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Abstract
The dynamics of a diffusive predator-prey system with prey refuge and gestation
delay is investigated in this paper. For a non-delay system, global stability, Turing
instability and Hopf bifurcation are studied. For a delay system, time delay induced
instability and Hopf bifurcation are discussed. By the theory of normal form and the
center manifold method, the direction and stability of the bifurcating periodic
solution are discussed.
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1 Introduction
Population biology is an important subject in both ecology and mathematical ecology.
And predator-prey model is one of the most interesting and popular areas in population
biology. Many scholars have done a lot of work in it and derived some important results
[–].

Generally, prey-predator models can be written as the following form:

⎧
⎨

⎩

du
dt = uf (u) – g(u, v)v,
dv
dt = cg(u, v)v – θv,

(.)

where u(t) and v(t) represent prey and predator densities at time t, respectively. f (u) repre-
sents the prey growth law in the absence of predators, and g(u, v) is the functional response
of predators to prey density (the average feeding rate of a predator). Parameters c and d
represent the conversion rate from prey to predator and the death rate of predator.

In predator-prey models, the functional response of predators to prey density is essen-
tial, and it can enrich the dynamics of predator-prey systems. In ecology, many factors,
such as prey escape ability, predator hunting ability and the structure of the prey habi-
tat, can affect functional responses [, ]. Generally, functional responses can be divided
into the following types: prey-dependent (such as Holling I-III []) and prey-predator-
dependent (such as Beddington-DeAngelis [], Crowley-Martin [], Hassel-Varley []).

Recently, more and more researchers have suggested that prey-predator-dependent
functional responses are more suitable and can enrich the dynamics of predator-prey sys-
tems [–]. Hsu et al. studied the global property of a general predator-prey model with
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Hassell-Varley type functional response []. Cantrell and Cosner discussed some dynam-
ical properties of predator-prey models with Beddington-DeAngelis functional response
[]. Tripathi et al. considered the permanence, non-permanence, local asymptotic sta-
bility and global asymptotic stability of equilibria of delayed predator-prey models with
Crowley-Martin functional response []. Skalski and Gilliam suggest that Beddington-
DeAngelis or Hassell-Varley functional responses are suitable for the case where predator
feeding rate becomes independent of predator density at high prey density, and Crowley-
Martin model is suitable for the case where predator feeding rate is decreased by higher
predator density even when prey density is high [].

In predator-prey models, prey refuge is one of the important factors, and many re-
searchers have studied it. In [], Sharma and Samanta studied a Leslie-Gower model with
disease and refuge in prey, including the positivity and boundedness of solutions, and the
stability of equilibria. In [], Tripathi et al. considered a delayed predator-prey model
with Beddington-DeAngelis functional response and prey refuge. They studied local and
global asymptotic stability of various equilibria and time delay induced Hopf bifurcation.
In [], Chen et al. investigated the effect of prey refuge on a Leslie-Gower predator-prey
model. They suggest that prey refuge has no influence on the persistent property of this
model, but it can affect the prey and predator densities. Most of works suggest that prey
refuge has a stabilizing effect on the prey-predator model [–]. In [], Tripathi et
al. studied a predator-prey model with Beddington-DeAngelis type functional response
incorporating a prey refuge, that is,

⎧
⎨

⎩

du
dt = u( – u – a(–m)v

+b(–m)u+cv ),
dv
dt = v( e(–m)u

+b(–m)u+cv – θ ),
(.)

with the initial conditions u() = u > , v() = v > , which are biologically meaningful.
m is the prey refuge rate. Tripathi et al. studied local and global stability of various bound-
ary equilibria and coexisting equilibria. Using some data, they also discussed the inverse
problem of estimation of a model parameter.

In recent years, since predators and their preys distribute inhomogeneously in differ-
ent spatial locations at time t, many researchers have studied predator-prey systems with
diffusion term. Predator-prey systems with diffusion term may exhibit richer dynami-
cal properties, including Turing instability, pattern formation, spatially inhomogeneous
periodic solutions etc. [–]. In [], Tang and Song considered a delayed diffusive
predator-prey model with herd behavior and analyzed the stability and Hopf bifurcation.
In [] the authors considered the spatial, temporal and spatiotemporal patterns of dif-
fusive predator-prey models with mutual interference. In [], Jia and Xue discussed the
effects of the self- and cross-diffusion on positive steady states for a generalized predator-
prey system. In this paper, we will study the effect of diffusion on system (.).

Motivated by above, we propose the following system:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂u(x,t)
∂t = d�u + u( – u – a(–m)v

+b(–m)u+cv ), x ∈ �, t > ,
∂v(x,t)

∂t = d�v + sv( (–m)u(t–τ )
+b(–m)u(t–τ )+cv(t–τ ) – d), x ∈ �, t > ,

ux(x, t) = , vx(x, t) = , x ∈ ∂�, t > ,

u(x, t) = u(x, t) ≥ , v(x, t) = v(x, t) ≥ , x ∈ �, t ∈ [–τ , ],

(.)
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where s = e, d = θ/e, � = (, lπ ), (l > ). In system (.), we assume that the region � is
closed, with no prey and predator species entering and leaving the region at the boundary.
We also assume that the reproduction of predator population after predating the prey will
not be instantaneous. There is a time delay τ required for gestation of predator.

