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Abstract
The stability of coupled systems with time-varying coupling structure (CSTCS) is
considered in this paper. The graph-theoretic method on a digraph with constant
weight has been successfully generalized into a digraph with time-varying weight. In
addition, we construct a global Lyapunov function for CSTCS. By using the graph
theory and the Lyapunov method, a Lyapunov-type theorem and some sufficient
criteria are obtained. Furthermore, the theoretical conclusions on CSTCS can
successfully be applied to the predator-prey model with time-varying dispersal.
Finally, a numerical example of CSTCS is given to illustrate the effectiveness and
feasibility of our results.
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1 Introduction
During the past few decades, coupled systems (CSs) have been used to model a wide va-
riety of systems in many fields, such as physics [–], biology [–] and social science [].
The general CSs can be described as follows:

dxk(t)
dt

= fk
(
xk(t), t

)
+

l∑

h=

akhHkh
(
xk(t), xh(t)

)
, k = , , . . . , l, t ≥ , ()

where fk and Hkh are continuous functions, and akh represents the coupling strength. At
the same time, it is of great importance to analyze the stability of CSs, because most ap-
plications of CSs heavily depend upon their stability. There are lots of results on CSs with
time-invariant coupling structure having been reported (see [, , , –] and the refer-
ences therein). In [], the stability problem for a multi-group SIRS epidemic model was
investigated. Guo et al. [] considered the stability of a stochastic neural networks with
infinite delay and Markovian switching. In [, ], Li et al. used graph theory to explore
the global stability for general coupled systems of ordinary differential equations. Follow-
ing this pioneering work in [, ], many scholars have studied the dynamics of CSs by
this technique and obtained a number of conclusions [–]. Moreover, the method has
been extended to stochastic systems [–], discrete time systems [], and time delay
systems [].
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Generally speaking, the coupling structure of CSs is not constant. For example, in
biomathematics, the dispersal rate of some species among different groups changes over
time. When a natural disaster occurs, such as earthquakes and flood, some species will
migrate to a safe place, then the dispersal rate of them will improve significantly. In epi-
demiology, the transmission rate of infectious diseases is also time-varying. For instance,
population migration across regions increases greatly during the high season, and then the
transmission rate of infectious diseases will be higher. However, when some regions dis-
continue with each other due to some reasons, the transmission rate of infectious diseases
will be lower. All these facts can illustrate that time-varying coupling structure should not
be neglected. Thus, we should take this time-varying coupled behavior into account, which
can help us investigate the persistence of species and control infectious diseases. Conse-
quently, it is essential for us to investigate the coupled systems with time-varying coupling
structure (CSTCS). Unfortunately, as far as we know, few papers mentioned in the existing
literature consider CSTCS.

Until now, many researchers, including us, have given some results of global stability of
CSs. However, in our previous work we do not consider the time-varying coupling struc-
ture. In this paper, in order to make up for the defect of our previous work and characterize
CSs reasonably, we will devote ourselves to the investigation of CSTCS. Generally, com-
pared with system (), akh(t)Hkh(xk(t), xh(t)) may more reasonably be used to describe the
interactions within a group or among different groups in the course of the dispersal. How-
ever, it is intricate to study the dynamics of CSTCS, since constructing a global Lyapunov
function and estimating the symbol of its derivative are complex and technical under the
circumstances of the time-varying coupling structure.

Motivated by the above discussions, in this paper, by introducing the time-varying cou-
pling structure, we present a class of novel CSs that is CSTCS. Based on the graph theory
and the Lyapunov method, a systematic method is established to construct a global Lya-
punov function for CSTCS. Moreover, sufficient criteria ensuring the stability of CSTCS
can be obtained. Furthermore, we consider a predator-prey model with time-varying dis-
persal. Meanwhile, stability criteria for it are presented, respectively. Then a numerical
example is given to illustrate the effectiveness of our results.

The paper is outlined as follows. In Section , we introduce several preliminaries and
give the formulation of the CSTCS. In Section , sufficient criteria of the stability for
CSTCS are obtained. The stability results for predator-prey model with time-varying dis-
persal in Section . Finally, a numerical example is given in Section .

