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Abstract
In this paper, we study a class of neutral stochastic differential equations (NSDEs) with
the cylindrical Brownian motion and Lévy noises in an infinite-dimensional Hilbert
space. The existence and uniqueness of the mild solutions to these stochastic
differential equations are discussed under assumptions of linear growth on the
coefficients. The results of Taniguchi (J. Math. Anal. Appl. 360:245-253, 2009) are
generalized and improved as a special case of our theory.
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1 Introduction
The stochastic neutral differential equations have attracted much attention because of
their practical applications in many areas such as physics, population dynamics, electrical
engineering, medicine biology, ecology and other areas of science and engineering [–].
It is very important to find the solutions of stochastic differential equations (SDEs) with
additive-noise on infinite-dimensional state spaces, so there has been an increasing in-
terest in the investigation of the existence and uniqueness of mild solutions for a class of
neutral stochastic differential equations [–]. In particular, the neutral stochastic dif-
ferential equations are driven by Poisson jump processes [–]. By introducing the Itô
stochastic calculus with G-Brownian motion, Revathi and Sakthivel extended the exis-
tence and uniqueness results to a class of nonautonomous stochastic neutral differential
equations with infinite delay in real separable Hilbert spaces [, ]. In addition, Benchaa-
bane studied a class of nonlinear fractional Sobolev-type stochastic differential equations
in Hilbert spaces [].

However, it should be mentioned that only a few papers have discussed the existence
and uniqueness of mild solutions of stochastic differential equations driven by Brownian
motion and Lévy noises. Cao established the existence and uniqueness of mild solutions
to semilinear backward stochastic evolution equations driven by the cylindrical Brownian
motion and the Poisson point process in a Hilbert space with non-Lipschitzian coefficients
by the successive approximation []. Luo considered the existence and uniqueness of
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mild solutions to stochastic neutral delay evolution equations with finite delay and Poisson
jumps by the Banach fixed point theorem []. Furthermore, Albeverio discussed the exis-
tence of mild solutions for stochastic differential equations and semilinear equations with
non-Gaussian Lévy noise []. Lately, Cui and Yan proved the existence and uniqueness
of mild solutions of neutral stochastic evolution equations with infinite delay and Poisson
jumps by using ‘non-Lipschitz conditions’ []. Very recently, Mao established the exis-
tence and uniqueness theorem of mild solutions to general neutral stochastic functional
differential equations with infinite delay and Lévy jumps under the local Carathéodory-
type conditions []. Note that these works established the existence and uniqueness of
the solution under the non-Lipschitz conditions, and their methods depend heavily on
the given hypotheses. So it is important to find some applicable and flexible conditions to
ensure the existence results. Motivated by the aforementioned works, we aim to study the
existence and uniqueness of mild solutions for SDEs with the cylindrical Brownian motion
and Lévy noises in an infinite-dimensional Hilbert space of the form

dx(t) =
[
Tx(t) + A

(
t, x(t)

)]
dt + g

(
t, x(t)

)
dWt +

∫

H\{}
h
(
t, u, x(t)

)
Ñ(dt, du), (.)

where T is the infinitesimal generator of a pseudo-contraction semigroup (St)t≥, and
A : R+ × D(R+, H) → H , g : R+ × H → L(H) and h : R+ × H \ {} × D(R+, H) → H are
jointly measurable functions, Wt and Ñ(t, u) denote the cylindrical Brownian motion and
compensated Poisson random measure, respectively. Our main result is established with
the help of Banach contraction semigroup theory. Thus, the results of Taniguchi are gen-
eralized [].

This paper is organized as follows. In Section  we define the fundamental concepts and
notations for stochastic integration with respect to Wiener processes and Lévy random
measures. In Section  we provide, for the sake of completeness, existence and uniqueness
results for Hilbert spaces valued SDEs. Finally, we give an example to illustrate the theory
in Section .

