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Abstract
In this paper, we study the existence and uniqueness of the solution of nonlocal
boundary value problems of nonlinear nth-order q-difference equations. The
uniqueness follows from the well-known Banach contraction principle. We prove that
those q-solutions, under some conditions, converge to the classical solution when q
approaches 1–. A new numerical algorithm is introduced via definition of q-calculus
for solving the nonlocal boundary value problem of nonlinear nth-order q-difference
equations. The numerical experiments show that the algorithm is quite accurate and
efficient. Moreover, numerical results are carried out to confirm the accuracy of our
theoretical results of the algorithm.

1 Introduction and preliminary
Ordinary differential equations (ODEs) give a description of phenomena that change con-
tinuously. They play an important role in physics, engineering and mathematics. Gener-
ally, a solution of a system of ODEs is determined by specifying some conditions on some
points in a domain. One of the interesting problems which arises in many subjects of phys-
ical science is a boundary value problem (BVP). Specific conditions of BVPs are imposed
at different values of the independent variable, for instance, consider the Robin problem

u′′(t) + f
(
t, u(t), u′(t)

)
=  ()

with the boundary conditions

u() =  and u′() = . ()

Equations () and () are commonly called ‘the local problem’. A further generalization
of BVPs is those with nonlocal conditions. If we replace the condition u′() =  in () by
u() = u(η), then () with the conditions

u() =  and u() = u(η), ()

where η ∈ (, ), is called the nonlocal problem. Note that (), () is a particular case of (),
() when we have the limit η → –.
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Nonlocal BVPs seem to be more interesting than the local ones not only they are more
natural but also because of their numerous applications. Moreover, in the numerical ex-
periment, the calculation of the value of a local boundary condition, such as u′() in (),
is more difficult than that of the nonlocal condition (u(η) – u())/(η – ) in (). For more
information as regards nonlocal BVPs see [–] and [].

Recently, the study of q-difference equations has played an important role in various
fields of physics and mathematics, especially in quantum mechanics, due to its numerous
applications. Starting from the re-introduction of the q-difference operator by Jackson []
in , the subject of q-difference equations has been deeply studied by several authors;
some examples of results can be found in [–] and [].

The existence and uniqueness of solutions of q-difference BVPs have been studied by
several authors; see [, , ]. For nonlocal q-difference problems, Ahmad and Nieto []
recently proved that a solution to the problems given by

⎧
⎨

⎩
D

qu(t) = f (t, u(t)), t ∈ [, ]q,

u() = , Dqu() = , u() = αu(η),
()

where f ∈ C([, ]q ×R,R), η ∈ {qn : n ∈N} and α �= 
η , does exist and it is unique.

In this paper, for a given positive integer n, we study the existence and uniqueness of
the solution of the following nonlocal boundary value problem of nonlinear singular nth-
order q-difference equations:

⎧
⎨

⎩
Dn

qu(t) = f (t, u, Dqu, . . . , Dm
q ),  ≤ t ≤ ,

Dk
qu() = , u() = αu(η), k = , , , . . . , n – ,

()

where η ∈ [, ]q and m is a non-negative integer with m ≤ n – , α �= 
ηn– , and f is a con-

tinuous function in C([, ]q ×R
m+,R), [, ]q = {qn : n ∈N} ∪ {, }.

In the last section of this paper, we proceed to its numerical solution and give the com-
parison with the ordinary difference equations.

2 Preliminary
In order to introduce our results, we recall some needed concepts about q-calculus and
q-difference equations. From now let  < q < . The q-difference operator, re-introduced
by Jackson, is defined by

Dqf (t) =
f (t) – f (qt)

( – q)t
, t �= ;

while the q-derivative at zero is defined by

Dqf () = lim
t→

Dqf (t).

Note that when the left limit as q approaches  of the q-derivative is a classical derivative
df
dt . The higher order q-derivatives are defined inductively as

D
qf (t) = f (t), Dn

qf (t) = DqDn–
q f (t).
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Further, for a multivariable real continuous function f (x, x, . . . , xn), the partial q-
derivative with respect to xi is defined as

∂qf (x, x, . . . , xn)
∂qxi

=
f (x, x, . . . , xn) – f (x, x, . . . , xi–, qxi, xi+, . . . , xn)

( – q)xi
.