2 Preliminaries and model formulation
2.1 Mathematical preliminaries
For the sake of simplicity, the following notations are used in this paper. Let Z+ = {, , . . .},
L = {, , . . . , l}, R

+ = [, +∞), n =
∑l

k= nk for nk ∈ Z
+, and R

n denote n-dimensional Eu-
clidean space. And we write C,(Rn ×R


+;R

+) for the family of all nonnegative functions
V (x, t) on R

n ×R

+ that are continuously once differentiable at x and t.

In this paper, use (G, A) to represent the digraph with l vertices. Let V (G) denote the set
of vertices in G ; without loss of generality, let V (G) = L.

In what follows, we show an important lemma in [] which will be used in the proof of
our main results.
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Lemma  Assume n ≥ . Let ck denote the cofactor of the kth diagonal element of the Lapla-
cian matrix of (G, A). Then the following identity holds:

n∑

k,h=

ckakhFkh(xk , xh) =
∑

Q∈Q
W (Q)

∑

(s,r)∈E(CQ)

Frs(xr , xs).

Here, for any k, h ∈ L, Fkh(xk , xh) is an arbitrary function, Q is the set of all spanning uni-
cyclic graphs of (G, A), W (Q) is the weight of Q, and CQ denotes the directed cycle of Q. In
particular, if (G, A) is strongly connected, then ck >  for k ∈ L.

2.2 Model formulations
To begin with, we will establish CSTCS on a digraph G with l (l ≥ ) vertices. We assume
that the kth vertex is described by

dxk(t)
dt

= fk
(
xk(t), t

)
, t ≥ , ()

where xk = (xk , xk , . . . , xknk
)T ∈R

nk , and fk : Rnk ×R

+ →R

nk is a continuous function.
Secondly, we take the influence of coupling structure into account. Let akh(t) and

Hkh(xk , xh) be continuous functions, representing the time-varying coupling strength and
coupling function of the hth vertex to the kth vertex, respectively. Here akh(t)Hkh(xk , xh) =
 if and only if there exists no coupling influence from the hth vertex to the kth ver-
tex for any t ≥ . Hence, for the kth vertex, via replacing fk(xk(t), t) by fk(xk(t), t) +
∑l

h= akh(t)Hkh(xk(t), xh(t)) we get the following CSTCS:

dxk(t)
dt

= fk
(
xk(t), t

)
+

l∑

h=

akh(t)Hkh
(
xk(t), xh(t)

)
, k ∈ L. ()

In the proofs of our main theorems, a Lyapunov function for system () is constructed by
combining the Lyapunov functions of vertices with the coupling structure. In the sequel,
the definition of a vertex Lyapunov function set is given as follows.

Definition  The set {Vk(xk , t), k ∈ L} is called a vertex Lyapunov function set for system
() if the following conditions are satisfied for any k ∈ L and t ≥ .

V. There exist functions Vk(xk , t), bkh(t) and Fkh such that

dVk(xk , t)
dt

� ∂Vk(xk , t)
∂t

+
∂Vk(xk , t)

∂xk

(

fk
(
xk(t), t

)
+

l∑

h=

akh(t)Hkh
(
xk(t), xh(t)

)
)

≤
l∑

h=

bkh(t)Fkh
(
xk(t), xh(t)

)
–

d′
k(t)

dk(t)
Vk

(
xk(t), t

)
,

where dk(t) is the cofactor of the kth diagonal element of the Laplacian matrix of
(G, (bkh(t))l×l).
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V. Along each directed cycle C of the weighted digraph (G, (bkh(t))l×l), we have

∑

(h,k)∈E(C)

Fkh
(
xk(t), xh(t)

) ≤ , ()

for all xk ∈R
nk , xh ∈R

nh .

We always suppose that all assumptions as regards the existence and uniqueness in The-
orems . and . in [] are fulfilled, so system () has a unique global solution for any
given initial value x() = x, and we here denote the solution by x(t; x). Assume further-
more that fk(, t) =  and Hkh(, ) = . Then system () has a trivial solution x(t) ≡ .

3 Global stability analysis for CSTCS
In this section, we investigate the stability of the trivial solution of system (). Based on
the graph theory and the Lyapunov method, we shall establish a theoretical framework for
constructing a global Lyapunov function of system (). The method used in the proof of
main results is motivated by [, ].