2 Preliminaries
Let E and H be separable Hilbert spaces with the norms ‖ · ‖E and ‖ · ‖H , respectively. The
inner products in E and H are denoted by (·, ·)E and 〈·, ·〉H , let L(E, H) denote the space of
all bounded linear operators from E to H .

Let (�, P,F) be a complete probability space on which an increasing and right-
continuous family (Ft)t∈[,∞] of complete sub-σ -algebra of F is defined. The filtered prob-
ability space (�,F, (Ft)t∈[,∞], P) satisfying the ‘usual hypothesis’ is given as follows:

(i) Ft contains all null sets of F for all t such that  ≤ t < ∞.
(ii) Ft = F

+
t , where F

+
t =
⋂

u>t Fu for all t such that  ≤ t < ∞, i.e., the filtration is right
continuous.

Let (L(t) : t > ) be a Lévy process with values in a separable Banach space H and define

N(t,�) :=
∑

s∈[,t]

I�
(
L(s)

)
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for every � ∈ B(H \ {}). Together with the Lévy measure ν(�) := E[,�], the compen-
sated Poisson random measure is defined by

Ñ(t,�) := N(t,�) – tν(�)

with E[Ñ(t,�)] = tν(�).
A stochastic process X is said to be càdlàg if it almost surely has sample path which are

right continuous, with left limits. Let � = D(R+, H) be a space of càdlàg functions defined
on R

+ and with values in H with norm ‖ · ‖∞ := supt∈[,T] ‖ · ‖H .
Let Q ∈ L(E) be a nonnegative self-adjoint operator, and let L

(E, H) denote the space
of all ξ ∈ L(E, H) such that ξ

√
Q is a Hilbert-Schmidt operator and with norm ‖ξ‖

L


:=
tr(ξQξ ∗) < ∞. Then ξ is called the Q-Hilbert-Schmidt operator from E to H . Let βn(t)
(n = , , , . . . ) be a sequence of real-valued one-dimensional standard Brownian motions
mutually independent on (�, P,F), and let {en} (n = , , , . . .) be a complete orthonormal
basis in E. Let Q be a nonnegative, linear and bounded covariance operator such that
tr(Q) < ∞, and assume that there exists a bounded sequence of nonnegative real numbers
{λn} such that Qen = λnen, n = , , . . . . Thus we consider an E-valued stochastic process
W(t) given formally by the following series:

W (t) :=
∞∑

n=

βn(t)
√

Qen (t ≥ ), Q ∈ L(E). (.)

From now on, we suppose that the operator Q ∈ L(E) is a nonnegative self-adjoint trace
operator, then this series converges in the space E, that is, W (t) ∈ L(�, E). Let v ∈ E, the
inner product (W (t), v)E given by the above E-valued stochastic process W (t) satisfies the
conditions of a cylindrical Wiener process. Since

(
W (t), v

)
E =

( ∞∑

n=

βn(t)en, v

)

E

, v ∈ E, t ≥ . (.)

So, when the operator Q ∈ L(E) is a nonnegative self-adjoint trace operator, we usually say
the above W (t) is the E-valued Q-cylindrical Wiener process with a covariance operator Q.

Next, let ϕ(s) be an L
(E, H) valued Ft-adapted stochastic process with

E

[∫ t



∥∥ϕ(s)
∥∥

L


ds
]

< +∞. (.)

Then we define the stochastic integral

∫ t


ϕ(s) dW (s) ∈ H , t ≥  (.)

of ϕ with respect to the E-valued Q-cylindrical Wiener process W (t) by

〈∫ t


ϕ(s) dW (s), v

〉

H
:=

∞∑

n=

∫ t



(
ϕ(s)
√

Qen, v
)

dβn(t)

for any v ∈ H using the Itö integral with respect to βn(s).