For xi = , the partial q-derivative with respect to xi at zero is defined by

∂qf (x, x, . . . , xn)
∂qxi

∣
∣∣
∣
xi=

= lim
xi→

∂qf (x, x, . . . , xn)
∂qxi

.

Also, the higher order partial q-derivative with respect to xi is defined as

∂n
q f (x, x, . . . , xn)

∂qxn
i

=
∂q

∂qxi

∂n–
q f (x, x, . . . , xn)

∂qxn–
i

.

In , Jackson [] has generalized the so-called q-integral, firstly introduced by Thomae
[], in the following way:

∫ t


f (s) dqs =

∞∑

n=

t( – q)qnf
(
tqn),

provided that the series converges, and generally

∫ b

a
f (s) dqs =

∫ b


f (s) dqs –

∫ a


f (s) dqs.

Denote by

I
q f (t) = f (t), In

q f (t) = IqIn–
q f (t) =

∫ t



∫ tn–


· · ·

∫ t


f (s) dqs dqt · · ·dqtn–, n ∈N.

Remark that the fundamental theorem of q-calculus is DqIqf (t) = f (t), and if f is continu-
ous at x = , then IqDqf (x) = f (x) – f ().

Let k be a real or complex number, the kth basic number is defined by [k]q = –qk

–q . For
a non-negative integer n, []q! = , [n – ]q! = [n – ]q[n – ]q · · · []q. The q-analog of the
binomial coefficient can be defined as

[
n
k

]

q

=
[n]q!

[n – k]q![k]q!
.

We will also use the notation

(a; q) = , (a; q)n =
n–∏

k=

(
 – aqk), n ∈ N.

The q-analog of the power function (a – b)(n)
q with n ∈N is

(a – b)()
q = , (a – b)(n)

q =
n–∏

k=

(
a – bqk).
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Al-Salam [] proved the q-analog of Cauchy’s formula as follows:

In
q f (t) =

tn–

[n – ]q!

∫ t



(
qs
t

; q
)

n–
f (s) dqs.

The q-Leibniz product rule and q-integration by parts formula are

Dq(gh)(t) = Dqg(t)h(t) + g(qt)Dqh(t)

and

∫ t


f (s)Dqg(s) dqs =

[
f (s)g(s)

]t
 –

∫ t


Dqf (s)g(qs) dqs,

respectively.

3 Existence and uniqueness of solutions
Let Cm

q be the space of all real-valued continuous functions defined on [, ]q such that
the first m q-derivatives Dqf (t), D

qf (t), . . . , Dm
q f (t) exist. We equip this space with the

norm

‖u‖q = max
≤k≤m

{∥∥Dk
qu

∥
∥

q,∞
}

, u ∈ Cq, m ≤ n – ,

where

‖u‖q,∞ = max
t∈[,]q

{∣∣u(t)
∣
∣}.

Lemma . Define the Green function G(t, s; q) by

G(t, s; q)

=


[n – ]q!
(t – qs)(n–)

q +
tn–[α(η – qs)(n–)

q – ( – qs)(n–)
q ]

 – αηn– ,  ≤ s < min{η, t};

=


[n – ]q!
tn–[α(η – qs)(n–)

q – ( – qs)(n–)
q ]

 – αηn– ,  ≤ t < s < η < ;

=


[n – ]q!
(t – qs)(n–)

q –
tn–( – qs)(n–)

q

 – αηn– ,  ≤ η < s < t ≤ ;

=


[n – ]q!

(
–

tn–( – qs)(n–)
q

( – αηn–)

)
,  ≤ max{η, t} < s ≤ . ()
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Then u(t) is a solution of () if and only if

u(t) =


[n – ]q!