Throughout this section, we always assume that (G, (bkh(t))l×l) is strongly connected for
any t ≥ .

Theorem  Suppose that system () admits a vertex Lyapunov functions set {Vk(xk , t),
k ∈ L}. Then

V (x, t) =
l∑

k=

dk(t)Vk(xk , t) ()

satisfies V̇ (x(t), t) ≤  for t ≥ . In other words, it is a Lyapunov function of system ().

Proof By using () and condition V, we can derive that

dV (x(t), t)
dt

=
l∑

k=

d(dk(t)Vk(xk(t), t))
dt

≤
l∑

k=

[

d′
k(t)Vk

(
xk(t), t

)
+ dk(t)

( l∑

h=

bkh(t)Fkh
(
xk(t), xh(t)

)

–
d′

k(t)
dk(t)

Vk
(
xk(t), t

)
)]

=
l∑

k=

l∑

h=

dk(t)bkh(t)Fkh
(
xk(t), xh(t)

)
. ()

By Lemma , we have

l∑

k=

l∑

h=

dk(t)bkh(t)Fkh
(
xk(t), xh(t)

)
=

∑

Q(t)∈Q(t)

W
(
Q(t)

) ∑

(s,r)∈E(CQ(t))

Frs
(
xr(t), xs(t)

)
,
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whereQ(t) is the set of all spanning unicyclic graph of (G, (bkh(t))l×l), W (Q(t)) is the weight
of Q(t), and CQ(t) denotes the directed cycle of Q(t). Then, making use of condition V
and the fact that W (Q(t)) ≥ , we obtain

dV (x(t), t)
dt

≤
∑

Q(t)∈Q(t)

W
(
Q(t)

) ∑

(s,r)∈E(CQ(t))

Frs
(
xr(t), xs(t)

) ≤ .

The proof is complete. �

With the help of some properties in graph theory, now some other simple conditions
are discussed. Note that if (G, (bkh(t))l×l) is balanced for any t ≥ , then

l∑

k=

l∑

h=

dk(t)bkh(t)Fkh
(
xk(t), xh(t)

)

=



∑

Q(t)∈Q(t)

W
(
Q(t)

) ∑

(h,k)∈E(CQ(t))

[
Fkh

(
xk(t), xh(t)

)
+ Fhk

(
xh(t), xk(t)

)]
.

In this case, () can be replaced by

∑

(k,h)∈E(CQ(t))

[
Fkh

(
xk(t), xh(t)

)
+ Fhk

(
xh(t), xk(t)

)] ≤ . ()

Based on this, a corollary is showed below.

Corollary  If (G, (bkh(t))l×l) is balanced for any t ≥ , the conclusion of Theorem  holds
if () is replaced by ().

Furthermore, if for every Fkh(xk(t), xh(t)) there exist functions Pk(xk(t)) and Ph(xh(t)),
such that

Fkh
(
xk(t), xh(t)

) ≤ Pk
(
xk(t)

)
– Ph

(
xh(t)

)
, ()

then () follows naturally. Thus we obtain one more corollary below.

Corollary  If (G, (bkh(t))l×l) is balanced for any t ≥ , the conclusion of Theorem  holds
if () is replaced by ().

Remark  In Theorem , we apply the graph theory and the Lyapunov method to prove
the stability of system (). Recently, the stability problem for coupled systems has been
widely studied. In [], Li et al. used graph theory to explore the global-stability problem
for coupled systems of differential equations on networks. In this work, if akh(t) = akh, our
conclusion will be consistent with the Theorem . in []. Hence, our work is a general-
ization of the previous studies of CSs with time-invariant structure.

Remark  The stability result is based on the vertex Lyapunov functions set in Theorem .
In practical applications, since finding a suitable Lyapunov function is quite difficult, the
stability criterion in Theorem  is not very convenient to be verified for a given system.
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Thus it prompts us to establish a coefficient-type criterion for the stability analysis of sys-
tem ().

Theorem  Let p ≥ . The trivial solution of system () is stable if the following conditions
hold for any k, h ∈ L and t ≥ .

A. There is a constant αk >  such that

xT
k fk(xk , t) ≤ –αk|xk|.

A. There exists a constant Akh such that

∣
∣Hkh(xk , xh)

∣
∣ ≤ Akh

(|xk| + |xh|
)
.