Wang Advances in Difference Equations  (2017) 2017:175 Page 4 of 12

Throughout this paper, we assume that the filtration is generated by the E-valued Q-
cylindrical Wiener process W (t), and Lévy process is augmented, that is, Ft := σ {W (s);
s ≤ t} ∨ σ {N(t,�);� ∈ B(H \ {})} ∨ N , where N is the null sets of F. For more details,
one can see [, ] and the references therein.

Definition . ([]) Let (St)t≥ be a continuous semigroup on H , which has the property

‖St‖H ≤ exp (αt), ∀t >  (.)

for some constant α > , and with ‖ · ‖H denoting the operator norm on H , it is called a
pseudo-contraction semigroup on H .

Definition . Let T >  be fixed. The stochastic process x(t) := (xt(ω))t∈[,T] is a mild
solution of (.) with the initial condition x = x(ω) if it is a solution of the following
convolution equation:

x(t) = Stx +
∫ t


St–sA

(
s, x(s)

)
ds +

∫ t


St–sg

(
s, x(s)

)
dWs

+
∫ t



∫

H\{}
St–sh

(
s, u, x(s)

)
Ñ(ds, du) (.)

P-almost surely hold for each t ∈ [, T].

Lemma . ([]) Let p > , T >  and suppose ϕ(t) is an L
-valued predictable process

such that E(
∫ T

 ‖ϕ(s)‖p
L


ds) < +∞. Let

W ϕ
S :=

∫ t


St–sϕ(s) dW (s), t ∈ [, T].

Then there exists C(p, S) ≥  such that

E

[
sup

≤s≤T

∥∥W ϕ
S
∥∥p
]

≤ C(p, S) sup
≤t≤T

‖St‖p ·E
[∫ T



∥∥ϕ(s)
∥∥p ds

]
. (.)

Moreover, if inequality (.) is satisfied, then there exists a continuous version of the process
W ϕ

S , t ≥ . If (St)t≥ is a contraction semigroup, then the above result is true for p ≥ .

Lemma . ([]) Let φ : R+ × H \ {} × � → H be a predictable function satisfying

∫ t



∫

H\{}

∥∥φ(s, u)
∥∥

ν(du) ds ≤ +∞

for all t ≥  P-almost surely. Let

Z(t) :=
∫ t



∫

H\{}
St–sφ(s, u)Ñ(du, dt).
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If (St)t≥ is a contraction semigroup, then ∀ < p ≤ , there exists a constant Cp,T ≥  such
that

E

[
sup

≤t≤T

∥
∥Z(t)

∥
∥p
]

≤ Cp,T ·E
[∫ T



∫

H\{}

∥
∥φ(s, u)

∥
∥

ν(du) ds
] p


. (.)

3 Existence and uniqueness of mild solutions
In this section, we discuss the existence and uniqueness of mild solutions to the stochastic
equation (.) in a Hilbert space.

For each t ∈R
+, we definite the function θt : D(R+, H) → D(R+, H)

θt(x)(s) =

{
xs, if  ≤ s < t;
xt , if  ≤ t < s.

(.)

Starting from here, we suppose that the following additional assumptions hold.

Assumption .
() h(t, u, x) is jointly measurable, and for all u ∈ H and t ∈R

+ fixed, h(t, u, ·) is
Ft-adapted;

() A(t, x) is jointly measurable, and for all t ∈R
+ fixed, A(t, ·) is Ft-adapted;

() assume that h(t, u, x) = h(t, u, θt(x)) and A(t, x) = A(t, θt(x)).

Assumption . There exists a constant K >  such that for any t ∈ R
+ the following

inequality is satisfied:

∥
∥A(t, x)

∥
∥

H +
∥
∥g(t, x)

∥
∥

H +
∫

H\{}

∥
∥h(t, u, x)

∥
∥

Hν(du) ≤ K
[
 +
∥
∥θt(x)

∥
∥

∞
]
. (.)