The rest of this paper is arranged as follows. We study the stability property of the non-
delayed system in the next section and discuss the delayed system in Section . Then we
give some numerical simulations. At last, we end this paper with a brief conclusion.

2 Stability analysis of the non-delayed system
Without delay, system (.) becomes

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂u
∂t = d�u + u( – u – a(–m)v

+b(–m)u+cv ), x ∈ (, lπ ), t > ,
∂v
∂t = d�v + sv( (–m)u

+b(–m)u+cv – d), x ∈ (, lπ ), t > ,

ux(, t) = vx(, t) = , ux(lπ , t) = vx(lπ , t) = , t > ,

u(x, ) = u(x, t) ≥ , v(x, ) = v(x, t) ≥ , x ∈ [, lπ ].

(.)

Obviously, system (.) has a trivial equilibrium (, ) and a predator-free axial equilibrium
(, ). If E∗(u∗, v∗) is a coexisting equilibrium of system (.), then it is easy to obtain that
v∗ = u∗(–u∗)

ad . Then u∗ ∈ (, ) and is a root of

h(u) = cu +
(
a( – bd)( – m) – c

)
u – ad = . (.)

Obviously, h() = –ad <  and h() = a[( – bd)( – m) – d]. If d < ( – bd)( – m), then
h() >  implies that system (.) has at least one coexisting equilibrium.

In this paper, we just suppose system (.) has a coexisting equilibrium point E∗(u∗, v∗).

2.1 Local stability analysis of the model without diffusion
If d = d = , the Jacobian matrix at E∗(u∗, v∗) is

J =

(
a a

sa sa

)

,

where

a = bd( – u∗) – u∗, a = d
(
c( – u∗)/( – m) – a

)
,

a = ( – bd)( – u∗)/a, a = –cd( – u∗)/a( – m).

Obviously, a < . The characteristic equation is

λ – trλ + � = . (.)

The characteristic roots are λ, = 
 [tr ± √

�]. If

tr = a + sa <  and � = s(aa – aa) > ,
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then the characteristic roots have negative real parts. Make the following hypothesis:

aa – aa > . (H)

If (H) holds, then E∗(u∗, v∗) is locally asymptotically stable if and only if a + sa < .
Meanwhile, if a >  when s near –a/a, Eq. (.) has a pair of complex eigenvalues
α(s) ± iω(s), where

α(s) =



(a + sa), ω(s) =


√

s(aa – aa)

and

α(–a/a) = , α′(–a/a) = a/, ω(–a/a) > .

Theorem . When d = d = , assume (H) holds.
(i) If a + sa < , then P(u∗, v∗) is locally asymptotically stable;

(ii) If a > , Hopf bifurcation occurs at P(u∗, v∗) when s = –a/a.

2.2 Turing instability and Hopf bifurcation
For system (.), the characteristic equation at E∗(u∗, v∗) is

λ – trnλ + �n(r) = , n ∈ N, (.)

where
⎧
⎨

⎩

trn = tr – n

l (d + d),

�n = � – n

l (da + dsa) + dd
n

l ,
(.)

and the eigenvalues are

λ
(n)
,(r) =

trn ± √
tr

n – �n


, n ∈N. (.)

Notice that a + sa <  implies that trn <  for n ∈ N. Suppose (H) holds, then the
eigenvalues of (.) have negative real parts if �n >  guaranteed by

da + dsa ≤ , (.)

or

da + dsa > , and (da + dsa) – dd� < . (.)

If

da + dsa > , and (da + dsa) – dd� >  (.)

hold, and there exists k ∈N such that �k < , then the eigenvalues of (.) have a positive
real part λ(k)(s), which implies that E∗(u∗, v∗) is unstable for system (.).
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Assume (H) holds and a > . When

s = sn := –


a

[

a –
n

l (d + d)
]

, n ∈N (.)

and �n(sn) > , Eq. (.) has purely imaginary values. Obviously, �(s) = – a
a

(aa –
aa) > . From (.), we know that there exists n∗ ≥  ∈ N such that �n(sn) >  for n =
, , . . . , n∗ – . Let

λn(s) = αn(s) ± iωn(s), n = , , . . . , n∗ – 

be the roots of Eq. (.) satisfying

αn(sn) = , ωn(sn) =
√

�n(sn).

When s is near sn,

αn(s) =
trn(s)


, ωn(s) =

√

�n – α
n(s).

From (.), we know that

α′
n(sn) =

a


< . (.)

Theorem . Assume (H) holds.
(i) If a + sa <  and (.) (or (.)) hold, then E∗(u∗, v∗) is locally asymptotically

stable;
(ii) If a + sa <  and (.) hold, and �k >  for k ∈N, then E∗(u∗, v∗) is locally

asymptotically stable;
(iii) If a + sa <  and (.) hold, and �k <  for k ∈N, then E∗(u∗, v∗) is Turing

unstable;
(iv) Hopf bifurcation occurs at E∗(u∗, v∗) when s = sn, for  ≤ n ≤ n∗ – .

Similarly, we can obtain that for system (.), (, ) is unstable and (, ) is locally stable
under condition d > ( – bd)( – m).

2.3 Global stability of (1, 0) and (u∗, v∗)
Theorem . When d > ( – bd)( – m), (, ) is globally asymptotically stable.

Proof From (.), we can obtain that

∂u
∂t

– d
∂u
∂x = u

(

 – u –
a( – m)v

 + b( – m)u + cv

)

≤ u( – u).

