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Abstract
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1 Introduction
Differential equations involving fractional derivatives in time are more realistic to describe
many phenomena in practical cases than those of integer order in time. Fractional differ-
ential equations therefore have attracted considerable attention [–]. It is of great signif-
icance to import the stochastic effects into the investigation of differential systems in that
the deterministic systems often fluctuate due to environmental noise. As a result, many
researchers worked out some interesting results of stochastic differential equations; see
[–]. Meanwhile, many researchers focused on research about the theory of fractional
stochastic differential equations. Cui and Yan [] investigated the existence of mild so-
lutions for neutral fractional stochastic integral differential equations with infinite delay
using Sadovskii’s fixed point theorem. Sakthivel et al. [] discussed the mild solutions
for fractional stochastic differential equations with infinite delay and impulses. Further,
they proved the existence of mild solutions for nonlocal fractional stochastic differential
equations. By constructing Picard successive approximation, Wang [] established the
approximate mild solutions of fractional stochastic differential equations. The existence
and asymptotic stability of neutral fractional stochastic differential equations with infinite
delays were studied by Sakthivel et al. []. Benchaabane and Sakthivel [] analyzed the
existence and uniqueness of mild solutions for a class of Sobolev-type fractional stochastic
differential equations using Picard’s iteration.

On the other hand, as an extension of Brownian motion, there have been many efforts
of fractional Brownian motion (fBm) in recent years. The properties of self-similarity and
non-stationary make fBm widely used in many areas; see [–]. When H �= 

 , we cannot
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use the classical stochastic analysis to discuss fBm, in that it is neither a Markov process
nor a martingale. Recently, many researchers focused on the study of stochastic differential
equations driven by fBm; see [–, ] and the references therein.

It is remarkable that, among the previous researches, most researchers focused on re-
search as regards integer order stochastic differential equations driven by fractional Brow-
nian motion or fractional stochastic differential equations with Wiener process. Until now,
the existence of mild solutions for fractional stochastic differential equations driven by
fBm has not been investigated in the literature. In this paper, we study the existence of
mild solutions for these equations of the following form:

⎧
⎨

⎩

cDqX(t) = AX(t) + F(t, X(t)) + σ (t) dBH (t)
dt , 

 < q ≤ , t ∈ J := [, b],

X() + G(X) = X,
()

where cDq denotes the Caputo fractional derivative of order q ∈ ( 
 , ] with the lower

limit . Assume that a probability space (�,Fb, P) together with a normal filtration
{Ft}t∈[,b] are given. The process {X(t)}t∈[,b] takes values in the real separable Hilbert
space Y . A is the infinitesimal generator of a strongly continuous semigroup {S(t), t ≥ }
in Y . BH = {BH(t), t ∈ J} is a fBm with Hurst index H ∈ ( 

 , ) on a real separable Hilbert
space V . F ,σ , G are appropriate functions satisfying some assumptions. X is an F-
measurable random variable independent of BH with finite second moment.

The main purpose of this paper is to study the existence of mild solutions of system ().
To the best of our knowledge, the validation of many existence results of stochastic differ-
ential equations with nonlocal conditions is under the compact assumptions on nonlocal
items. In this paper, we get rid of these assumptions of nonlocal items.

This paper consists of five sections. Some basic results and estimates are given in Sec-
tion . In Section , the existence and uniqueness of mild solutions for system () is es-
tablished. An example is presented as an application of the abstract results in Section .
Section  concludes the paper and presents future work.

2 Preliminaries
We first introduce some definitions, notations and basic preliminary facts which are used
throughout this paper. For more details, see Zhou et al. [], Podlubny [], Mishura [],
Biagini [].

Suppose that V and Y are two real separable Hilbert spaces. Let (�,Fb, P) be a complete
probability space with a normal filtration {Ft}t∈[,b]. We denote by Pb the predictable σ -
field on �b := [, b] × �. Space Y is equipped with a Borel σ -field B(Y ). For the strongly
continuous semigroup {S(t), t ≥ } in Y , assume that

M := sup
t∈[,∞)

∥
∥S(t)

∥
∥ < ∞.

Introduce the following Banach spaces:

L(V , Y ) := {g : V → Y |g is a bounded linear operator},
L(�,Fb; Y ) := {f : � → Y |f is Fb-measurable square integrable random variable},
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C
(
J , L(�,Fb; Y )

)
:=

{
X : J → L(�,Fb; Y )|X is a continuous mapping from J

into L(�,Fb; Y ) such that sup
t∈J

E
∥
∥X(t)

∥
∥ < ∞

}
,

C :=
{

X : J × � → Y |X ∈ C
(
J , L(�,Fb; Y )

)
is an Ft-adapted stochastic process

}
.

For X ∈ C , define the norm ‖X‖C = (supt∈J E‖X(t)‖) 
 . It is clear that (C,‖ ·‖C) is a Banach

space.
We first give the definition of one-dimensional fBm.