∫ t


(t – qs)(n–)

q f
(
s, u, Dqu, . . . , Dm

q u
)

dqs

+
tn–

[n – ]q!( – αηn–)

[
α

∫ η


(η – qs)(n–)

q f
(
s, u, Dqu, . . . , Dm

q u
)

dqs

–
∫ 


( – qs)(n–)

q f
(
s, u, Dqu, . . . , Dm

q u
)

dqs
]

:=
∫ 


G(t, s; q)f

(
s, u, Dqu, . . . , Dm

q u
)

dqs. ()

Proof Integrating the equation Dn
qu = f (t, u, Dqu, . . . , Dm

q u) n-times and using the q-analog
of the Cauchy formula, we obtain

u(t) =


[n – ]q!

∫ t


(t – qs)(n–)

q f
(
s, u, Dqu, . . . , Dm

q u
)

dqs +
n–∑

j=

ajtj, ()

where aj, j = , , , . . . , n – , are arbitrary constants. In fact, we have

Dm
q u(t) = In–m

q f
(
t, u, Dqu, . . . , Dm

q u
)

=


[n – m – ]q!

∫ t


(t – qs)(n–m–)

q f
(
s, u, Dqu, . . . , Dm

q u
)
dqs

+
n–m–∑

j=

an–j–tn–m–j–. ()

Using the boundary conditions Dk
qu() = , for k = , , , . . . , n – , in () and u() = αu(η),

we find that a = a = · · · = an– =  and

an– =


[n – ]q!( – αηn–)

[
α

∫ η


(η – qs)(n–)

q f
(
s, u, Dqu, . . . , Dm

q u
)

dqs

–
∫ 


( – qs)(n–)

q f
(
s, u, Dqu, . . . , Dm

q u
)

dqs
]

.

Substituting the values of a, a, . . . , an– in (), we obtain (). This completes the proof. �

Remark . If q approaches  on the left, then equation () takes the form

u(t) =
∫ 


G(t, s)f

(
s, u, u′, . . . , u(m))ds, ()

with the associated form of Green’s function for the classical case defined by

G(t, s)

=


(n – )!
(t – s)n– +

tn–[α(η – s)n– – ( – s)n–]
 – αηn– ,  ≤ s < min{η, t};
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=


(n – )!
tn–[α(η – s)n– – ( – s)n–]

 – αηn– ,  ≤ t < s < η < ;

=


(n – )!
{(t – s)n– –

tn–( – s)n–

 – αηn– ,  ≤ η < s < t ≤ ;

=


(n – )!

(
–

tn–( – s)n–

 – αηn–

)
,  ≤ max{η, t} < s ≤ . ()

This solution is equivalent to the solution of a classical nonlinear nth-order boundary
value problem,

u(n)(t) = f
(
t, u, u′, . . . , u(m)), u(k)() = ,

u() = αu(η), k = , , , . . . , n – , m ≤ n – ,
()

where f is a continuous function in C([, ] ×R
m+,R).

To accomplish the main results, we define an integral operator Tq : Cm
q → Cm

q by

Tqu(t) =
∫ 


G(t, s; q)f

(
s, u, Dqu, . . . , Dm

q u
)

dqs,

=


[n – ]q!

∫ t


(t – qs)(n–)

q f
(
s, u, Dqu, . . . , Dm

q u
)

dqs

+
tn–

[n – ]q!( – αηn–)

[
α

∫ η


(η – qs)(n–)

q f
(
s, u, Dqu, . . . , Dm

q u
)

dqs

–
∫ 


( – qs)(n–)

q f
(
s, u, Dqu, . . . , Dm

q u
)

dqs
]

.

Obviously, Tq is well defined and it is easy to see that u ∈ Cm
q is a solution of BVP () if and

only if u is a fixed point of Tq.
The following lemma will be required in our investigation.

Lemma . For k = , , . . . , m,

Dk
qTqu(t) =

∫ 



∂k
q G(t, s; q)

∂qt
f
(
s, u, Dqu, . . . , Dm

q u
)

dqs,

where the function ∂k
q G(t, s; q)/∂qt is defined by

∂k
q G(t, s; q)

∂qt

=


[n – k – ]q!
(t – qs)(n–k–)

q

+
tn–k–[α(η – qs)(n–)

q – ( – qs)(n–)
q ]

 – αηn– ,  ≤ s < min{η, t};

=


[n – k – ]q!
tn–k–[α(η – qs)(n–)

q – ( – qs)(n–)
q ]

 – αηn– ,  ≤ t < s < η < ;
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=


[n – k – ]q!
(t – qs)(n–k–)

q –
tn–k–( – qs)(n–)

q

 – αηn– ,  ≤ η < s < t ≤ ;

=


[n – k – ]q!