Use the comparison principle, then

lim
t→+∞ max

x∈[,lπ ]
u(x, t) ≤ .
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From (.), we can obtain

∂v
∂t

– d
∂v
∂x = sv

(
 – m

( + cv)/u + b( – m)
– d

)

.

When d > ( – bd)( – m),

sv
(

 – m
( + cv)/u + b( – m)

– d
)

≤ sv
(

 – m
 + b( – m)

– d
)

< .

For an arbitrary constant ε > , there exists T >  such that v(x, t) ≤ ε for t > T . Then

∂u
∂t

– d
∂u
∂x = u

(

 – u –
a( – m)v

 + b( – m)u + cv

)

≥ u
(

 – u –
a( – m)ε

 + b( – m)u + cε

)

.

So limt→+∞ u(x, t) =  and limt→+∞ v(x, t) =  for x ∈ [, lπ ]. �

For the sake of completeness, we give the following theorem about the global stability
of E(u∗, v∗) by the proof process similar to that in [].

Theorem . When b( – m)( – u∗) ≤ , E(u∗, v∗) is globally asymptotically stable.

Proof Let u(x, t), v(x, t) be a positive solution of system (.) and define the following Lya-
punov function:

W (t) =
∫

�

[
V(u) + AV(v)

]
dx

with V(u) = u – u∗ – u∗ ln u
u∗ , V(v) = v – v∗ – v∗ ln v

v∗ and A = a(+b(–m)u∗)
s(+cv∗) >  is a pos-

itive constant. Denote p(u, v) = ( + b( – m)u∗ + cv∗)( + b( – m)u + cv) > . By simple
computation, it follows that

W ′(t) = –I(t) +
∫

�

{
(u – u∗)

u
ut + A

(v – v∗)
v

vt

}

dx

= –I(t) +
∫

�

{

(u – u∗)
(

–(u – u∗) +
a( – m)v∗

 + b( – m)u∗ + cv∗
–

a( – m)v
 + b( – m)u + cv

)

+ As(v – v∗)
(

( – m)u
 + b( – m)u + cv

–
( – m)u∗

 + b( – m)u∗ + cv∗

)}

dx

= –I(t) +
∫

�

{

(u – u∗)
[

–(u – u∗) + a( – m)
–(v – v∗) + b( – m)(uv∗ – u∗v)

p(u, v)

]

+ As(v – v∗)( – m)
(u – u∗) + c(uv∗ – u∗v)

p(u, v)

}

dx

= –I(t) +
∫

�

{

(u – u∗)

×
[

–(u – u∗) + a( – m)
–(v – v∗) + b( – m)[(u – u∗)v∗ – u∗(v – v∗)]

p(u, v)

]

+ As(v – v∗)( – m)
(u – u∗) + c[(u – u∗)v∗ – u∗(v – v∗)]

p(u, v)

}

dx
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= –I(t) +
∫

�

{

–(u – u∗) + ab( – m)v∗
(u – u∗)

p(u, v)
– Asc( – m)u∗

(v – v∗)

p(u, v)

+
(u – u∗)(v – v∗)

p(u, v)
[
As( + cv∗) – a

(
 + b( – m)u∗

)]
( – m)

}

dx

= –I(t) +
∫

�

{

–
(

 –
ab( – m)v∗

p(u, v)

)

(u – u∗) – Asc( – m)u∗
(v – v∗)

p(u, v)

}

dx

with I(t) =
∫

�
[d

u∗
u |∇u| + Ad

v∗
v |∇v|] dx ≥ . In addition,

 –
ab( – m)v∗

p(u, v)
=  –

ab( – m)v∗
( + b( – m)u∗ + cv∗)( + b( – m)u + cv)

≥  –
ab( – m)v∗

( + b( – m)u∗ + cv∗)
=  – b( – m)( – u∗) ≥ 

under condition b( – m)( – u∗) ≤ . Thus W ′(t) ≤ , which implies the desired assertion
since the equality holds only when (u, v) = (u∗, v∗). �

3 Stability analysis of the delayed system
3.1 Stability analysis and the existence of Hopf bifurcation
For simplification of notations, use u(t), v(t), u(t – τ ), v(t – τ ) for u(x, t), v(x, t), u(x, t – τ ),
v(x, t – τ ), respectively. Linear system (.) at P = (u∗, v∗):

(
∂u
∂t
∂v
∂t

)

= D�

(
u(t)
v(t)

)

+ L

(
u(t)
v(t)

)

+ L

(
u(t – τ )
v(t – τ )

)

, (.)

where

D =

(
d 
 d

)

, L =

(
a a

 

)

, L =

(
 

sa sa

)

.

The characteristic equation is

det
(
λI – Mn – L – Le–λτ

)
= ,

where I is the  ×  identity matrix and Mn = –n/lD, n ∈N. Then we have

λ + λAn + Bn + s(Cn – λa)e–λτ = , (.)

where

An = (d + d)
n

l – a,

Bn = dd
n

l – da
n

l ,

Cn = –da
n

l + aa – aa.
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Let iω (ω > ) be a solution of Eq. (.), then

–ω + iωAn + Bn + s(Cn – iωa)(cosωτ – i sinωτ ) = .