Definition  ([, ]) A one-dimensional fBm βH = {βH(t), t ∈ J} of Hurst index H ∈
(, ) is a continuous and centered Gaussian process with covariance function

RH (t, s) = E
[
βH (t)βH(s)

]
=



(
tH + sH – |t – s|H)

, t, s ∈ J .

For H = 
 , the fBm is then a standard Brownian motion.

We assume H ∈ ( 
 , ) in the rest of this paper.

For 
 < H < , fBm βH can be represented over a finite interval, i.e.,

βH (t) =
∫ t


KH (t, s) dW (s),

where W = {W (t), t ∈ J} is a Wiener process and

KH (t, s) = cH

(

H –



)

s

 –H

∫ t

s
(u – s)H– 

 uH– 
 du.

Denote by ε the linear space of step functions on J of the form

φ(t) =
n–∑

i=

aiI(ti ,ti+](t),

where  = t < t < · · · < tn = b, n ∈ N , ai ∈ R, and H the closure of ε with respect to the
scalar product

〈I[,t], I[,s]〉H = RH (t, s).

The Wiener integral of φ (φ ∈ ε) with respect to βH is given by

∫ b


φ(s) dβH (s) =

n–∑

i=

ai
(
βH (ti+) – βH (ti)

)
.

Moreover, the mapping

φ →
∫ b


φ(s) dβH (s)

is an isometry between ε and the linear space span{βH (t), t ∈ J} viewed as a subspace of
L(�), which can be extended to an isometry between H and the first Wiener chaos of the
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fBm spanL(�){βH (t), t ∈ J}. The image on an element h ∈ H by this isometry is called the
Wiener integral of h with respect to βH .

For any τ ∈ [, b], consider the linear operator K∗
τ : ε → L[, b] given by

(
K∗

τ φ
)
(s) =

∫ τ

s
φ(t)

∂KH (t, s)
∂t

dt.

The operator K∗
b induces an isometry between ε and L[, b] that can be extended to H .

We have the following relation between Wiener integral with respect to fBm and Itô
integral with respect to Wiener process:

∫ b


h(s) dβH (s) =

∫ b



(
K∗

b h
)
(s) dW (s), h ∈ H ,

iff K∗
b h ∈ L[, b].

For t ∈ [, b],
∫ t

 h(s) dβH (s) is defined by

∫ t


h(s) dβH(s) :=

∫ b


h(s)I[,t](s) dβH (s).

Moreover, we have

∫ t


h(s) dβH(s) =

∫ t



(
K∗

t h
)
(s) dW (s), t ∈ [, b], hI[,t] ∈ H ,

iff K∗
t h ∈ L[, b].

Define L
H [, b] by

L
H [, b] =

{
h ∈ H , K∗

b h ∈ L[, b]
}

.

For H > 
 , we have (see [])

L

H [, b] ⊂ L

H [, b]. ()

Next, we define the infinite dimensional fBm and give the definition of the corresponding
stochastic integral.

Let Q ∈ L(V , V ) be a non-negative self-adjoint trace class operator defined by Qen = λnen

with tr Q =
∑∞

n= λn < ∞, where λn ≥  (n = , , . . .) are real numbers and {en} (n = , , . . .)
is a complete orthonormal basis in V . Define the V -valued Q-cylindrical fBm on (�,Fb, P)
with covariance operator Q as

BH (t) =
∞∑

n=

Q

 enβ

H
n (t) =

∞∑

n=

√
λnenβ

H
n (t),

where βH
n are real, independent one-dimensional fBm. Define the space L

Q(V , Y ) by

L
Q(V , Y ) = {ξ : V → Y |ξ is Q-Hilbert-Schmidt operator}.
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Notice that ξ ∈ L(V , Y ) is called a Q-Hilbert-Schmidt operator, if

‖ξ‖
L

Q(V ,Y ) :=
∞∑

n=

‖√λnξen‖ < ∞.

The space L
Q(V , Y ) equipped with the inner product

〈ξ , ζ 〉L
Q(V ,Y ) =

∞∑

n=

〈ξen, ζ en〉

is a separable Hilbert space.

Definition  ([, , ]) Let � : [, b] → L
Q(V , Y ) such that

∞∑

n=

∥
∥K∗

b
(
�Q



)
en

∥
∥

L([,b],Y ) < ∞. ()

Then its stochastic integral with respect to the fBm BH is defined as follows:

∫ t


�(s) dBH(s) :=

∞∑

n=

∫ t


�(s)Q


 en dβH

n (s)

=
∞∑

n=

∫ t



(
K∗

b
(
�Q


 en

))
(s) dW (s), t ∈ [, b].

Notice that if

∞∑

n=

∥
∥�Q


 en

∥
∥

L

H ([,b],Y )

< ∞ ()

then particularly () holds, which follows immediately from ().