Assumption . There exists a constant K ≥  such that for any fixed x, y ∈ D(R+, H),

∥
∥A(t, x) – A(t, y)

∥
∥ +

∥
∥g(t, x) – g(t, y)

∥
∥ +

∫

H\{}

∥
∥h(t, u, x) – h(t, u, y)

∥
∥

ν(du)

≤ K
∥
∥θs(x) – θs(y)

∥
∥

∞ (.)

for P-almost surely.

For simply, CK ,α,T >  denotes a suitable positive real number which changes from line
to line, let x ∈ D(R+, H) and t ∈ [, T], define

I(t, x) :=
∫ t


St–sA

(
s, x(s)

)
ds +

∫ t


St–sg

(
s, x(s)

)
dWs

+
∫ t



∫

H\{}
St–sh

(
s, u, x(s)

)
Ñ(ds, du). (.)

Theorem . There exists a constant CK ,T ,α such that for any (Ft)-stopping time τ

E

(
sup

≤s≤t∧τ

∥
∥I(s, x)

∥
∥

H

)
≤ CK ,T ,α

[
t +
∫ t


E

(
sup

≤ν≤s∧τ

‖xν‖
)

ds
]

, t ∈ [, T].
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Proof From (.), we have

E

[
sup

≤s≤t∧τ

∥
∥I(s, x)

∥
∥

H

]
≤ E

[
sup

≤s≤t∧τ

∥∥
∥∥

∫ s


Ss–rA

(
r, x(r)

)
dr
∥∥
∥∥

]

+ E
[

sup
≤s≤t∧τ

∥
∥∥
∥

∫ t



∫

H\{}
St–sh

(
s, u, x(s)

)
Ñ(ds, du)

∥
∥∥
∥

]

+ E
[

sup
≤s≤t∧τ

∥∥∥
∥

∫ s


Ss–rg

(
r, x(r)

)
dWr

∥∥∥
∥

]
. (.)

By Definition ., we have

∥
∥∥
∥

∫ s


Ss–rA

(
r, x(r)

)
dr
∥
∥∥
∥



≤ exp (αs)
[∫ s



∥∥A
(
r, x(r)

)∥∥dr
]

≤ s · exp (αs)
[∫ s



∥∥A
(
r, x(r)

)∥∥ dr
]

.

Using this relation, together with Assumption . and Assumption ., we obtain

E

[
sup

≤s≤t∧τ

∥∥
∥∥

∫ s


Ss–rA

(
r, x(r)

)
dr
∥∥
∥∥

]

≤ CK ,α,T ·E
[

sup
≤s≤t∧τ

(∫ s



(
 +
∥∥θr(x)

∥∥
∞
)

dr
)]

≤ CK ,α,T

[
t +
∫ t


E

(
sup

≤r≤s∧τ

‖xr‖
)

ds
]

. (.)

Using Lemma ., Assumption . and Definition . yields

E

[
sup

≤s≤t∧τ

∥
∥∥
∥

∫ s


Ss–rg

(
r, x(r)

)
dWr

∥
∥∥
∥

]

≤ C(, t) sup
≤s≤t∧τ

∥∥S(s)
∥∥ ·E

[∫ t∧τ



∥∥g
(
r, x(r)

)∥∥ dr
]

≤ CK ,α,t

[
t +
∫ t


E

(
sup

≤r≤s∧τ

∥∥x(r)
∥∥
)

ds
]

. (.)

Moreover, from Lemma ., it follows that

E

[
sup

≤s≤t∧τ

∥∥
∥∥

∫ t



∫

H\{}
St–sh

(
s, u, x(s)

)
Ñ(ds, du)

∥∥
∥∥

]

≤ CK ,α,t

[
t +
∫ t


E

(
sup

≤r≤s∧τ

∥
∥x(r)

∥
∥
)

ds
]

. (.)