Then we obtain
⎧
⎨

⎩

–ω + Bn + sCn cosωτ – asω sinωτ = ,

Anω – Cns sinωτ – asω cosωτ = .

Then

ω +
[
A

n – Bn – a
s]ω + B

n – C
ns = . (.)

Denote z = ω, then (.) becomes

z +
[
A

n – Bn – a
s]z + B

n – C
ns =  = , (.)

and the roots are

z± =



[
–
(
A

n – Bn – a
s) ±

√
(
A

n – Bn – a
s

) – 
(
B

n – C
ns

)]
. (.)

Assume (H) and condition (i) or (ii) in Theorem . holds. Then

Bn + sCn = �n > ,

A
n – Bn – a

s =
(

d
n

l – a

)

+ d


n

l – a
s,

and

Bn – sCn = dd
n

l +
n

l (ads – ad) – s(aa – aa).

Denote

S = {n|Bn – sCn < , n ∈N}.

Then S is a finite set since limn→∞ Bn – sCn → +∞.

Lemma . Assume (H) and condition (i) or (ii) in Theorem . holds. Then Eq. (.) has
a pair of purely imaginary roots ±iωn (n ∈ S) at τ

j
n = τ 

n + jπ
ωn

, j ∈N, where

τ 
n =


ωn

arccos
Cnω

 – BnCn + aAnω


s(C
n + a

ω
)

, and ωn =
√

z+ (given in (.)). (.)

Lemma . Assume (H) and condition (i) or (ii) in Theorem . holds. Then Reλ′
n(τ j

n) > 
for n ∈ S and j ∈N.
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Proof Differentiating two sides of (.) with respect to τ , we have

(
dλ

dτ

)–

=
λ + An – sae–λτ

s(Cn – λa)λe–λτ
–

τ

λ
.

Then

[

Re

(
dλ

dτ

)–]

τ=τ
j
n

= Re

[
λ + An – sae–λτ

s(Cn – λa)λe–λτ
–

τ

λ

]

=

�

ω(ω + A
n – Bn – a

s)

=

�

ω
√

(
A

n – Bn – a
s

) – 
(
B

n – C
ns

)
> ,

where � = C
nsω + a

sω > . Therefore Reλ′
n(τ j

n) > . �

Denote τ ∗ = mini∈S{τ 
i }. According to the above analysis, we have the following theorem.

Theorem . Assume (H) and condition (i) or (ii) in Theorem . holds.
(i) E∗(u∗, v∗) is locally asymptotically stable for τ ∈ [, τ ∗ ).

(ii) E∗(u∗, v∗) is unstable for τ > τ ∗ .
(iii) τ = τ

j
n (n ∈ S, j ∈N) are Hopf bifurcation values of system (.).

3.2 Stability and direction of Hopf bifurcation
We give detailed computation about Hopf bifurcation using the method in [, ]. For
fixed j ∈N and n ∈ S, we denote τ̃ = τ

j
n. Let ū(x, t) = u(x, τ t) – u∗ and v̄(x, t) = v(x, τ t) – v∗.

For convenience, we drop the bar. Then (.) can be written as

⎧
⎨

⎩

∂u
∂t = τ [d�u + (u + u∗)(( – u – u∗) – a(–m)(v+v∗)

+b(–m)(u+u∗)+c(v+v∗) )],
∂v
∂t = τ [d�v + s(v + v∗)( (–m)(u(t–)+u∗)

+b(–m)(u(t–)+u∗)+c(v(t–)+v∗) – d)].
(.)

Let

τ = τ̃ + μ, u(t) = u(·, t),

u(t) = v(·, t) and U = (u, u)T .

In the phase space C := C([–, ], X), (.) can be rewritten as

dU(t)
dt

= τ̃D�U(t) + Lτ̃ (Ut) + F(Ut ,μ), (.)

where Lμ(φ) and F(φ,μ) are given respectively by

Lμ(φ) = μ

(
aφ() + aφ()

saφ(–) + saφ(–)

)

,

F(φ,μ) = μD�φ + Lμ(φ) + f (φ,μ),
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with

f (φ,μ) = (τ̃ + μ)
(
F(φ,μ), F(φ,μ)

)T ,

F(φ,μ) =
(
φ() + u∗

)
(

(
 – φ() – u∗

)
–

a( – m)(φ() + v∗)
 + b( – m)(φ() + u∗) + c(φ() + v∗)

)

– aφ() – aφ(),

F(φ,μ) = s
(
φ() + v∗

)
(

( – m)(φ(–) + u∗)
 + b( – m)(φ(–) + u∗) + c(φ(–) + v∗)

– d
)

– saφ(–) – saφ(–)

for φ = (φ,φ)T ∈ C.
Consider the linear equation

dU(t)
dt

= τ̃D�U(t) + Lτ̃ (Ut). (.)

From the previous discussion, we know that ±iωn are simply purely imaginary character-
istic values of the linear functional differential equation

dz(t)
dt

= –τ̃D
n

l z(t) + Lτ̃ (zt). (.)

From the Riesz representation theorem, there exists a bounded variation function
ηn(σ , τ̃ )– ≤ σ ≤  such that –τ̃D n

l φ()+Lτ̃ (φ) =
∫ 

– dηn(σ , τ )φ(σ ) for φ ∈ C([–, ],R).
In fact, we can choose

ηn(σ , τ ) =

⎧
⎪⎪⎨

⎪⎪⎩

τE, σ = ,

, σ ∈ (–, ),

–τF , σ = –,

(.)

where

E =

(
a – d

n

l a

 –d
n

l

)

, F =

(
 

sa sa

)

. (.)