(
–

tn–k–( – qs)(n–)
q

( – αηn–)

)
,  ≤ max{η, t} < s ≤ . ()

Proof The result is directly obtained by equation (). �

Lemma . For any positive integer m, we have

∫ x


(x – qs)(m)

q dqs = xm+
m∑

j=

[
m
j

]

q

(–)jq
j(j+)



[j + ]q
.

Proof Since

( – qs)(m)
q =

m∑

j=

[
m
j

]

q

q
j(j+)

 (–s)j

=
m∑

j=

[
m
j

]

q

(–)jq
j(j+)

 sj,

it follows that

∫ x


(x – qs)(m)

q dqs =
∫ x


xm

(
 – q

s
x

)(m)

q
dqs

=
∫ x


xm

m∑

j=

[
m
j

]

q

(–)jq
j(j+)



(
s
x

)j

dqs

= xm+
m∑

j=

[
m
j

]

q

(–)jq
j(j+)



[j + ]q
.

�

In order to state our main result, we firstly define

Gq,k+ = max
t∈[,]q

∣
∣∣
∣

∫ 



∂k
q G(t, s; q)

∂qt
dqs

∣
∣∣
∣

and

Gq = max{Gq,,Gq,, . . . ,Gq,m+}.

By applying Lemma . and Lemma ., we can estimate the constants Gq,k+, k =
, , . . . , m, by

Gq,k+ =


[n – k – ]q!
max

{
|Ck+ – γ C|,

qn–k–[n – k – ]n–k–
q |γ |n–kCn–k



Cn–k–
k+ [n – k]n–k

q

}
.

In the case m = n – , we have

Gq,n = max
{

, | – γ C|
}

,
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where

Ck =
n–k∑

j=

[
n – k

j

]

q

(–)jq
j(j+)



[j + ]q
,

γ = η +
 – η

 – αηn– .

Based on Banach’s fixed point theorem [], we obtain the following result.

Theorem . Let f : [, ]q ×R
m+ →R be a continuous function, and there exist positive

functions Lj(t) ∈ C([, ]q), j = , , . . . , m, such that

∣∣f (t, u, u, . . . , um) – f (t, v, v, . . . , vm)
∣∣ ≤

m∑

j=

Lj(t)|uj – vj|, t ∈ [, ]q. ()

Then the boundary value problem () has a unique solution, provided �qGq < , where
�q =

∑m
j= ‖Lj‖q,∞.

Proof According to the Banach contraction theorem, if Tq is a contractive mapping then
it has a unique fixed point which coincides with the unique solution of problem (). To
obtain the contractive property of Tq, let u, v ∈ Cm

q and for each t ∈ Iq, we have

|Tqu – Tqv| =
∣∣∣
∣

∫ 


G(t, s; q)

(
f
(
s, u, Dqu, . . . , Dm

q u
)

– f
(
s, v, Dqv, . . . , Dm

q v
))

dqs
∣∣∣
∣

≤
∣∣
∣∣
∣

∫ 


G(t, s; q)

( m∑

j=

Lj(t)
∣∣Dj

q(u – v)
∣∣
)

dqs

∣∣
∣∣
∣

≤
∣
∣∣∣
(
�q‖u – v‖q

)∫ 


G(t, s; q) dqs

∣
∣∣∣

≤ �qGq,‖u – v‖q ≤ �qGq‖u – v‖q. ()

It was shown in Lemma . that for each k = , , . . . , m

∣
∣Dk

q(Tqu – Tqv)
∣
∣ =

∣∣
∣∣

∫ 



∂k
q G(t, s; q)

∂qt
(
f
(
s, u, Dqu, . . . , Dm

q u
)

