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1 Introduction
Let λ be a complex number with λ �= . Frobenius [] introduced and studied the so-called
Frobenius-Euler polynomials Hn(x|λ), which are usually defined by the following expo-
nential generating function:

 – λ

et – λ
ext =

∞∑

n=

Hn(x|λ)
tn

n!
. (.)

In particular, the case x =  in (.) gives the Frobenius-Euler numbers Hn(λ) = Hn(|λ). It
is interesting to point out that the Frobenius-Euler polynomials can be defined recursively
by the Frobenius-Euler numbers as follows:

Hn(x|λ) =
n∑

k=

(
n
k

)
Hk(λ)xn–k (n ≥ ), (.)

where, and in what follows,
(a

k
)

is the binomial coefficient defined for a complex number
a and a non-negative integer k by

(
a


)
= ,

(
a
k

)
=

a(a – )(a – ) · · · (a – k + )
k!

(k ≥ ), (.)

and the Frobenius-Euler numbers satisfy the recurrence relation

H(λ) = ,
(
H(λ) + 

)n – Hn(λ) =

⎧
⎨

⎩
 – λ, n = ,

, n ≥ ,
(.)
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with the usual convention about replacing Hn(λ) by Hn(λ); see, for example, [, ]. For
some interesting arithmetic properties on the Frobenius-Euler polynomials and numbers,
one is referred to [–].

We now turn to the Bernoulli polynomials Bn(x) and the Euler polynomials En(x), which
are usually defined by the exponential generating functions

text

et – 
=

∞∑

n=

Bn(x)
tn

n!
and

ext

et + 
=

∞∑

n=

En(x)
tn

n!
. (.)

The rational numbers Bn and the integers En given by

Bn = Bn() and En = nEn

(



)
(.)

are called the Bernoulli numbers and the Euler numbers, respectively. It is easily seen
from (.) and (.) that the Frobenius-Euler polynomials give the Euler polynomials when
λ = – in (.), and the Bernoulli polynomials can be expressed by the Frobenius-Euler
polynomials as follows:

mn–
m–∑

k=

λkBn

(
k
m

)
=

n
λ – 

Hn–

(

λ

)
(m, n ≥ ). (.)

It is well known that the Bernoulli and Euler polynomials and numbers play important
roles in different areas of mathematics, and numerous interesting properties for them have
been studied by many authors; see, for example, [–].

In the year , Carlitz [] explored some formulas of products of the Frobenius-Euler
polynomials and obtained three expressions of products of the Frobenius-Euler polynomi-
als to deduce Nielsen’s [] formulas on the Bernoulli and Euler polynomials. For example,
Carlitz [] showed that for non-negative integers m, n,

Hm(x|λ)Hn(x|μ)

=
λ(μ – )
λμ – 

m∑

k=

(
m
k

)
Hk(λ)Hm+n–k(x|λμ)

+
μ(λ – )
λμ – 

n∑

k=

(
n
k

)
Hk(μ)Hm+n–k(x|λμ) –

(λ – )(μ – )
λμ – 

Hm+n(x|λμ), (.)

when λμ �= . In the year , Kim et al. [] used a nice method called the Frobenius-
Euler basis to establish the following new sums of products of two Frobenius-Euler poly-
nomials:


n + 

n∑

k=

Hk(x|λ)Hn–k(x|λ)

= –λ

n–∑

k=

(
n
k

) n∑

l=k

Hl–k(λ)Hn–l(λ) – Hn–k(λ)
n +  – k

Hk(x|λ) + Hn(x|λ), (.)
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where n is a positive integer. Following the work of Carlitz and Kim et al., He and Wang []
extended Carlitz’s [] three formulas of products of the Frobenius-Euler polynomials, by
virtue of which some analogues to the summation formula (.) were obtained. In the year
, Agoh and Dilcher [] used a generalization of the idea showed in [] to establish
the following higher-order convolution identity for the Euler polynomials:

∑

j+···+jk =n
j,...,jk≥

Ej (x) · · ·Ejk (x) =
k∑

r=

(
k
r

)
(–)r–

∑

l+l+···+lk–r=n
l,l,...,lk–r≥

(
n + k – 

l

)

× El (x)El () · · ·Elk–r (), (.)

where n is a non-negative integer and k is a positive integer k with  � k. In the year ,
by using identities for difference operators, techniques of symbolic computation, and tools
from the probability theory, Dilcher and Vignat [] extended (.) and obtained that for a
non-negative integer n, a positive integer k with  � k, and arbitrary real numbers a, . . . , ak ,

∑

j+···+jk =n
j,...,jk≥

(
n

j, . . . , jk

)
(a)j · · · (ak)jk
(a + · · · + ak)n

Ej (x) · · ·Ejk (x)

=
k∑

r=

∑

|J|=r

(–)r–
∑

l+l+···+lk–r=n
l,l,...,lk–r≥

(
n

l, l, . . . , lk–r

)
(air+ )l · · · (aik )lk–r

(a + · · · + ak)n–l

× El (x)El () · · ·Elk–r (), (.)

where, and in what follows, (a)k is the rising factorial defined for a complex number a and
a non-negative integer k by

(a) =  and (a)k = a(a + )(a + ) · · · (a + k – ) (k ≥ ), (.)

( n
r,...,rk

)
is the multinomial coefficient defined for a positive integer k and non-negative

integers n, r, . . . , rk by

(
n

r, . . . , rk

)
=

n!
r! · · · rk !