A. The digraph (G, H(t)), where H(t) = (Akhakh(t))l×l , is strongly connected and

–αkp + p
l∑

h=

Akhakh(t) ≤ –
g ′

k(t)
gk(t)

, ()

where gk(t) is the cofactor of the kth diagonal element of the Laplacian matrix of
(G, H(t)).

Proof For any k ∈ L, define a function Vk(xk , t) = |xk|p. Making use of condition A, we get

dVk(xk(t), t)
dt

= p
∣∣xk(t)

∣∣p–xT
k (t)

[

fk
(
xk(t), t

)
+

l∑

h=

akh(t)Hkh
(
xk(t), xh(t)

)
]

≤ p

[

–αk
∣
∣xk(t)

∣
∣p +

l∑

h=

akh(t)
∣
∣xk(t)

∣
∣p–∣∣Hkh

(
xk(t), xh(t)

)∣∣
]

. ()

By using condition A and the inequality (see [], p.)

|a|p|b|q ≤ p
p + q

|a|(p+q) +
q

p + q
|b|(p+q),

in which p, q > , we have

l∑

h=

akh(t)
∣∣xk(t)

∣∣p–∣∣Hkh
(
xk(t), xh(t)

)∣∣

≤ p – 
p

l∑

h=

Akhakh(t)
∣
∣xk(t)

∣
∣p +


p

l∑

h=

Akhakh(t)
∣
∣xh(t)

∣
∣p.
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Substituting it into () yields

dVk(xk(t), t)
dt

≤ p

[

–αk
∣
∣xk(t)

∣
∣p +

l∑

h=

akh(t)
∣
∣xk(t)

∣
∣p–∣∣Hkh

(
xk(t), xh(t)

)∣∣
]

≤
(

–αkp + (p – )
l∑

h=

Akhakh(t)

)
∣∣xk(t)

∣∣p +
l∑

h=

Akhakh(t)
∣∣xh(t)

∣∣p

=

(

–αkp + p
l∑

h=

Akhakh(t)

)
∣
∣xk(t)

∣
∣p +

l∑

h=

Akhakh(t)Fkh
(
xk(t), xh(t)

)

≤ –
g ′

k(t)
gk(t)

Vk
(
xk(t), t

)
+

l∑

h=

Akhakh(t)Fkh
(
xk(t), xh(t)

)
,

where Fkh(xk(t), xh(t)) = |xh(t)|p – |xk(t)|p. Therefore, we verify the existence of a vertex
Lyapunov functions set {Vk(xk , t), k ∈ L} for system (). Then we see that the trivial solu-
tion of system () is stable, which completes this proof. �

Remark  In Theorem , considering condition A one needs to compute the derivative
of determinant. Computing the derivative of high-order determinant is difficult. Thus the
condition of Theorem  is not easy to verify. In Theorems , , we will use conditions that
are described by the coefficients akh(t) to study the stability of system (), which are easier
to verify.

Theorem  When a′
kh(t) ≤  for all k, h ∈ L, the conclusion of Theorem  holds if () is

replaced by

–αkp + p
l∑

h=

Akhakh(t) ≤ .

Proof By the definition of H(t), let Bij = Aijaij(t) and we can obtain

gk(t)

=

∣∣
∣∣
∣∣
∣∣∣
∣∣
∣∣
∣∣
∣∣∣

∑l
i	= Bi –B · · · –B,k– –B,k+ · · · –Bl

–B
∑l

i	= Bi · · · –B,k– –B,k+ · · · –Bl
...

...
...

...
...

...
...

–Bk–, –Bk–, · · · ∑l
i	=k– Bk–,i –Bk–,k+ · · · –Bk–,l

–Bk+, –Bk+, = · · · –Bk+,k–
∑l

i	=k+ Bk+,i · · · –Bk+,l
...

...
...

...
...

...
...

–Bl –Bl · · · –Bl,k– –Bl,k+ · · · ∑l
i	=l Bli

∣∣
∣∣
∣∣
∣∣∣
∣∣
∣∣
∣∣
∣∣∣

.
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Because the digraph is strongly connected and a′
kh(t) ≤ , we can obtain g ′

k(t) ≤ . Fur-
thermore, we can compute that

g ′
k(t) = –

∑

j 	=k

∣
∣∣∣
∣∣
∣∣
∣

...
...