Let A(τ̃ ) denote the infinitesimal generators of a semigroup included by the solutions of
Eq. (.) and A∗ be the formal adjoint of A(τ̃ ) under the bilinear pairing

(ψ ,φ) = ψ()φ() –
∫ 

–

∫ σ

ξ=
ψ(ξ – σ ) dηn(σ , τ̃ )φ(ξ ) dξ

= ψ()φ() + τ̃

∫ 

–
ψ(ξ + )Fφ(ξ ) dξ (.)

for φ ∈ C([–, ],R), ψ ∈ C([–, ],R). ±iωnτ̃ is a pair of simple purely imaginary eigen-
values of A(τ̃ ) and A∗. Let P and P∗ be the center subspace, that is, the generalized
eigenspace of A(τ̃ ) and A∗ associated with ±iωn, respectively. Then P∗ is the adjoint space
of P and dim P = dim P∗ = .
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Let p(θ ) = (, ξ )T eiωn τ̃ σ (σ ∈ [–, ]), q(r) = (,η)e–iωn τ̃ r (r ∈ [, ]) be the eigenfunctions
of A(τ̃ ) and A∗ corresponding to iωnτ̃ , –iωnτ̃ , respectively. By direct calculations, we chose

ξ =


a

(

iωn – a + d
n

l

)

, η =
–e–iτωn

sa

(

iωn + a – d
n

l

)

.

Let � = (�,�) and �∗ = (�∗
 ,�∗

 )T with

�(σ ) =
p(σ ) + p(σ )


=

(
Re(eiωn τ̃ σ )

Re(ξeiωn τ̃ σ )

)

,

�(σ ) =
p(σ ) – p(σ )

i
=

(
Im(eiωn τ̃ σ )

Im(ξeiωn τ̃ σ )

)

for θ ∈ [–, ], and

�∗
 (r) =

q(r) + q(r)


=

(
Re(e–iωn τ̃ r)

Re(ηe–iωn τ̃ r)

)

,

�∗
 (r) =

q(r) – q(r)
i

=

(
Im(e–iωn τ̃ r)

Im(ηe–iωn τ̃ r)

)

for r ∈ [, ]. Then we can compute by (.)

D∗
 :=

(
�∗

 ,�
)
, D∗

 :=
(
�∗

 ,�
)
, D∗

 :=
(
�∗

 ,�
)
, D∗

 :=
(
�∗

 ,�
)
.

Define (�∗,�) = (�∗
j ,�k) =

( D∗
 D∗


D∗

 D∗


)
and construct a new basis � for P∗ by

� = (�,�)T =
(
�∗,�

)–
�∗.

Then (� ,�) = I. In addition, define fn := (β
n,β

n), where

β
n =

(
cos n

l x


)

, β
n =

(


cos n
l x

)

.

We also define

c · fn = cβ

n + cβ


n , for c = (c, c)T ∈ C.

Thus the center subspace of linear equation (.) is given by PCNC ⊕ PSC, and PSC

denotes the complement subspace of PCNC in C,

〈u, v〉 :=


lπ

∫ lπ


uv dx +


lπ

∫ lπ


uv dx

for u = (u, u), v = (v, v), u, v ∈ X and 〈φ, f〉 = (〈φ, f 
 〉, 〈φ, f 

 〉)T .
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Let Aτ̃ denote the infinitesimal generator of an analytic semigroup induced by the linear
system (.), and Eq. (.) can be rewritten as the following abstract form:

dU(t)
dt

= Aτ̃ Ut + R(Ut ,μ), (.)

where

R(Ut ,μ) =

⎧
⎨

⎩

, θ ∈ [–, );

F(Ut ,μ), θ = .
(.)

By the decomposition of C, the solution above can be written as

Ut = �

(
x

x

)

fn + h(x, x,μ), (.)

where
(

x

x

)

=
(
� , 〈Ut , fn〉

)
,

and

h(x, x,μ) ∈ PSC, h(, , ) = , Dh(, , ) = .

In particular, the solution of (.) on the center manifold is given by

Ut = �

(
x(t)
x(t)

)

fn + h(x, x, ). (.)

Let z = x – ix, and notice that p = � + i�. Then we have

�

(
x

x

)

fn = (�,�)

(
z+z


i(z–z)



)

fn =



(pz + pz)fn

and

h(x, x, ) = h
(

z + z


,
i(z – z)


, 

)

.

Hence, Eq. (.) can be transformed into

Ut =



(pz + pz)fn + h
(

z + z


,
i(z – z)


, 

)

=



(pz + pz)fn + W (z, z), (.)

where

W (z, z) = h
(

z + z


,
i(z – z)


, 

)

.
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From [], z satisfies

ż = iωnτ̃z + g(z, z), (.)

where

g(z, z) =
(
�() – i�()

)〈
F(Ut , ), fn

〉
. (.)