Taking (.), (.) and (.) into (.), we have

E

[
sup

≤s≤t∧τ

∥∥I(s, x)
∥∥

H

]
≤ CK ,α,T

(
t +
∫ t


E

[
sup

≤ν≤s∧τ

‖xν‖
]

ds
)

, t ∈ [, T].
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Let T > , and define

HT
 :=

{
ξ = (ξs)s∈[,T] : E‖ξs‖

∞ < +∞}, (.)

here ξs is jointly measurable and Ft-adapted. It follows from Theorem . that the map

I : HT
 −→HT

 , x −→ I(·, x)

is well defined, where I(·, x) is defined in Eq. (.). �

Theorem . The map I : HT
 −→ HT

 is continuous, and assume that Assumption . is
satisfied. Then there exists a constant CK ,T ,α , depending on K , T and α, such that

E

[
sup

≤s≤T

∥∥I(s, x) – I(s, y)
∥∥

H

]
≤ CK ,T ,α

∫ T


E

[
sup

≤s≤t
‖xs – ys‖

]
dt. (.)

Proof By using (.), we have

∥
∥I(t, x) – I(t, y)

∥
∥

≤
∥∥
∥∥

∫ t


St–s
[
A
(
s, x(s)

)
– A
(
s, y(s)

)]
ds
∥∥
∥∥ +
∥∥
∥∥

∫ t


St–s
[
g
(
s, x(s)

)
– g
(
s, y(s)

)]
dWs

∥∥
∥∥

+
∥
∥∥
∥

∫ t



∫

H\{}
St–s
[
h
(
s, u, x(s)

)
– h
(
s, u, y(s)

)]
Ñ(ds, du)

∥
∥∥
∥,

so that

E

[
sup

≤t≤T

∥∥I(t, x) – I(t, x)
∥∥
]

≤ E
[

sup
≤s≤T

∥∥∥
∥

∫ t


St–s
[
A
(
s, x(s)

)
– A
(
s, y(s)

)]
ds
∥∥∥
∥

]

+ E
[

sup
≤s≤T

∥∥
∥∥

∫ t


St–s
[
g
(
s, x(s)

)
– g
(
s, y(s)

)]
dWs

∥∥
∥∥

]

+ E
[

sup
≤s≤T

∥
∥∥∥

∫ t



∫

H\{}
St–s
[
h
(
s, u, x(s)

)
– h
(
s, u, y(s)

)]
Ñ(ds, du)

∥
∥∥∥

]
. (.)

By Assumption ., we have

E

[
sup

≤t≤T

∥
∥∥
∥

∫ t


St–s
[
A
(
s, x(s)

)
– A
(
s, y(s)

)]
ds
∥
∥∥
∥

]

≤ K · T exp (αT)
∫ T


E

[
sup

≤s≤t

∥∥θs(x) – θs(y)
∥∥

∞
]

dt

≤ CK ,α,T

∫ T


E

[
sup

≤s≤t
‖xs – ys‖

]
dt. (.)
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From Lemma ., Assumption . and Assumption ., we obtain

E

[
sup

≤t≤T

∥
∥∥
∥

∫ t


St–s
[
g
(
s, x(s)

)
– g
(
s, y(s)

)]
dWs

∥
∥∥
∥

]

≤ C(, T) sup
≤s≤T

∥∥S(s)
∥∥ ·E

[∫ T



∥∥g
(
s, x(s)

)
– g
(
s, y(s)

)∥∥ ds
]

≤ CK ,α,T

∫ T


E

(
sup

≤s≤t
‖xs – ys‖

)
dt. (.)

Similarly, we get

E

[
sup

≤t≤T

∥
∥∥
∥

∫ t



∫

H\{}
St–s
[
h
(
s, u, x(s)

)
– h
(
s, u, y(s)

)]
Ñ(ds, du)

∥
∥∥
∥

]

≤ CK ,α,T

∫ T


E

(
sup

≤s≤t

∥∥x(s) – y(s)
∥∥
)

dt.