...
...

...
...

Aja′
j(t) Aja′

j(t) · · · ∑l
j 	=i(–Ajia′

ji(t)) · · · Ajla′
jl(t)

...
...

...
...

...
...

∣
∣∣∣
∣∣
∣∣
∣

.

Because a′
kh(t) ≤ , we have g ′

k(t) ≤ . Thus we obtain

–
g ′

k(t)
gk(t)

≥ .

Consequently, it easily follows that

–αkp + p
l∑

h=

Akhakh(t) ≤ –
g ′

k(t)
gk(t)

.

Then the condition A is satisfied. Thus we have verified all conditions in Theorem . This
completes the proof. �

Theorem  When akh(t) = ak(t), k, h ∈ L, the conclusion of Theorem  holds if () is re-
placed by

–αkp + p
l∑

h=

Akhak(t) +
l∑

i=,i	=k

a′
i(t)

ai(t)
≤ .

Proof By the definition of H(t), we have

gk(t)

=
l∏

i=,i	=k

ai(t)

∣∣
∣∣
∣∣
∣∣
∣∣∣
∣∣
∣∣
∣∣
∣

∑l
i	= Ai · · · –A,k– –A,k+ · · · –Al

–A · · · –A,k– –A,k+ · · · –Al
...

...
...

...
...

...
–Ak–, · · · ∑l

i	=k– Ak–,i –Ak–,k– · · · –Ak–,l

–Ak+, · · · –Ak+,k–
∑l

i	=k+ Ak+,i · · · –Ak+,l
...

...
...

...
...

...
–Al · · · –Al,k– –Al,k+ · · · ∑l

i	=l Ali

∣∣
∣∣
∣∣
∣∣
∣∣∣
∣∣
∣∣
∣∣
∣

�
l∏

i=,i	=k

ai(t) · G,
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where

G =

∣
∣∣
∣∣∣
∣∣
∣∣
∣∣
∣∣∣
∣∣
∣

∑l
i	= Ai –A · · · –A,k– –A,k+ · · · –Al

–A
∑l

i	= Ai · · · –A,k– –A,k+ · · · –Al
...

...
...

...
...

...
...

–Ak–, –Ak–, · · · ∑l
i	=k– Ak–,i –Ak–,k– · · · –Ak–,l

–Ak+, –Ak+, · · · –Ak+,k–
∑l

i	=k+ Ak+,i · · · –Ak+,l
...

...
...

...
...

...
...

–Al –Al · · · –Al,k– –Al,k+ · · · ∑l
i	=l Ali

∣
∣∣
∣∣∣
∣∣
∣∣
∣∣
∣∣∣
∣∣
∣

.

Then it is easy to get

g ′
k(t) =

l∑

i=,i	=k

a(t) · a(t) · · ·a′
i(t) · · ·al(t) · G.

Thus

g ′
k(t)

gk(t)
=

l∑

i=,i	=k

a′
i(t)

ai(t)
.

Therefore, condition A holds. Then the proof is complete. �

4 An application to the predator-prey model with time-varying dispersal
In this section, we consider a predator-prey model, in which the dispersal rate of preys
among l (l ≥ ) patches is time-varying, the details are as follows:

⎧
⎨

⎩

dxk
dt = xk(rk – bkxk – ekyk) +

∑l
h= akh(t)(xh – αkhxk),

dyk
dt = yk(–γk – δkyk + εkxk), k ∈ L,

()

where xk and yk denote the densities of preys and predators on the patch k, respectively.
The parameters in the system () are nonnegative constants, and ek , εk , δk and bk are
positive. The notations and useful definitions in this section are as follows:

rk : the intrinsic growth rate of the preys in the absence of predation in patch k,
γk : the death rate of the predators in patch k,
bk : the intra-specific competition rate of the preys in patch k,
δk : the intra-specific competition rate of the predators in patch k,
εkxk : the proportion of preys which are eaten and become predators,
ek : the predator response function for the predator with respect to that particular prey

in the kth patch.

Function akh(t) ≥  is the dispersal rate of preys from patch h to patch k. Constant αkh ≥
 is a boundary condition in the continuous diffusion case.