– f
(
s, v, Dqv, . . . , Dm

q v
))

dqs
∣∣
∣∣

≤
∣∣∣
∣∣

∫ 



∂k
q G(t, s; q)

∂qt

( m∑

j=

Lj(t)
∣∣Dj

q(u – v)
∣∣
)

dqs

∣∣∣
∣∣

≤
∣
∣∣
∣
(
�q‖u – v‖q

)∫ 



∂k
q G(t, s; q)

∂qt
dqs

∣
∣∣
∣

≤ �qGq,k+‖u – v‖q ≤ �qGq‖u – v‖q. ()

Therefore, we obtain ‖Tu – Tv‖q ≤ �qGq‖u – v‖q. The required result comes from the
assumption �qGq < . �

By letting q approach , we obtain the following existence and uniqueness result for the
classical nonlinear nth-order boundary value problem.
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Theorem . Let f : [, ] ×R
m+ → R be a continuous function, and there exist positive

functions Lj(t) ∈ C([, ]), j = , , . . . , m, such that

∣∣f (t, u, u, . . . , um) – f (t, v, v, . . . , vm)
∣∣ ≤

m∑

j=

Lj(t)|uj – vj|, t ∈ [, ]. ()

Then the boundary value problem () has a unique solution, provided �G < , where � =
∑m

j= ‖Lj‖∞ and G = limq→– Gq.

4 Numerical experiments
In this section, we prove the error estimate between the q-difference solution and the
classical solution. Let uq be the solution of () and u be the solution of (). We note here
that, for any function f : [, ] ×R

m+ →R in problem (), for convenience its restriction
f |[,]q×Rm+ will be written as f when we consider problem (), similarly to the function u,
so that ‖u – uq‖q,∞ is well defined.

Theorem . Let f : [, ] × R
m+ → R be a continuous function satisfying the Lipschitz

condition (). If max{�qGq,�G} < , then

‖u–uq‖q,∞ ≤ ‖Tu –Tqu‖q,∞ +
�G

 – �G ‖Tu –u‖∞ +
�qGq

 – �qGq
‖Tqu –u‖q,∞. ()

Moreover, if u = u, we have

‖u – uq‖q,∞ ≤ 
 – �qGq

‖Tu – Tqu‖q,∞. ()

Proof To prove the error estimate, the following bounds are valid by Theorem . and
Theorem .:

∥∥Tn
q u – uq

∥∥∞ ≤ (�qGq)n

 – �qGq
‖Tqu – uq‖q,∞,

∥∥Tnu – u
∥∥∞ ≤ (�G)n

 – �G ‖Tu – u‖∞,

respectively. It is easy to see that

∥
∥Tnu – u

∥
∥

q,∞ ≤ ∥
∥Tnu – u

∥
∥∞.

Thus, we have

‖u – uq‖q,∞ ≤ ∥∥Tnu – u
∥∥

q,∞ +
∥∥Tnu – Tn

q u
∥∥

q,∞ +
∥∥Tn

q u – uq
∥∥

q,∞

≤ (�G)n

 – �G ‖Tu – u‖∞ +
∥
∥Tnu – Tn

q u
∥
∥

q,∞

+
(�qG)n

 – �qG
‖Tqu – uq‖q,∞. ()



Phothi et al. Advances in Difference Equations  (2017) 2017:148 Page 10 of 17

Considering the middle term ‖Tnu – Tn
q u‖q,∞, we obtain

∥
∥Tnu – Tn

q u
∥
∥

q,∞

=

∥∥
∥∥
∥

n∑

j=

(
Tju – Tj–u

)
+ (Tu – Tqu) –

n∑

j=

(
Tj

qu – Tj–
q u

)
∥∥
∥∥
∥

q,∞

≤
n∑

j=

∥∥Tju – Tj–u
∥∥∞ + ‖Tu – Tqu‖q,∞ +

n∑

j=

∥∥Tj
qu – Tj–

q u
∥∥

q,∞

≤ ‖Tu – u‖∞
n∑

j=

(�G)j– + ‖Tu – Tqu‖q,∞

+ ‖Tqu – u‖q,∞
n∑

j=

(�qGq)j–

=
�G[ – (�G)n–]