(.)

Taking (.), (.) and (.) into (.), we have proved Theorem .. �

Theorem . Let T > , x ∈ H and suppose that Assumption ., Assumption . and
Assumption . are satisfied. Then there exists a unique mild solution X(t) = (xs)s∈[,T] in
HT

 satisfying

X(t) = Stx +
∫ t


St–sA

(
s, X(s)

)
ds +

∫ t


St–sg

(
s, X(s)

)
dWs

+
∫ t



∫

H\{}
St–sh

(
s, u, X(s)

)
Ñ(ds, du). (.)

Proof Let X
s = Ss(x) P-almost surely, and Xn+

s := I(s, Xn
s ). Then from Eq. (.) it follows

that (Xn+
s )s∈[,T] is Ft-adapted. Let

zn
t := E

[
sup

≤s≤t

∥
∥Xn+

s – Xn
s
∥
∥
H

]
. (.)

Thus, by (.), Theorem . and the definition of X
s = Ss(x), it follows that

z
t = E

[
sup

≤s≤t

∥
∥X

s – X
s
∥
∥
H

]

≤ CK ,α,t

[
t +
∫ t


E

(
sup

≤r≤s

∥
∥X

r
∥
∥
)

ds + E
∥
∥X

s
∥
∥
H

]
.

(.)

Since

∥∥X
s
∥∥
H = ‖Ssx‖

H ≤ exp(αs)‖x‖
H. (.)
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Then from inequalities (.) and (.), there exists a constant L, depending on α, t and
x, such that

z
t = E

[
sup

≤s≤t

∥
∥X

s – X
s
∥
∥
H

]

≤ CK ,α,t

[
t +


α

(
α –  + exp (αt)

)
E‖x‖

H

]

= CK ,α,t · L. (.)

Similarly, combining inequality (.) and Theorem ., by mathematical induction, we
have

zn
t = E

[
sup

≤s≤t

∥∥Xn+
s – Xn

s
∥∥
H

]
≤ 

n!
[T · CK ,α,t]n+L. (.)

It is easy to see that

∞∑

n=

√

n!

[T · CK ,α,t]n+

is convergent, so that {zn
t } is a Cauchy sequence in HT

 . Then, by the Chebyshev inequality
and (.), we have

P

[
sup

≤s≤t

∥∥Xn+
s – Xn

s
∥∥
H ≥ 

n

]
≤ 

n!
[T · CK ,α,t]n+L. (.)

By the Borel-Cantelli lemma, we get that P-almost surely there exists k ∈N such that

sup
≤s≤t

∥
∥Xk

s – Xk+
s
∥
∥ ≤ –k for each k ≥ k. (.)

Define

Xk
s (ω) := X

s +
n–∑

k=

[
Xk+

s (ω) – Xk
s (ω)

]
. (.)

Then Xk
s converges P-almost surely uniformly on [, T]. Let

Xs(ω) = lim
n→∞ Xn

s (ω).

Since {Xk
s (ω)}t∈[,T] are càdlàg, and the limit is in sup norm, therefore Xs(ω) is càdlàg and

Ft-measurable, Xs(ω) ∈ D([, T], H). Moreover,

E
[∥∥Xs – Xn

s
∥
∥

∞
]

= E

[
lim

m→∞ sup
≤s≤t

∥
∥Xm

s – Xn
s
∥
∥
]

= E

[

lim
m→∞ sup

≤s≤t

∥∥
∥∥
∥

n+m–∑

k=n

(
Xk+

s – Xk
s
)
∥∥
∥∥
∥

]

≤ E

[

lim
m→∞

(n+m–∑

k=n

sup
≤s≤t

∥∥Xk+
s – Xk

s
∥∥
)]

. (.)