Let

W (z, z) = W
z


+ Wzz + W

z


+ · · · , (.)

g(z, z) = g
z


+ gzz + g

z


+ · · · , (.)

from Eqs. (.) and (.), we have

ut() =



(z + z) cos

(
nx
l

)

+ W ()
 ()

z


+ W ()

 ()zz + W ()
 ()

z


+ · · · ,

vt() =



(ξ + ξz) cos

(
nx
l

)

+ W ()
 ()

z


+ W ()

 ()zz + W ()
 ()

z


+ · · · ,

ut(–) =


(
ze–iωn τ̃ + zeiωn τ̃

)
cos

(
nx
l

)

+ W ()
 (–)

z


+ W ()

 (–)zz + W ()
 (–)

z


+ · · · ,

vt(–) =


(
ξze–iωn τ̃ + ξzeiωn τ̃

)
cos

(
nx
l

)

+ W ()
 (–)

z



+ W ()
 (–)zz + W ()

 (–)
z


+ · · · ,

and

F(Ut , ) =

τ̃

F =



fuuu
t () + fuvut()vt() +




fvvv
t () +




fuuuu
t ()

+



fuuvu
t ()vt() +




fuvvut()v
t () +




fvvvv
t () + O(),

F(Ut , ) =

τ̃

F =



guuu
t (–) + guvut(–)vt(–) +




gvvv
t (–) +




guuuu
t (–)

+



guuvu
t (–)vt(–) +




guvvut(–)v
t (–) +




gvvvv
t (–) + O(),

with

fuu = –
a(m – )v∗(b + bcv∗)

(– – bu∗ + bmu∗ – cv∗) – ,

fuv =
a(m – )(– – cv∗ + b(m – )u∗( + cv∗))

(– + b(m – )u∗ – cv∗) ,

fvv = –
ac(m – )u∗(– + b(m – )u∗)

(– + b(m – )u∗ – cv∗) , fuuu =
ab(m – )v∗( + cv∗)
( + b(u∗ – mu∗) + cv∗) ,

fuuv = –
ab(m – )(– + cv∗ + b(m – )u∗( + cv∗))

( + b(u∗ – mu∗) + cv∗) ,
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fuvv =
ac(m – )(– + b(m – )u∗ – cv∗ + bc(m – )u∗v∗)

( + b(u∗ – mu∗) + cv∗) ,

fvvv = –
ac(m – )u∗(– + b(m – )u∗)

( + b(u∗ – mu∗) + cv∗) , guu =
(m – )sv∗(b + bcv∗)

(– – bu∗ + bmu∗ – cv∗) ,

guv =
c(m – )sv∗( – bu∗ + bmu∗ + cv∗)

( + bu∗ – bmu∗ + cv∗) , gvv =
c( – m)su∗v∗

( + b( – m)u∗ + cv∗) ,

guuu = –
b(m – )sv∗( + cv∗)
( + b(u∗ – mu∗) + cv∗) , guuv =

bc(m – )sv∗( + b(m – )u∗ + cv∗)
( + b(u∗ – mu∗) + cv∗) ,

guvv = –
c(m – )sv∗( + b(m – )u∗ + cv∗)

( + b(u∗ – mu∗) + cv∗) , gvvv = –
c( – m)su∗v∗

( + b( – m)u∗ + cv∗) .

Hence,

F(Ut , ) = cos
(

nx
l

)(
z


χ + zzχ +

z


χ

)

+
zz


cos
nx
l

κ +
zz


cos nx
l

κ + · · · ,

F(Ut , ) = cos
(

nx
l

)(
z


ς + zzς +

z


ς

)

+
zz


cos
nx
l

κ +
zz


cos nx
l

κ + · · · ,
〈
F(Ut , ), fn

〉
= τ̃

(
F(Ut , )f 

n + F(Ut , )f 
n
)

=
z


τ̃

(
χ

ς

)

� + zzτ̃

(
χ

ς

)

� +
z


τ̃

(
χ

ς

)

� +
zz


τ̃

(
κ

κ

)

+ · · ·

with

� =


lπ

∫ lπ


cos

(
nx
l

)

dx,

κ = κ


lπ

∫ lπ


cos

(
nx
l

)

dx + κ


lπ

∫ lπ


cos

(
nx
l

)

dx,

κ = κ


lπ

∫ lπ


cos

(
nx
l

)

dx + κ


lπ

∫ lπ


cos

(
nx
l

)

dx

and

χ =



(
fuu + ξ (fuv + ξ fvv)

)
, χ =




(
fuu + (ξ + ξ )fuv + ξξ fvv

)
,

κ = W ()
 ()(fuu + ξ fuv) + W ()

 ()(fuv + ξ fvv)

+



W ()
 ()(fuu + ξ fuv) +




W ()
 ()(fuv + ξ fvv),

κ =



(
fuuu + (ξ + ξ )fuuv + ξ

(
(ξ + ξ )fuvv + ξξ fvvv

))
,

ς =



e–iτωn
(
guu + ξ (guv + ξgvv)

)
, ς =




(
guu + (ξ + ξ )guv + ξξgvv

)
,
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κ = e–iτωn W ()
 (–)(guu + ξguv) + e–iτωn W ()

 (–)(guv + ξgvv)

+



eiτωn W ()
 (–)(guu + ξguv) +




eiτωn W ()
 (–)(guv + ξgvv),

κ =



e–iτωn

(
guuu + (ξ + ξ )guuv + ξ

(
(ξ + ξ )guvv + ξξgvvv

))
.

