (2010)


	Synchronization analysis for stochastic reaction-diffusion Cohen-Grossberg neural networks with Neumann boundary conditions via periodically intermittent control
	Abstract
	Keywords

	Introduction
	Preliminaries
	Exponential synchronization criterion
	Numerical simulations
	Conclusion
	Competing interests
	Authors' contributions
	Author details
	Acknowledgements
	Publisher's Note
	References