Lemma  ([, ]) If � : [, b] → L
Q(V , Y ) satisfies (), then, for any  ≤ s < t ≤ b, we have

E
∥
∥
∥
∥

∫ t

s
�(τ ) dBH (τ )

∥
∥
∥
∥



Y
≤ CH (t – s)H–

∞∑

n=

∫ t

s

∥
∥�(τ )Q


 en

∥
∥

Y dτ ,

where CH is a constant depending on H . If, in addition,

∞∑

n=

∥
∥�(t)Q


 en

∥
∥

Y is uniformly convergent for t ∈ [, b],

then

E
∥
∥
∥
∥

∫ t

s
�(τ ) dBH (τ )

∥
∥
∥
∥



Y
≤ CH (t – s)H–

∫ t

s

∥
∥�(τ )

∥
∥

L
Q(V ,Y ) dτ .

Further, some basic definitions and properties about fractional calculus are given.
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Definition  ([, ]) The fractional integral of order q with the lower limit  for a function
f can be written as

Iq
+ f (t) =


(q)

∫ t



f (s)
(t – s)–q ds, t > , q > ,

provided that the right side is point-wise defined on [,∞), where (·) is the gamma func-
tion.

Definition  ([, ]) Riemann-Liouville’s derivative of order q with the lower limit  for
a function f : [,∞) → R can be written as

LDqf (t) =


(n – q)
dn

dtn

∫ t



f (s)
(t – s)q+–n ds, t > , n = [q] + .

Definition  ([, ]) Caputo’s derivative of order q with the lower limit  for a function
f : [,∞) → R is defined as

cDqf (t) =L Dq

[

f (t) –
n–∑

k=

tk

k!
f (k)()

]

, t > , n = [q] + .

Moreover, if f (n) ∈ C[,∞), then

cDqf (t) =


(n – q)

∫ t



f (n)(s)
(t – s)q+–n ds, n = [q] + .

Motivated by [, ], one can define the mild solution for system ().

Definition  A Y -valued stochastic process X ∈ C is said to be a mild solution of system
(), if X() + G(X) = X and for any t ∈ J , it satisfies the following integral equation:

X(t) = Sq(t)
[
X – G(X)

]
+

∫ t


(t – s)q–Tq(t – s)F

(
s, X(s)

)
ds

+
∫ t


(t – s)q–Tq(t – s)σ (s) dBH(s), P-a.s.,

where

Sq(t) =
∫ ∞


ξq(θ )S

(
tqθ

)
dθ , Tq(t) = q

∫ ∞


θξq(θ )S

(
tqθ

)
dθ ,

ξq(θ ) =

q
θ

–(+ 
q )

ωq
(
θ

– 
q
) ≥ ,

ωq(θ ) =

π

∞∑

n=

(–)n–θ–nq– (nq + )
n!

sin(nπq), θ ∈ (,∞),

ξq is a probability density function defined on (,∞) such that

ξq(θ ) ≥ , θ ∈ (,∞) and
∫ ∞


ξq(θ ) dθ = .
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Lemma  ([]) The following properties are satisfied:
(i) Sq(t) and Tq(t) are linear and bounded operators for each fixed t ≥ , i.e.,

∥
∥Sq(t)x

∥
∥ ≤ M‖x‖, x ∈ X and

∥
∥Tq(t)x

∥
∥ ≤ qM

(q + )
‖x‖, x ∈ X;

(ii) {Sq(t), t ≥ } and {Tq(t), t ≥ } are strongly continuous;
(iii) if for every t > , S(t) is compact, then Sq(t) and Tq(t) are also compact operators.

Lemma  ([], Krasnoselskii’s fixed point theorem) Let E be a Banach space, B ⊂ E be a
bounded closed and convex subset. Assume that F, F : B → E are two maps satisfying

(i) Fx + Fy ∈ B for ∀x, y ∈ B;
(ii) F is a contraction;

(iii) F is completely continuous.
Then the equation Fx + Fx = x has a solution on B.

3 Existence of mild solutions
In this section, we consider the existence and uniqueness of mild solutions for system ().
Define the operator T on C by

(TX)(t) = Sq(t)
[
X – G(X)

]
+

∫ t


(t – s)q–Tq(t – s)F

(
s, X(s)

)
ds

+
∫ t


(t – s)q–Tq(t – s)σ (s) dBH(s), P-a.s.

The following hypotheses are needed.

(H): The mapping F : J × � × Y → Y is measurable from (�b × Y ,Pb × B(Y )) into
(Y ,B(Y )). Moreover, there exists a constant c >  such that

∥
∥F(t,ω, x)

∥
∥ ≤ c

(
 + ‖x‖), ∀x ∈ Y ,∀t ∈ J , almost all ω ∈ �.

(H): There exists a constant L >  such that

∥
∥F(t,ω, x) – F(t,ω, y)

∥
∥ ≤ L‖x – y‖, ∀x, y ∈ Y ,∀t ∈ J , almost all ω ∈ �.