Denote

�() – i�() := (γ γ).

Notice that


lπ

∫ lπ


cos nx

l
dx = , n = , , , . . . ,

and we have

(
�() – i�()

)〈
F(Ut , ), fn

〉

=
z


(γχ + γς)�τ̃ + zz(γχ + γς)�τ̃ +

z


(γχ + γς)�τ̃

+
zz


τ̃ [γκ + γκ] + · · · . (.)

By (.), (.) and (.), we obtain that g = g = g = , for n = , , , . . . . If n = , we
have

g = γτ̃χ + γτ̃ ς, g = γτ̃χ + γτ̃ ς, g = γτ̃χ + γτ̃ ς.

And for n ∈N, g = τ̃ (γκ + γκ).
From [], we have

Ẇ (z, z) = Wzż + Wżz + Wzż + Wzż + · · · ,

Aτ̃ W (z, z) = Aτ̃ W
z


+ Aτ̃ Wzz + Aτ̃ W

z


+ · · · ,

and W (z, z) satisfies

Ẇ (z, z) = Aτ̃ W + H(z, z),

where

H(z, z) = H
z


+ Wzz + H

z


+ · · ·

= XF(Ut , ) – �
(
� ,

〈
XF(Ut , ), fn

〉 · fn
)
. (.)

Hence, we have

(iωnτ̃ – Aτ̃ )W = H, –Aτ̃ W = H, (–iωnτ̃ – Aτ̃ )W = H, (.)
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that is,

W = (iωnτ̃ – Aτ̃ )–H, W = –A–
τ̃ H,

W = (–iωnτ̃ – Aτ̃ )–H.
(.)

By (.), we obtain that for θ ∈ [–, ),

H(z, z) = –�()�()
〈
F(Ut , ), fn

〉 · fn

= –
(

p(θ ) + p(θ )


,
p(θ ) – p(θ )

i

)(
�()
�()

)
〈
F(Ut , ), fn

〉 · fn

= –


[
p(θ )

(
�() – i�()

)
+ p(θ )

(
�() + i�()

)]〈
F(Ut , ), fn

〉 · fn

= –



[
(
p(θ )g + p(θ )g

)z


+

(
p(θ )g + p(θ )g

)
zz

+
(
p(θ )g + p(θ )g

)z



]

+ · · · .

Therefore by (.), for θ ∈ [–, ),

H(θ ) =

⎧
⎨

⎩

, n ∈N,

– 
 (p(θ )g + p(θ )g) · f, n = ,

H(θ ) =

⎧
⎨

⎩

, n ∈N,

– 
 (p(θ )g + p(θ )g) · f, n = ,

H(θ ) =

⎧
⎨

⎩

, n ∈N,

– 
 (p(θ )g + p(θ )g) · f, n = ,

and

H(z, z)() = F(Ut , ) – �
(
� ,

〈
F(Ut , ), fn

〉) · fn,

where

H() =

⎧
⎨

⎩

τ̃
( χ

ς

)
cos( nx

l ), n ∈N,

τ̃
( χ

ς

)
– 

 (p()g + p()g) · f, n = ,
(.)

H() =

⎧
⎨

⎩

τ̃
( χ

ς

)
cos( nx

l ), n ∈N,

τ̃
( χ

ς

)
– 

 (p()g + p()g) · f, n = .

From Aτ̃ and (.), we obtain that

Ẇ = Aτ̃ W = iωnτ̃W +


(
p(θ )g + p(θ )g

) · fn, – ≤ θ < .



Yang et al. Advances in Difference Equations  (2017) 2017:158 Page 17 of 22

That is,

W(θ ) =
i

iωnτ̃

(

gp(θ ) +
g


p(θ )
)

· fn + Eeiωn τ̃ θ ,

where

E =

⎧
⎨

⎩

W(), n = , , , . . . ,

W() – i
iωn τ̃

(gp(θ ) + g
 p(θ )) · f, n = .

From Aτ̃ and (.), we obtain that for – ≤ θ < ,

–
(

gp() +
g


p()
)

· f + iωnτ̃E – Aτ̃

(
i

ωnτ̃

(

gp() +
g


p()
)

· f

)

– Aτ̃ E – Lτ̃

(
i

ωnτ̃

(

gp() +
g


p()
)

· fn + Eeiωn τ̃ θ

)

= τ̃

(
χ

ς

)

–


(
p()g + p()g

) · f.

As

Aτ̃ p() + Lτ̃ (p · f) = iωp() · f,

and

Aτ̃ p() + Lτ̃ (p · f) = –iωp() · f,

we have

iωnE – Aτ̃ E – Lτ̃ Eeiωn = τ̃

(
χ

ς

)

cos
(

nx
l

)

, n ∈N.

That is,

E = τ̃E

(
χ

ς

)

cos
(

nx
l

)

,

where

E =

(
iωnτ̃ + d

n

l a –a

–sae–iωn τ̃ iωnτ̃ + d
n

l – sae–iωn τ̃

)–

.

Similarly, from (.), we have

–Ẇ =
i

ωnτ̃

(
p(θ )g + p(θ )g

) · fn, – ≤ θ < .
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That is,

W(θ ) =
i

iωnτ̃

(
p(θ )g – p(θ )g

)
+ E.