 – �G ‖Tu – u‖∞ + ‖Tu – Tqu‖q,∞

+
�qGq[ – (�qGq)n–]

 – �qGq
‖Tqu – u‖q,∞. ()

Hence,

‖u – uq‖q,∞

≤ ‖Tu – Tqu‖q,∞ +
(�G)n

 – �G ‖Tu – u‖∞ +
(�qG)n

 – �qG
‖Tqu – uq‖q,∞

+
�G[ – (�G)n–]

 – �G ‖Tu – u‖∞ +
�qGq[ – (�qGq)n–]

 – �qGq
‖Tqu – u‖q,∞.

The inequality () follows by letting n → ∞, we obtain (). Moreover, if u = u, we have
Tu = u and this implies

‖u – uq‖q,∞ ≤ ‖Tu – Tqu‖q,∞ +
�qGq

 – �qGq
‖Tqu – u‖q,∞

=


 – �qGq
‖Tqu – Tu‖q,∞.

This completes the proof. �

Next, we will apply the q-Picard iterative method to solve some q-nonlinear boundary
value problems and compare the approximate solutions with their exact solutions. In order
to identify the method, we first establish the correctional function for () as

un+(t) =


[n – ]q!

∫ t


(t – qs)(n–)

q f
(
s, un(s), . . . , Dm

q un(s)
)

dqs

+
tn–

[n – ]q!( – αηn–)
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×
(

α

∫ η


(η – qs)(n–)

q f
(
s, un(s), . . . , Dm

q un(s)
)

dqs

–
∫ 


( – qs)(n–)

q f
(
s, un(x), . . . , Dm

q un(s)
)

dqs
)

, ()

where un represents the nth-order approximate.
Starting from the initial iteration u(t), the successive approximate solutions can be ob-

tained by calculating the q-integral appeared in (). Occasionally, it might be difficult to
calculate the q-integration directly due to the nonlinearity of f (t, ·).

Now we shall present the explicit algorithm for solving an approximate solution of the
q-integral via operator Tq defined above. Let q̄N be the time scale which given as {qn|n ∈
N} ∪ {}, where  is the cluster point of q̄N. For the numerical computations, the interval
[, q] is partitioned into N subintervals. Recall that the analog maximum errors are defined
as

∥∥un – u∗∥∥
L∞ = max

t∈Iq

∣∣un(t) – u∗(t)
∣∣,

where un is the approximate solution with n iterations and u∗ is the analytic solution.
Recall that the q-derivative of un(t) at t = qj is defined as

Dqun
(
qj) =

un(qj) – un(qj+)
( – q)qj , j = , , . . . , N – ,

and hence the boundary condition gives

Dqun
(
qN)

=
un(qN ) – un(qN+)

( – q)qN ≈ un(qN )
( – q)qN ,

where we use un(qN+) ≈ . By the inductive step, we obtain

Dk
qun

(
qj) =

Dk–
q un(qj) – Dk–

q un(qj+)
( – q)qj , j = , , . . . , N – ,

and

Dk
qun

(
qN)

=
Dk–

q un(qN )
( – q)qN ,

for k = , , . . . , n – . In the case k = n – , the n –  times derivative of un(t) at t =  can be
defined by

Dn–
q un() = lim

j→∞
Dn–

q un(qj) – Dn–
q un()

qj , q < . ()

Then we can estimate Dn–
q un() = Dn–

q un(qN–)
qN– .



Phothi et al. Advances in Difference Equations  (2017) 2017:148 Page 12 of 17

We can calculate the u(qk) = Tu(qk), where k = , , , . . . , N – , and we have the quan-
tity

∫ η


(η – qs)(n–)

q f
(
s, u, Dqu, . . . , Dm

q u
)

dqs

=
∫ qN



(
qN – qs

)(n–)
q f

(
s, u, Dqu, . . . , Dm

q u
)

dqs

=
∞∑

j=

( – q)qj+N
(
qN – q · qj+N

)(n–)
q f

(
qj+N , u

(
qj+N

)
, . . . , Dn–

q u
(
qj+N

))