(H): The function σ : J → L
Q(V , Y ) is measurable and there exists a constant c >  such

that

(i) sup
≤s≤b

∥
∥σ (s)

∥
∥

L
Q(V ,Y ) ≤ c,

(ii)
∞∑

n=

∥
∥σQ


 en

∥
∥

L

H ([,b],Y )

< ∞,

(iii)
∞∑

n=

∥
∥σ (t)Q


 en

∥
∥

Y is uniformly convergent for t ∈ [, b].
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(H): There exists a constant L >  such that G : C → Y satisfies

∥
∥G(X) – G(X)

∥
∥ ≤ L‖X – X‖

C .

(H): There exists a constant c >  such that

∥
∥G(X)

∥
∥ ≤ c

(
 + ‖X‖), ∀X ∈ C, almost all ω ∈ �.

Lemma  Assume that hypotheses (H), (H) and (H) are satisfied. For any X ∈ C , t →
(TX)(t) is continuous on the interval [, b] in the L-sense.

Proof Let  ≤ t < t ≤ b. Then, for any X ∈ C , we have

E
∥
∥(TX)(t) – (TX)(t)

∥
∥

≤ E
∥
∥
[
Sq(t) – Sq(t)

][
X – G(X)

]∥
∥

+ E
∥
∥
∥
∥

∫ t


(t – s)q–Tq(t – s)F

(
s, X(s)

)
ds

–
∫ t


(t – s)q–Tq(t – s)F

(
s, X(s)

)
ds

∥
∥
∥
∥



+ E
∥
∥
∥
∥

∫ t


(t – s)q–Tq(t – s)σ (s) dBH(s)

–
∫ t


(t – s)q–Tq(t – s)σ (s) dBH(s)

∥
∥
∥
∥



:= I + I + I.

For I = E‖[Sq(t) – Sq(t)][X – G(X)]‖, by the strong continuity of Sq(t), we have

lim
t→t

[
Sq(t) – Sq(t)

][
X – G(X)

]
= .

By Lemma  and (H), one can obtain

∥
∥
[
Sq(t) – Sq(t)

][
X – G(X)

]∥
∥ ≤ M

[‖X‖ +
∥
∥G(X)

∥
∥
]

≤ M
[‖X‖ + c

(
 + ‖X‖)] ∈ L(�).

It follows from the Lebesgue dominated theorem that

lim
t→t

I = .

Moreover,

I ≤ E
∥
∥
∥
∥

∫ t



[
(t – s)q– – (t – s)q–]Tq(t – s)F

(
s, X(s)

)
ds

∥
∥
∥
∥



+ E
∥
∥
∥
∥

∫ t


(t – s)q–[Tq(t – s) – Tq(t – s)

]
F
(
s, X(s)

)
ds

∥
∥
∥
∥





Lv and Yang Advances in Difference Equations  (2017) 2017:198 Page 9 of 16

+ E
∥
∥
∥
∥

∫ t

t

(t – s)q–Tq(t – s)F
(
s, X(s)

)
ds

∥
∥
∥
∥



:= I + I + I.

By Lemma , (H), Hölder’s inequality and the stochastic Fubini theorem, we have

I ≤ 
(

Mc

(q)

)

E
(∫ t



[
(t – s)q– – (t – s)q–]( +

∥
∥X(s)

∥
∥
)

ds
)

≤ Mc


((q))

(∫ t



[
(t – s)q– – (t – s)q–] ds

)

E
(∫ t



(
 +

∥
∥X(s)

∥
∥
) ds

)

≤ Mc
 b( + ‖X‖

C)
(q – )((q))

[
tq–
 + (t – t)q– – tq–


]
.

Thus

lim
t→t

I = .

On the other hand, one has

I ≤ c


(
sup

s∈[,t]

∥
∥Tq(t – s) – Tq(t – s)

∥
∥
)

E
(∫ t


(t – s)q–( +

∥
∥X(s)

∥
∥
)

ds
)

≤ c
 tq

 ( + ‖X‖
C)

q – 

(
sup

s∈[,t]

∥
∥Tq(t – s) – Tq(t – s)

∥
∥
)

.

Since Tq(t) is continuous in the uniform operator topology for t > , we have

lim
t→t

I = .

Similarly

I ≤ 
(

Mc

(q)

)

E
(∫ t

t

(t – s)q–( +
∥
∥X(s)

∥
∥
)

ds
)

≤ Mc
 ( + ‖X‖

C)(t – t)q

(q – )((q)) ,

which implies that

lim
t→t

I = .

Hence

lim
t→t

I = .

Further, one can obtain

I ≤ E
∥
∥
∥
∥

∫ t



[
(t – s)q– – (t – s)q–]Tq(t – s)σ (s) dBH(s)

∥
∥
∥
∥
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+E
∥
∥
∥
∥

∫ t


(t – s)q–[Tq(t – s) – Tq(t – s)

]
σ (s) dBH(s)

∥
∥
∥
∥



+E
∥
∥
∥
∥

∫ t

t

(t – s)q–Tq(t – s)σ (s) dBH(s)
∥
∥
∥
∥



:= I + I + I.