Remark  In existing literature, many researchers have investigated the predator-prey
model with time-invariant dispersal (see [, ] and the references therein). However, to
our knowledge, there is little work as regards the predator-prey model with time-varying
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dispersal. In this paper, if akh(t) = akh, system () turns into system (.) in []. Hence,
system () is much more general since it considers a dispersal rate of preys which is not
constant but time-varying.

Remark  If we simplify system (), in other words, if we let rk = r, bk = b, ek = e, γk = γ ,
δk = δ, εk = ε, and akh(t) = αkh = , then it is trivial to see that system () has a unique
equilibrium: x∗ = δr+eγ

δb+eε , y∗ = εr–bγ

δb+eε . If condition εr > bγ is satisfied, we can guarantee that
(x∗, y∗)T is a positive equilibrium. So it is reasonable to assume that there exists a positive
equilibrium E∗ = (x∗

 , y∗
 , . . . , x∗

l , y∗
l )T for system ().

Let D(t) = (akh(t)εkx∗
h)l×l , and lk(t) be the cofactor of the kth diagonal element of the

Laplacian matrix of (G, D(t)), respectively.

Theorem  For any t ≥ , assume that the digraph (G, D(t)) is strongly connected and the
following inequality holds:

l′k(t) ≤ , k ∈ L. ()

Then, as long as a positive equilibrium E∗ exists, it is unique and globally asymptotically
stable in the positive cone Rl

+ .

Proof Consider the Lyapunov functions

V (k)
 (xk) = εk

(
xk – x∗

k – x∗
k ln

xk

x∗
k

)
()

and

V (k)
 (yk) = ek

(
yk – y∗

k – y∗
k ln

yk

y∗
k

)
, k ∈ L. ()

Making use of system (), we get

dV (k)
 (xk)
dt

= εk

(
 –

x∗
k

xk

)[

xk(rk – bkxk – ekyk) +
l∑

h=

akh(t)(xh – αkhxk)

]

= εk
(
xk – x∗

k
)
[

–bk
(
xk – x∗

k
)

– ek
(
yk – y∗

k
)

+
l∑

h=

akh(t)
(

xh

xk
–

x∗
h

x∗
k

)]

= –εkbk
(
xk – x∗

k
) – εkek

(
xk – x∗

k
)(

yk – y∗
k
)

+
l∑

h=

εkx∗
hakh(t)

(
xh

x∗
h

–
xk

x∗
k

–
x∗

kxh

xkx∗
h

+ 
)

� –εkbk
(
xk – x∗

k
) – εkek

(
xk – x∗

k
)(

yk – y∗
k
)

+
l∑

h=

θkh(t)Fkh(xk , xh), ()
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where θkh(t) = εkx∗
hakh(t) and Fkh(xk , xh) = xh/x∗

h – xk/x∗
k – x∗

kxh/(xkx∗
h) + . Similarly,

dV (k)
 (yk)
dt

= ekyk

(
 –

y∗
k

yk

)
(–γk – δkyk + εkxk)

= ek
(
yk – y∗

k
)[

εk
(
xk – x∗

k
)

– δk
(
yk – y∗

k
)]

. ()

Let

V =
l∑

k=

lk(t)
(
V (k)

 (xk) + V (k)
 (yk)

)
.

By (), () and (), we have

dV
dt

=
l∑

k=

[
lk(t)

(
dV (k)

 (xk)
dt

+
dV (k)

 (yk)
dt

)
+ l′k(t)

(
V (k)

 (xk) + V (k)
 (yk)

)]

=
l∑

k=

[

lk(t)

(

–εkbk
(
xk – x∗

k
) +

l∑

h=

θkh(t)Fkh(xk , xh) – ekδk
(
yk – y∗

k
)

)

+ l′k(t)
(
V (k)

 (xk) + V (k)
 (yk)

)
]

=
l∑

k=

[
–εkbklk(t)

(
xk – x∗

k
) + εkl′k(t)

(
xk – x∗

k – x∗
k ln

xk

x∗
k

)

– ekδklk(t)
(
yk – y∗

k
) + ekl′k(t)

(
yk – y∗

k – y∗
k ln

yk

y∗
k

)]

+
l∑

k=

l∑

h=

lk(t)θkh(t)Fkh(xk , xh)

≤
l∑

k=

l∑

h=

lk(t)θkh(t)Fkh(xk , xh)

≤ .