Wang Advances in Difference Equations  (2017) 2017:175 Page 10 of 12

By the Cauchy-Schwarz inequality, it follows that

lim
m→∞

[n+m–∑

k=n

sup
≤s≤t

∥
∥Xk+

s – Xk
s
∥
∥
]

≤
∞∑

k=n

sup
≤s≤t

∥
∥Xk+

s – Xk
s
∥
∥k ·

∞∑

k=n


k . (.)

According to (.), we see that
∑∞

k=n sup≤s≤t‖Xk+
s – Xk

s ‖k is convergent, together with
(.) this implies

E

[

lim
m→∞

(n+m–∑

k=n

sup
≤s≤t

∥
∥Xk+

s – Xk
s
∥
∥
)]

≤
∞∑

k=n


n!

[Tk · CK ,α,t]n+L ·
∞∑

k=n


k .

Therefore, we obtain that

lim
m→∞E

[
sup

≤s≤T

∥
∥Xs – Xn

s
∥
∥
]

= , (.)

and Xs ∈HT
 . From Theorem . it follows that Xs is a mild solution to Eq. (.).

Next, we prove the uniqueness of Eq. (.). Suppose that Xs and Xs are two solutions
of (.). Let

G(t) := E

[
sup

≤s≤t
‖Xs – Xs‖

H

]
. (.)

Then, similarly as for (.), it follows that

G(t) ≤ 
n!

[Tk · CK ,α,t]n+
E

[
sup

≤s≤t
‖Xs – Xs‖

H

]
−→  (.)

as n → +∞. Hence G(t) ≡ , which completes the proof of the theorem. �

Remark . In a special case, when h ≡ , Eq. (.) reduces to

dx(t) =
[
Tx(t) + A

(
t, x(t)

)]
dt + g

(
t, x(t)

)
dWt , (.)

which was studied in [].

4 Examples
Example . Let H = L(,π ) and en :=

√

π

sin(nx), n = , , . . . . Then {en} is a com-
plete orthonormal basis in H . Let Wt :=

∑∞
n=

√
λnβn(t)en, λn > , where {βn(t)} are

one-dimensional standard Brownian motions mutually independent on a usual com-
plete probability space. Let ν(�) be a σ -finite stationary Poisson point process on H
with Ñ(t,�) = N(t,�) – tν(�). Define the operator Q : H −→ H by setting Qen = λnen

(n = , , , . . .) and assume that tr(Q) =
∑∞

n= λn < +∞. Let T := ∂

∂x with the domain
D(T) = H

(,π ) ∩ H(,π ).
Consider the following stochastic evolution equation:

⎧
⎪⎨

⎪⎩

dXt = [ ∂

∂x Xt + λXt] dt + γ X(t) dWt +
∫

H\{} XtÑ(dt, du), γ > ,λ ∈R,
X(, ξ ) = x(ξ ) ∈ H , ξ ∈ [,π ],
X(t, ) = X(t,π ) = , t ∈ [, +∞),

(.)
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where T := ∂

∂x , A(t, Xt) = λXt , g(t, Xt) = Xt , h(t, u, Xt) = Xt . We can verify that T is
an infinitesimal generator of the bounded linear operator S(t) : H → H . It holds that
‖S(t)‖ ≤ e–t , t ≥ , and Assumption ., Assumption ., Assumption . are satisfied.
Therefore by Theorem ., Eq. (.) has a unique solution.

5 Conclusions
In this paper, we consider a class of stochastic differential equations driven by Brownian
motion and Lévy noises in real separable Hilbert spaces. Sufficient conditions for the ex-
istence and uniqueness are derived. The conditions, under which the coefficients satisfy
linear growth condition, are formulated and proved.

There are two direct issues which require further study. First, we will investigate the
exponential stability of mild solutions for NSDEs in Hilbert spaces. Second, we will de-
vote our efforts to the study of the mean-square stability and the asymptotic mean-square
stability of NSDEs driven by the cylindrical Brownian motion and Lévy noises.
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