From (H) and Lemma , it follows that

I ≤ CHtH–


∫ t



∥
∥
[
(t – s)q– – (t – s)q–]Tq(t – s)σ (s)

∥
∥

L
Q(V ,Y ) ds

≤ CHtH–
 cM

((q))

∫ t



[
(t – s)q– – (t – s)q–]ds

≤ CHtH–
 cM

(q – )((q))

[
tq–
 + (t – t)q– – tq–


]
,

I ≤ CHtH–


∫ t



∥
∥(t – s)q–[Tq(t – s) – Tq(t – s)

]
σ (s)

∥
∥

L
Q(V ,Y ) ds

≤ CHtH–
 c sup

s∈[,t]

∥
∥Tq(t – s) – Tq(t – s)

∥
∥

∫ t


(t – s)q– ds

≤ CHtH+q–
 c

q – 
sup

s∈[,t]

∥
∥Tq(t – s) – Tq(t – s)

∥
∥,

I ≤ CH (t – t)H–
∫ t

t

∥
∥(t – s)q–Tq(t – s)σ (s)

∥
∥

L
Q(V ,Y ) ds

≤ CHMc(t – t)H+q–

(q – )((q)) .

Hence

lim
t→t

I = .

The above arguments show that limt→t E‖(TX)(t) – (TX)(t)‖ = . Therefore, we con-
clude that the function t → (TX)(t) is continuous on [, b] in the L-sense. The proof is
complete. �

Lemma  Assume that hypotheses (H), (H) and (H) are satisfied. The operator T sends
C into itself.

Proof For any X ∈ C , we have

E
∥
∥(TX)(t)

∥
∥

≤ E
∥
∥Sq(t)

[
X – G(X)

]∥
∥ + E

∥
∥
∥
∥

∫ t


(t – s)q–Tq(t – s)F

(
s, X(s)

)
ds

∥
∥
∥
∥



+ E
∥
∥
∥
∥

∫ t


(t – s)q–Tq(t – s)σ (s) dBH(s)

∥
∥
∥
∥



:= J + J + J.
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Lemma  and (H) imply that

J ≤ ME
(‖X‖ +

∥
∥G(X)

∥
∥) ≤ M[E‖X‖ + c


(
 + ‖X‖

C

)]
.

By Lemma , Hölder’s inequality and (H), we get

J ≤ 
(

Mc

(q)

)

E
(∫ t


(t – s)q–( +

∥
∥X(s)

∥
∥
)

ds
)

≤ 
(

Mc

(q)

)(∫ t


(t – s)q– ds

)

E
(∫ t



(
 +

∥
∥X(s)

∥
∥
) ds

)

≤ Mc
 bq( + ‖X‖

C)
(q – )((q)) .

From (H) and Lemma , one can obtain

J ≤ CHtH–
∫ t



∥
∥(t – s)q–Tq(t – s)σ (s)

∥
∥

L
Q(V ,Y ) ds ≤ CHMcbH+q–

(q – )((q)) .

Therefore, ‖TX‖
C = supt∈J E‖(TX)(t)‖ < ∞. By Lemma , (TX)(t) is continuous on [, b]

and so T maps C into C . The proof is complete. �

Now we state and prove the existence and uniqueness result for system ().

Theorem  Assume that hypotheses (H)-(H) are satisfied. Then system () has a unique
mild solution on C provided that

ML +
MbqL


(q – )((q)) < . ()

Proof We show that T is a contraction mapping. For any X, X ∈ C , by (H), (H) and
Lemma , one can get

E
∥
∥(TX)(t) – (TX)(t)

∥
∥

≤ E
∥
∥Sq(t)

[
G(X) – G(X)

]∥
∥

+ E
∥
∥
∥
∥

∫ t


(t – s)q–Tq(t – s)

(
F
(
s, X(s)

)
– F

(
s, X(s)

))
ds

∥
∥
∥
∥



≤ ME
∥
∥G(X) – G(X)

∥
∥

+
(

M
(q)

)

E
(∫ t


(t – s)q–∥∥F

(
s, X(s)

)
– F

(
s, X(s)

)∥
∥ds

)

≤ ML‖X – X‖
C

+
(

M
(q)

)(∫ t


(t – s)q– ds

)

E
(∫ t



∥
∥F

(
s, X(s)

)
– F

(
s, X(s)

)∥
∥ ds

)

≤
(

ML +
MbqL


(q – )((q))

)

‖X – X‖
C .
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Then

‖TX – TX‖
C ≤

(

ML +
MbqL


(q – )((q))

)

‖X – X‖
C .

It follows from () that T is a contraction mapping. According to the contraction principle,
we know that the operator T has a unique fixed point X in C , which is a mild solution of
system (). The proof is complete. �

The following existence result for system () is based on Krasnoselskii’s fixed point the-
orem. Firstly, the following hypothesis is introduced.

(H): {S(t), t ≥ } is a compact C-semigroup.