Since (G, D(t)) is strongly connected for any t ≥ , lk(t) >  for k ∈ L. Note the fact
that

Fkh(xk , xh) =
xh

x∗
h

–
xk

x∗
k

–
x∗

kxh

xkx∗
h

+  ≤
(

–
xk

x∗
k

+ ln
xk

x∗
k

)
–

(
–

xh

x∗
h

+ ln
xh

x∗
h

)

and the quality holds if and only if x∗
kxh/xkx∗

h = . Hence, we have V̇ =  if and only if
–εkbklk(t)(xk – x∗

k) = , εkl′k(t)(xk – x∗
k – x∗

k ln xk
x∗

k
) = , –ekδklk(t)(yk – y∗

k) = , ekl′k(t)(yk –
y∗

k – y∗
k ln yk

y∗
k

) =  and x∗
kxh/xkx∗

h =  for all k, h ∈ L. Since εk , bk , ek , δk >  and lk(t) > , t ≥ ,
we have xk = x∗

k , yk = y∗
k . And in view of the fact that x∗

kxh = x∗
hxk for all k, h ∈ L, one can
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see that xh = x∗
h for h ∈ L. Then

{
E
∣∣
∣
dV
dt

= 
}

=
{

E∗}.

Therefore, by the LaSalle invariance principle, E∗ is globally asymptotically stable. This
also implies that E∗ is unique in R

l
+ . �

Based on Theorem , by using the dispersal rate of preys akh(t), k, h ∈ L, we can get two
more simple stability criteria for system ().

Theorem  For any t ≥ , let (G, D(t)) be strongly connected. If a′
kh(t) ≤ , then as long

as a positive equilibrium E∗ exists, it is unique and globally asymptotically stable in the
positive cone Rl

+ .

Proof In view of εk >  and x∗
h > , we have

(
akh(t)εkx∗

h
)′ = a′

kh(t)εkx∗
h ≤ .

Then we can get l′k(t) ≤ , and the proof is similar to the proof of g ′
k(t) ≤  in Theorem ,

here, we omit it. This means that the conditions of Theorem  could be achieved. This
completes the whole proof. �

Theorem  For any t ≥ , let (G, D(t)) be strongly connected. When akh(t) = ak(t), k, h ∈ L,
the conclusion of Theorem  holds if

l∑

i=,i	=k

a′
i(t)

ai(t)
≤ .

Proof Similar to the proof of Theorem , we get

l′k(t) =
l∑

i=,i	=k

lk(t)
a′

i(t)
ai(t)

.

Using
∑l

i=,i	=k
a′

i(t)
ai(t) ≤  and lk(t) >  one then sees that

l∑

k=

[
–εkbklk(t)

(
xk – x∗

k
) + εkl′k(t)

(
xk – x∗

k – x∗
k ln

xk

x∗
k

)
– ekδklk

(
yk – y∗

k
)

+ ekl′k(t)
(

yk – y∗
k – y∗

k ln
yk

y∗
k

)]

=
l∑

k=

lk(t)

[

–εkbk
(
xk – x∗

k
) + εk

l∑

i=,i	=k

a′
i(t)

ai(t)

(
xk – x∗

k – x∗
k ln

xk

x∗
k

)

– ekδk
(
yk – y∗

k
) + ek

l∑

i=,i	=k

a′
i(t)

ai(t)

(
yk – y∗

k – y∗
k ln

yk

y∗
k

)]

≤ .
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Furthermore, we can get

dV
dt

≤
l∑

k=

l∑

h=

lk(t)θkh(t)Fkh(xk , xh) ≤ .

It is now the same as the proof of Theorem . The proof is complete. �

Remark  In Theorem , we have presented the stability criterion for a predator-prey
model in which the dispersal rate akh(t) is time-varying for any k, h ∈ L. Li et al. [] dis-
cussed a predator-prey model with time-invariant dispersal and achieved some results
concerning the stability problem. In this paper, if akh(t) = akh, the conclusion of Theorem 
is consistent with Theorem . in [], which means our work generalizes a global-stability
result from time-invariant dispersal to time-varying dispersal.