=
∞∑

j=

m∑

i=

[
n – 

i

]

q

(–)i( – q)q
i(i+)

 qj(j+)+nN f
(
qj+N , u

(
qj+N

)
, . . . , Dn–

q u
(
qj+N

))

≈
N–N–∑

j=

m∑

i=

[
n – 

i

]

q

(–)i( – q)q
i(i+)

 qj(j+)+nN

× f
(
qj+N , u

(
qj+N

)
, . . . , Dn–

q u
(
qj+N

))
,

where η = qN and the term Dqu(qj), . . . , Dn–
q u(qj) can be estimated by the above method.

Similarly, the following estimations are obtained:

∫ 


( – qs)(n–)

q f
(
s, u, Dqu, . . . , Dm

q u
)

dqs

≈
N–∑

j=

m∑

i=

[
n – 

i

]

q

(–)i( – q)q
i(i+)

 qj(j+)f
(
qj, u

(
qj), . . . , Dn–

q u
(
qj)),

∫ qk


(t – qs)(n–)

q f
(
s, u, Dqu, . . . , Dm

q u
)

dqs

≈
N–k–∑

j=

m∑

i=

[
n – 

i

]

q

(–)i( – q)q
i(i+)

 qj(j+)+nkf
(
qj+k , u

(
qj+k), . . . , Dn–

q u
(
qj+k)).

By the definition of Tq and the time scale [, q], we can obtain u(qk) = Tqu(qk) by as-
suming the value of qN ≈ . That is,

Tqu
(
qk)

≈ 
[n – ]q!

N–k–∑

j=

m∑

i=

[
n – 

i

]

q

(–)i( – q)q
i(i+)

 qj(j+)+nk

× f
(
qj+k , u

(
qj+k), . . . , Dn–

q u
(
qj+k))

+
qk(n–)

[n – ]q!( – αηn–)

⎛

⎝α

N–N–∑

j=

m∑

i=

[
n – 

i

]

q

× (–)i( – q)q
i(i+)

 qj(j+)+nN f
(
qj+N , . . . , Dn–

q u
(
qj+N

))

–
N–∑

j=

m∑

i=

[
n – 

i

]

q

(–)i( – q)q
i(i+)

 qj(j+)f
(
qj, u

(
qj), . . . , Dn–

q u
(
qj))

⎞

⎠ .
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By using the values of uk–(t), for all t ∈ [, ]q, we can repeatedly calculate the uk(t), for
k = , , . . . , n. Next, we present two numerical experiments to illustrate the efficiency of
the proposed algorithm. The computer programs are written in MATLAB by choosing
N = ,.

Example . Let us first consider the q-difference BVP

⎧
⎨

⎩
D

qu = t
[]q[]q

Dqu – t
[]q

u +  – qt
[]q[]q

,

u() = , u() = u(q),

with f (t, u, Dqu) = t
[]q[]q

Dqu – t
[]q

u +  – qt
[]q[]q

, n = , α =  and η = q.

Clearly

∣
∣f (t, v, v) – f (t, w, w)

∣
∣ ≤ t

[]q[]q
|v – w| +

t
[]q

|v – w|,

for  < q < , we choose �q = /[]q[]q + /[]q < , C = /[]q and γ = ( – q)/( – q) =
[]q. Then we have

Gq = max
{

, | – γ C|
}

= .

By using Theorem ., we only can obtain the existence and uniqueness of solution of
problem (.), however, it is not difficult to show this, and the exact solution is u(t) =

t

[]q
– t.