Theorem  Assume that hypotheses (H), (H), (H), (H) and (H) are satisfied. Then
system () has a mild solution on C provided that

ML + Mc
 +

Mc
 bq

(q – )((q)) < . ()

Proof For ∀r >  such that

r ≥
ME‖X‖ + Mc

 + CH bH+q–Mc
(q–)((q)) + Mc

 bq

(q–)((q))

 – Mc
 – Mc

 bq

(q–)((q))

, ()

let Br = {X ∈ C : ‖X‖C ≤ r}. Then Br ⊂ C is a bounded closed and convex subset.
Define two operators F and F on Br as follows:

(FX)(t) = Sq(t)
[
X – G(X)

]
+

∫ t


(t – s)q–Tq(t – s)σ (s) dBH(s), t ∈ [, b],

(FX)(t) =
∫ t


(t – s)q–Tq(t – s)F

(
s, X(s)

)
ds, t ∈ [, b].

We shall show that the operators F and F satisfy all the conditions of Lemma . Our
proof will be divided into three steps.

Step . For any X, Y ∈ Br , FX + FY ∈ Br .

E
∥
∥(FX)(t) + (FY )(t)

∥
∥

≤ E
∥
∥Sq(t)

[
X – G(X)

]∥
∥ + E

∥
∥
∥
∥

∫ t


(t – s)q–Tq(t – s)σ (s) dBH(s)

∥
∥
∥
∥



+ E
∥
∥
∥
∥

∫ t


(t – s)q–Tq(t – s)F

(
s, Y (s)

)
ds

∥
∥
∥
∥



≤ M(E‖X‖ + E
∥
∥G(X)

∥
∥) +

CHtH–M

((q))

∫ t


(t – s)q–∥∥σ (s)

∥
∥

L
Q(V ,Y ) ds

+
Mc


((q)) E

(∫ t


(t – s)q–( +

∥
∥Y (s)

∥
∥
)

ds
)

≤ M[E‖X‖ + c

(
 + r)] +

CHbH+q–Mc

(q – )((q)) +
Mc

 bq( + r)
(q – )((q)) .
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By (), it follows that

‖FX + FY‖
C ≤ ME‖X‖ + Mc

 +
CHbH+q–Mc

(q – )((q)) +
Mc

 bq

(q – )((q))

+
[

Mc
 +

Mc
 bq

(q – )((q))

]

r ≤ r.

Thus, FX + FY ∈ Br .
Step . F is a contraction.
For any X, X ∈ C , according to (H) and Lemma , we have

E
∥
∥(FX)(t) – (FX)(t)

∥
∥ = E

∥
∥Sq(t)

[
G(X) – G(X)

]∥
∥ ≤ ML‖X – X‖

C .

Hence

‖FX – FX‖
C ≤ ML‖X – X‖

C .

In virtue of (), F is a contraction on Br .
Step . F is completely continuous.
We subdivide this proof into three claims.
Claim . {FX|X ∈ Br} is uniformly bounded.
For any X ∈ Br , by (H), () and Hölder’s inequality, one has

sup
t∈J

E
∥
∥(FX)(t)

∥
∥ ≤

(
Mc

(q)

)

sup
t∈J

E
(∫ t


(t – s)q–( +

∥
∥X(s)

∥
∥
)

ds
)

≤ Mc
 bq( + r)

(q – )((q)) ≤ r,

which implies that {FX|X ∈ Br} is uniformly bounded.
Claim . {FX|X ∈ Br} is an equicontinuous set.
Let X ∈ Br and  ≤ t < t ≤ b, we have

E
∥
∥(FX)(t) – (FX)(t)

∥
∥

≤ E
∥
∥
∥
∥

∫ t



[
(t – s)q– – (t – s)q–]Tq(t – s)F

(
s, X(s)

)
ds

∥
∥
∥
∥



+ E
∥
∥
∥
∥

∫ t


(t – s)q–[Tq(t – s) – Tq(t – s)

]
F
(
s, X(s)

)
ds

∥
∥
∥
∥



+ E
∥
∥
∥
∥

∫ t

t

(t – s)q–Tq(t – s)F
(
s, X(s)

)
ds

∥
∥
∥
∥



≤ Mc
 b( + r)

(q – )((q))

[
tq–
 + (t – t)q– – tq–


]

+
c

 tq
 ( + r)
q – 

(
sup

s∈[,t]

∥
∥Tq(t – s) – Tq(t – s)

∥
∥
)

+
Mc

 ( + r)(t – t)q

(q – )((q)) . ()
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Thus, the right hand side of () tends to zero independently of X ∈ Br as t → t. Therefore,
{FX|X ∈ Br} is equicontinuous.

Claim . For any t ∈ [, b], the set V (t) = {(FX)(t)|X ∈ Br} is relatively compact.
It is trivial for t = , so we only consider  < t ≤ b. Let  < t ≤ b be fixed, for ∀ε ∈ (, t)

and ∀δ > , define an operator Fε,δ
 on Br by

(
Fε,δ

 X
)
(t) =

∫ t–ε



∫ ∞

δ

qθ (t – s)q–ξq(θ )S
(
(t – s)qθ

)
F
(
s, X(s)

)
dθ ds

= S
(
εqδ

)
∫ t–ε



∫ ∞

δ

qθ (t – s)q–ξq(θ )S
(
(t – s)qθ – εqδ

)
F
(
s, X(s)

)
dθ ds.