Remark  Biologically, time-varying dispersal, such as seasonal migration, is an extremely
common phenomenon. As a result, the effect of time-varying dispersal on the species sur-
vival has been an important topic in population biology. This paper provides a possibility
that researchers could use it to make the adjustment for the prey dispersal network to pro-
tect some species, which truly shows that the results in this paper are meaningful not only
in theory but also in practice.

5 Numerical simulations
In this section, we will discuss a numerical example to illustrate the effectiveness and fea-
sibility of Theorems  and .

Let l = . Consider a predator-prey model in the form of system () with the following
parameters:

rk = ., bk = ., ek = ., γk = .,

δk = ., εk = ., k = , , . . . , ,

rk = ., bk = ., ek = ., γk =



,

δk = ., εk = ., k = , , . . . , ,

αkh = , (k, h = , , . . . , ).

Firstly, we can make a calculation to get x∗
k = 

 , y∗
k = 

 , k = , , . . . , , which means that
the positive equilibrium is

E∗ =
(




,



,



,



, . . . ,



,



)T

×
.

The time-varying dispersal coefficients for preys are the followings: a(t) = e–t , a(t) =
t–, a(t) = e–t a(t) = ( 

 )t , a(t) = e–t , a(t) = esin t–t , a(t) = ( 
 )t , a(t) = e–t . Ex-

cluding these, other dispersal coefficients akh(t) = , k, h = , , . . . , , we can easily get
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a′
kh(t) ≤ , k, h = , , . . . , . And by the definition of D(t), we can obtain the coefficient-

matrix D(t) for system () as follows:

D(t) =

⎛

⎜⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜⎜
⎜
⎝

       
 e–t


 t–       

 
 e–t      

  
 ( 

 )t     
   

 e–t    
    

 esin t–t   
     

 ( 
 )t  

      
 e–t 

⎞

⎟⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟⎟
⎟
⎠

.

Obviously, (G, D(t)) is strongly connected for any t ≥ . Until now, all conditions in The-
orem  have been checked. Hence, we can get the conclusion that the positive equilibrium
E∗ is unique and globally asymptotically stable in the positive cone. The simulation result
is shown in Figure .

When akh(t) = ak(t), k, h ∈ L, let the time-varying dispersal coefficients for preys be the
following: a(t) = ., a(t) = esin t , a(t) = e–t , a(t) = e–t , a(t) = 

t , a(t) = .+sin t
t , a(t) =

ecos t , a(t) = e–t . Coefficient-matrix D(t) for system () can be obtained via the definition
of D(t) as follows: D(t) = (aij)n×n, where a = a = a = a = a = a = a = a = ,
a = a = a = a = a = a = a = 

 , a = a = a = a = a = a = a = 
 esin t ,

a = a = a = a = a = a = a = 
 e–t , a = a = a = a = a = a = a =


 e–t , a = a = a = a = a = a = a = 



t , a = a = a = a = a = a =

a = 


.+sin t
t , a = a = a = a = a = a = a = 

 ecos t , a = a = a = a = a =

Figure 1 The solution of coupled predator-prey model with time-varying dispersal coefficient-matrix
D1(t) when l = 8.
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Figure 2 The solution of coupled predator-prey model with time-varying dispersal coefficient-matrix
D2(t) when l = 8.

a = a = 
 e–t . And

∑

i=,i	=k

a′
i(t)

ai(t)
= cos t – sin t –  –


t

+
t cos t – . – sin t

t(. + sin t)

≤ – + cos t – sin t –

t

< .

It is obvious that (G, D(t)) is strongly connected for any t ≥ . We can easily check that
all conditions of Theorem  are satisfied. And the equilibrium E∗ of system () with time-
varying dispersal coefficient-matrix D(t) is shown in Figure . In fact, we can clearly see
from Figure  that the equilibrium E∗ is unique and globally asymptotically stable in the
positive cone. The numerical simulation result verifies the effectiveness and feasibility of
the proposed results.

Compared with the existing results on the stability of CSs [, ], our main contribu-
tions are as follows.

. We generalize CSs with time-invariant coupling structure to CSTCS.
. We first study the global stability for CSTCS by combining the graph theory with the

Lyapunov method.
. We apply these theoretical conclusions to a predator-prey model with time-varying

dispersal.
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