Similarly, we have

E = τ̃E∗
(

χ

ς

)

cos
(

nx
l

)

,

where

E∗ =

(
d

n

l – a –a

–sa d
n

l – sa

)–

.

Thus, we can obtain the following quantities which determine the property of Hopf bifur-
cation:

c() =
i

ωnτ̃

(

gg – |g| –
|g|



)

+



g, μ = –
Re(c())
Re(λ′(τ j

n))
,

T = –


ωnτ̃

[
Im

(
c()

)
+ μ Im

(
λ′(τ j

n
))]

, β =  Re
(
c()

)
.

(.)

Theorem . For any critical value τ
j
n, we have the following results.

(i) When μ >  (resp. <), the Hopf bifurcation is forward (resp. backward).
(ii) When β <  (resp. >), the bifurcating periodic solutions on the center manifold are

orbitally asymptotically stable (resp. unstable).
(iii) When T >  (resp. T < ), the period increases (resp. decreases).

4 Numerical simulations
4.1 The case of τ = 0
Consider the following system:

⎧
⎨

⎩

∂u
∂t = .�u + u( – u – .(–m)v

+(–m)u+.v ),
∂v
∂t = �v + v( (–m)u

+(–m)u+.v – .),
(.)

where � = .π . To study the effect of prey refuge, vary the parameter m in system (.).
The stabilities of E∗(u∗, v∗) for system (.) are shown in Table . It suggests that prey refuge
has a stabilizing effect on system (.) without and with diffusion. But when m = ., .,
there are differences in these two kinds of systems.

Table 1 Stability of E∗(u∗, v∗) for system (4.1)

m Without diffusion With diffusion

0, 0.05, 0.1 Unstable Unstable
0.15, 0.2 Stable Unstable
0.25, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 Stable Stable
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Figure 1 Phase portraits of system (4.1) when d1 = d2 = 0. Left: s = 10, and the initial condition (0.5, 8.2).
Right: s = 15 and the initial condition (0.5, 8.2).

Figure 2 For system (4.1), s = 15 and the initial condition is (0.5, 8.2). Left component: u(x, t) (Turing
unstable). Right component: v(x, t) (Turing unstable).

Now, fix m = ., vary the parameter s in system (.). E∗(., .) is the unique
positive equilibrium, and

a ≈ . > , aa – aa ≈ . > ,

then (H) holds. If d = d =  and a + sa < , then E∗(u∗, v∗) is locally asymptotically
stable, and the system undergoes Hopf bifurcation at E∗(u∗, v∗) when s = –a/a (shown
in Figure ). For system (.), if we choose s = , then by Theorem .(iii), E∗(u∗, v∗) is
Turing unstable, this is shown in Figure . For system (.), by Theorem .(v), Hopf bi-
furcation occurs when s = –a/a, this is shown in Figure .

4.2 The case of τ �= 0
Consider the following system:

⎧
⎨

⎩

∂u
∂t = .�u + u( – u – .(–.)v

+(–.)u+.v ),
∂v
∂t = .�v + .v( (–.)u(t–τ )

+(–.)u(t–τ )+.v(t–τ ) – .),
(.)

where � = π . System (.) has a unique coexistent equilibrium E∗(., .). It
is easy to obtain that E∗(u∗, v∗) is locally stable when τ = , this is shown in Figure .
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Figure 3 For system (4.1), s = 10 and the initial condition is (0.5, 8.2). Left component: u(x, t) (Stable).
Right component: v(x, t) (Stable).

Figure 4 For system (4.2), τ = 0 and the initial condition is (0.5, 12). Left component: u(x, t) (Stable). Right
component: v(x, t) (Stable).

Figure 5 For system (1.3), τ = 8 and the initial condition is (0.5, 12). Left component: u(x, t) (Stable). Right
component: v(x, t) (Stable).

By computation, we obtain τ∗ ≈ .. By Theorem ., we know that if τ ∈ [, τ∗),
then E∗(u∗, v∗) is locally asymptotically stable, this is shown in Figure . By Theorem .,
Hopf bifurcation occurs at the E∗(u∗, v∗) when τ = τ∗. By Theorem ., we have μ ≈
. > , suggesting that the bifurcating periodic solution exists when τ > τ∗ (shown
in Figure ).



Yang et al. Advances in Difference Equations  (2017) 2017:158 Page 21 of 22

Figure 6 For system (1.3), τ = 9.2 and the initial condition is (0.5, 12). Left component: u(x, t) (Periodic
solution). Right component: v(x, t) (Periodic solution).

5 Conclusion
In this paper, a diffusive predator-prey system with prey refuge and gestation delay is in-
vestigated. For a non-delay system, the conditions inducing Turing instability and Hopf
bifurcation are given. The global stabilities of equilibria (, ) and (u∗, v∗) are also consid-
ered. By numerical simulation, we conclude that prey refuge has a stabilizing effect on the
reaction-diffusion system similar to the ODE system. But, when prey refuge is equal to
some values, Turing instability may occur. For a delayed system, time induced instability
and Hopf bifurcation are investigated. We conclude that time delay τ may affect the sta-
bility of the positive equilibrium. When it is smaller than the critical value τ∗, then prey
and predator will coexist and tend to the interior equilibrium E∗(u∗, v∗). When the delay
passes through some critical values, the positive equilibrium loses its stability and Hopf
bifurcations occur. Then prey and predator will exhibit oscillatory behavior.
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