From the compactness of S(εqδ) (εqδ > ), it follows that Vε,δ(t) = {(Fε,δ
 X)(t)|X ∈ Br} is

relatively compact for ∀ε ∈ (, t) and ∀δ > . With the help of the equality (see [])

∫ ∞


θξq(θ ) dθ =


( + q)

,

we have

E
∥
∥(FX)(t) –

(
Fε,δ

 X
)
(t)

∥
∥

≤ E
∥
∥
∥
∥

∫ t



∫ δ


qθ (t – s)q–ξq(θ )S

(
(t – s)qθ

)
F
(
s, X(s)

)
dθ ds

∥
∥
∥
∥



+ E
∥
∥
∥
∥

∫ t

t–ε

∫ ∞

δ

qθ (t – s)q–ξq(θ )S
(
(t – s)qθ

)
F
(
s, X(s)

)
dθ ds

∥
∥
∥
∥



≤ qMc
 bq( + r)

q – 

(∫ δ


θξq(θ ) dθ

)

+
qMc

 ( + r)εq

q – 

(∫ ∞


θξq(θ ) dθ

)

≤ qMc
 bq( + r)

q – 

(∫ δ


θξq(θ ) dθ

)

+
qMc

 ( + r)εq

(q – )(( + q)) .

Therefore, there are relatively compact sets arbitrarily close to the set V (t), t > . Hence,
the set V (t), t >  is also relatively compact.

By Claim -Claim  and the Arzola-Ascoli theorem, we conclude that F is completely
continuous. According to Lemma , F + F has a fixed point on Br . Therefore, system ()
has a mild solution. The proof is complete. �

4 An example
Consider the following fractional stochastic system:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

cD 
 X(t, z) = ∂

∂z X(t, z) + F(t, X(t, z)) + σ (t) dBH (t)
dt ,

t ∈ [, ], z ∈ [,π ],

X(t, ) = X(t,π ) = , t ∈ [, ],

X(, z) +
∑m

i= κi(z)X(ti, z) = X(z), z ∈ [,π ],

()

where  < t < t < · · · < tm < b = , cD 
 is the Caputo fractional derivative of order 

 with
the lower limit , BH denotes a fBm defined on (�,Fb, P). Let V = Y = L[,π ], J = [, ],
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κi ∈ L[,π ]. Define the operator A : D(A) ⊂ Y → Y by Aν = ν ′′ with the domain

D(A) =
{
ν ∈ Y : ν,ν ′ are absolutely continuous, ν ′′ ∈ Y ,ν() = ν(π ) = 

}
.

Note that there exists a complete orthonormal basis {en}n∈N of eigenvectors of A with
en(z) =

√

π

sin(nz), n = , , . . . , and A generates a strongly continuous semigroup {S(t), t ≥
} which is compact, analytic and self-adjoint [, ]. Thus, the assumption (H) is satisfied.
We choose a sequence {αn}n∈N , αn ≥ . Define an operator Q : V → V by Qen = αnen and
assume that

tr(Q) =
∞∑

n=

√
αn < ∞.

Define the process BH(t) by

BH (t) =
∞∑

n=

√
αnβ

H
n (t)en, t ≥ ,




< H < ,

where {βH
n }n∈N is a sequence of mutually independent one-dimensional fBm. Let

X(t)(z) = X(t, z), F
(
t, X(t)

)
(z) = F

(
t, X(t, z)

)
, G(X)(z) =

m∑

i=

κi(z)X(ti, z).

System () can be written in the abstract form ().
Define F(t, X(t))(z) = e–t |X(t,z)|

(+et )(+|X(t,z)|) . One can see that F satisfies (H). Moreover,

∥
∥F

(
t, X(t)

)
(z) – F

(
t, Y (t)

)
(z)

∥
∥

=
e–t||X(t, z)| – |Y (t, z)||

( + et)( + |X(t, z)|)( + |Y (t, z)|)

≤ e–t

 + et

∣
∣X(t, z) – Y (t, z)

∣
∣

≤ 

∣
∣X(t, z) – Y (t, z)

∣
∣.

Hence (H) is satisfied. Assume now that (H), (H), (H) and () are satisfied. By Theo-
rem , system () has a mild solution on [, ].