With u =  and N = , we apply the numerical schemes for solving this problem. Ta-
ble  shows the errors for q = ., ., ., . at the various values of iteration. It seems that
the approximation un converges faster when q is large. Figure  presents the q-approximate

Table 1 Numerical comparison of the errors in Example 4.2

n q

0.6 0.7 0.8 0.9

1 5.14630E–02 5.03004E–02 4.73555E–02 4.34192E–02
2 6.99387E–03 6.04295E–03 4.93923E–03 3.89799E–03
3 9.43402E–04 7.16415E–04 5.04360E–04 3.38723E–04
4 1.27086E–04 8.47161E–05 5.13017E–05 2.93003E–05
5 1.71157E–05 1.00129E–05 5.21482E–06 2.53324E–06
6 2.30502E–06 1.18335E–06 5.30033E–07 2.19010E–07
7 3.10421E–07 1.39850E–07 5.38716E–08 1.89344E–08
8 4.18050E–08 1.65275E–08 5.47540E–09 1.63698E–09
9 5.62994E–09 1.95323E–09 5.56510E–10 1.41532E–10
10 7.58194E–10 2.30834E–10 5.65640E–11 1.22410E–11
11 1.02108E–10 2.72809E–11 5.74957E–12 1.06670E–12
12 1.37516E–11 3.22392E–12 5.85199E–13 9.96425E–14
13 1.85246E–12 3.81251E–13 6.02296E–14 1.83742E–14
14 2.49800E–13 4.51861E–14 6.55032E–15 8.43769E–15
15 3.42504E–14 6.10623E–15 1.72085E–15 8.32667E–15
16 4.88498E–15 1.05471E–15 1.55431E–15 8.32667E–15
17 8.88178E–16 7.21645E–16 1.55431E–15 8.32667E–15
18 4.44089E–16 6.10623E–16 1.55431E–15 8.32667E–15
19 3.33067E–16 6.10623E–16 1.55431E–15 8.32667E–15
20 3.33067E–16 6.10623E–16 1.55431E–15 8.32667E–15
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Figure 1 Numerical solution (left) and the maximum error (right) in Example 4.2.

Figure 2 The absolute error (left) and the maximum error (right) in Example 4.2.

Table 2 Comparison of the error between q-approximate solution u15 and classical ODE

q 0.900 0.925 0.950 0.975
‖u15 – u‖q,∞ 2.13158E–02 1.15705E–02 7.16421E–03 2.46256E–03

solution for the different values of n on the left side and it presents the maximum error on
the right side with q = ..

In Figure , the absolute errors with several values of q and the maximum errors are
plotted with n = . Furthermore, we also compute the error between q-approximate so-
lution, u, and the exact solution obtained by the classical ODE; the results are shown in
Table .

Finally, Figure  presents the q-approximate solution with several values of q and exact
solution of the classical ODE in Example ..

Example . ([]) Consider the BVP

⎧
⎨

⎩
D

qu = L(cos t + tan– u),

u() = Dqu() =  and u() = αu(qk),

with f (t, u) = L(cos t + tan– u), n = , and η = qk .
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Figure 3 Comparison between q-approximate
solution and classical ODE.

Figure 4 Plots of the function G with α = 0 (left) and α = 1 (right).

We find that

∣
∣f (t, u) – f (t, v)

∣
∣ ≤ L

∣
∣tan– u – tan– v

∣
∣ ≤ L|u – v|.

We shall show that the BVP has a unique solution. We have �q = L and C = /[]q so
that

Gq = max

{ |α|qk( – qk)
| – αqk|( + q)( + q + q)

,
|γ |( + q)q

( + q + q)

}

=
|γ |( + q)q

( + q + q) .

Here γ = ( – qk)/( – qk).
We can roughly estimate that

Gq <
 + qk

( + q + q) .

So, this problem has a unique solution provided L < (+q+q)

+qk .
Some examples of the function Gq are shown in Figure  with α =  on the left and α = 

on the right. In these cases, it is observed that we have the maximum values of Gq < .
and Gq < . when α =  and α = , respectively. By using Theorem ., we obtain the
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Figure 5 q-approximate solution in Example 4.3
with L = 1 and η = 0.

Figure 6 q-approximate solution in Example 4.3
with L = 1 and q = 0.75.

Figure 7 q-approximate solution in Example 4.3
with η = q5 and q = 0.75.

existence and uniqueness of problem ., however, we cannot obtain its exact solution.
Hence, we will apply the numerical scheme to obtain its numerical solution.

Figure  presents the q-approximate solution with several values of q for L =  and η = .
Moreover, the q-approximate solution with several values of η and L are displayed in Fig-
ure  and Figure , respectively.
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