5 Conclusion
In this paper, the existence of mild solutions for a class of nonlocal fractional stochastic
differential equations driven by fractional Brownian motion with Hurst index H > 

 have
been investigated. First, by using the contraction principle, the existence and uniqueness
of mild solutions are given. Next, the existence of mild solutions is investigated based
on Krasnoselskii’s fixed point theorem. Finally, an example is presented to illustrate our
obtained results. In order to prove the existence and uniqueness of mild solutions, we
assume that () and () are satisfied, respectively, the conditions are a little strong. Future
work is to weaken theses conditions. Another important task is to study the existence
results of Riemann-Liouville fractional stochastic differential equations.
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3. Wang, J, Fečkan, M, Zhou, Y: A survey on impulsive fractional differential equations. Fract. Calc. Appl. Anal. 19(4),

806-831 (2016)
4. Zhou, Y, Wang, J, Zhang, L: Basic Theory of Fractional Differential Equations. World Scientific, Singapore (2016)
5. Podlubny, I: Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential

Equations, to Methods of Their Solution and Some of Their Applications, vol. 198. Academic Press, San Diego (1998)
6. Zhou, Y, Jiao, F: Existence of mild solutions for fractional neutral evolution equations. Comput. Math. Appl. 59(3),

1063-1077 (2010)
7. Zhou, Y, Jiao, F: Nonlocal Cauchy problem for fractional evolution equations. Nonlinear Anal., Real World Appl. 11(5),

4465-4475 (2010)
8. Sakthivel, R, Ren, Y, Debbouche, A, Mahmudov, N: Approximate controllability of fractional stochastic differential

inclusions with nonlocal conditions. Appl. Anal. 95(11), 2361-2382 (2016)
9. Gu, Y, Ren, Y, Sakthivel, R: Square-mean pseudo almost automorphic mild solutions for stochastic evolution equations

driven by g-Brownian motion. Stoch. Anal. Appl. 34(3), 528-545 (2016)
10. Caraballo, T, Garrido-Atienza, M, Taniguchi, T: The existence and exponential behavior of solutions to stochastic delay

evolution equations with a fractional Brownian motion. Nonlinear Anal. 74(11), 3671-3684 (2011)
11. Arthi, G, Park, JH, Jung, H: Existence and exponential stability for neutral stochastic integrodifferential equations with

impulses driven by a fractional Brownian motion. Commun. Nonlinear Sci. Numer. Simul. 32, 145-157 (2016)
12. Boufoussi, B, Hajji, S: Neutral stochastic functional differential equations driven by a fractional Brownian motion in a

Hilbert space. Stat. Probab. Lett. 82(8), 1549-1558 (2012)
13. Cui, J, Wang, Z: Nonlocal stochastic integro-differential equations driven by fractional Brownian motion. Adv. Differ.

Equ. 2016(1), 115 (2016)
14. Dung, NT: Stochastic Volterra integro-differential equations driven by fractional Brownian motion in a Hilbert space.

Stoch. Int. J. Probab. Stoch. Process. 87(1), 142-159 (2015)
15. Cui, J, Yan, L: Existence result for fractional neutral stochastic integro-differential equations with infinite delay. J. Phys.

A, Math. Theor. 44(33), 335201 (2011)
16. Sakthivel, R, Revathi, P, Ren, Y: Existence of solutions for nonlinear fractional stochastic differential equations.

Nonlinear Anal. 81, 70-86 (2013)
17. Wang, J: Approximate mild solutions of fractional stochastic evolution equations in Hilbert spaces. Appl. Math.

Comput. 256, 315-323 (2015)
18. Sakthivel, R, Revathi, P, Mahmudov, N: Asymptotic stability of fractional stochastic neutral differential equations with

infinite delays. Abstr. Appl. Anal. 2013, 769257 (2013)
19. Benchaabane, A, Sakthivel, R: Sobolev-type fractional stochastic differential equations with non-Lipschitz coefficients.

J. Comput. Appl. Math. 312, 65-73 (2017)
20. Christodoulou-Volos, C, Siokis, FM: Long range dependence in stock market returns. Appl. Financ. Econ. 16(18),

1331-1338 (2006)
21. Mishura, Y: Stochastic Calculus for Fractional Brownian Motion and Related Processes, vol. 1929. Springer, Berlin

(2008)
22. Biagini, F, Hu, Y, Øksendal, B, Zhang, T: Stochastic Calculus for Fractional Brownian Motion and Applications. Springer,

Berlin (2008)
23. Hu, Y: Integral Transformations and Anticipative Calculus for Fractional Brownian Motions, vol. 825. Am. Math. Soc.,

Providence (2005)
24. Boudaoui, A, Caraballo, T, Ouahab, A: Existence of mild solutions to stochastic delay evolution equations with a

fractional Brownian motion and impulses. Stoch. Anal. Appl. 33(2), 244-258 (2015)
25. Sakthivel, R, Suganya, S, Anthoni, SM: Approximate controllability of fractional stochastic evolution equations.

Comput. Math. Appl. 63(3), 660-668 (2012)


	Nonlocal fractional stochastic differential equations driven by fractional Brownian motion
	Abstract
	MSC
	Keywords

	Introduction
	Preliminaries
	Existence of mild solutions
	An example
	Conclusion
	Competing interests
	Authors' contributions
	Acknowledgements
	Publisher's Note
	References