, (.)

|J| is the cardinality of a subset J ⊆ {, . . . , k} and ir+, . . . , ik ∈ J = {, . . . , k} \ J .
Motivated by the work of Dilcher and Vignat [], in this paper we establish some new

summation formulas for the products of an arbitrary number of the Frobenius-Euler poly-
nomials by making use of the generating function methods and summation transform
techniques developed in []. It turns out that some known formulas including (.) and
(.) are deduced as special cases.

2 The statement of results
We first state the following formula for the products of an arbitrary number of the
Frobenius-Euler polynomials and the rising factorials.
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Theorem . Let a, . . . , ak be arbitrary complex numbers with k being a positive integer.
Then, for a non-negative integer n,

∑

j+···+jk =n
j,...,jk≥

(
n

j, . . . , jk

)
(a)j · · · (ak)jk
(a + · · · + ak)n

Hj (x|λ) · · ·Hjk (xk|λk)

=
k∑

r=

 – λr

 – λ · · ·λk

∑

l+···+lk =n
l,...,lk≥

(
n

l, . . . , lk

)


(a + · · · + ak)n–lr

× Hlr (xr|λ · · ·λk)
r–∏

i=

(ai)li Hli (xi – xr + |λi)

×
k∏

i=r+

λi(ai)li Hli (xi – xr|λi) (λ · · ·λk �= ). (.)

We next discuss some special cases of Theorem .. By taking a = · · · = ak =  in Theo-
rem ., in light of (.) and (.), we get the following result.

Corollary . Let k be a positive integer. Then, for a non-negative integer n,

∑

j+···+jk =n
j,...,jk≥

Hj (x|λ) · · ·Hjk (xk|λk)

=
k∑

r=

 – λr

 – λ · · ·λk

∑

l+···+lk =n
l,...,lk≥

(
n + k – 

lr

)
Hlr (xr|λ · · ·λk)

×
r–∏

i=

Hli (xi – xr + |λi)
k∏

i=r+

λiHli (xi – xr|λi) (λ · · ·λk �= ). (.)

The above Corollary . can be also found in [] where it was established by using the
generalized beta integral technique. In fact, Corollary . can be used to give a different
expression for the new sums of products of two Frobenius-Euler polynomials appearing
in (.). For example, taking k =  and then substituting x for x, y for x, λ for λ, and μ

for λ in Corollary . gives

n∑

k=

Hk(x|λ)Hn–k(y|μ)

=
μ( – λ)
 – λμ

n∑

k=

(
n + 

k

)
Hk(x|λμ)Hn–k(y – x|μ)

+
 – μ

 – λμ

n∑

k=

(
n + 

k

)
Hk(y|λμ)Hn–k(x – y + |λ) (λμ �= ). (.)

Since the Frobenius-Euler polynomials satisfy the following difference equation (see, e.g.,
[]):

Hn(x + |λ) – λHn(x|λ) = ( – λ)xn (n ≥ ), (.)
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so by applying (.) to (.), we get

n∑

k=

Hk(x|λ)Hn–k(y|μ)

=
μ( – λ)
 – λμ

n∑

k=

(
n + 

k

)
Hk(x|λμ)Hn–k(y – x|μ)

+
λ( – μ)
 – λμ

n∑

k=

(
n + 

k

)
Hk(y|λμ)Hn–k(x – y|λ)

+
( – λ)( – μ)

 – λμ

n∑

k=

(
n + 

k

)
Hk(y|λμ)(x – y)n–k (λμ �= ). (.)

It becomes obvious that the case x = y and λ = μ in (.) gives

n∑

k=

Hk(x|λ)Hn–k(x|λ) =
λ

 + λ

n∑

k=

(
n + 

k

)
Hk

(
x|λ)Hn–k(λ)

+
 – λ

 + λ
(n + )Hn

(
x|λ) (λ �= –), (.)

which can be regarded as an equivalent version of (.). For a different proof of (.), see
[] for details.

On the other hand, from (.) and the fact (see, e.g., [])

(x + y)(x + y) · · · (xk + yk) =
∑

J⊆{,...,k}

∏

i∈J

xi
∏

i∈J

yi (k ≥ ), (.)

we obtain that for a positive integer r,

r–∏

i=

Hji (xi – xr + |λi)

=
∑

J⊆{,...,r–}

∏

i∈J

λiHji (xi – xr|λi)
∏

i∈J

( – λi)(xi – xr)ji . (.)

Thus, by applying (.) to Theorem . and then taking x = · · · = xk = x, we get the follow-
ing result.

Corollary . Let a, . . . , ak be arbitrary complex numbers with k being a positive integer.
Then, for a non-negative integer n,

∑

j+···+jk =n
j,...,jk≥

(
n

j, . . . , jk

)
(a)j · · · (ak)jk
(a + · · · + ak)n

Hj (x|λ) · · ·Hjk (x|λk)

=
k∑

r=

∑

|J|=r

λJ

 – λ · · ·λk

∑

l+l+···+lk–r=n
l,l,...,lk–r≥

(
n

l, l, . . . , lk–r

)
(air+ )l · · · (aik )lk–r

(a + · · · + ak)n–l

× Hl (x|λ · · ·λk)λir+ Hl (λir+ ) · · ·λik Hlk–r (λik ), (.)

where λ · · ·λk �= , λJ =
∏

j∈J ( – λj) and ir+, . . . , ik ∈ J .
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In particular, if we take λ = · · · = λk = – with  � k and let a, . . . , ak be real numbers in
Corollary ., we get Dilcher and Vignat’s identity (.) immediately. If we take a = · · · =
ak =  in Corollary ., we obtain the following result.

Corollary . Let n be a non-negative integer. Then, for a positive integer k,

∑

j+···+jk =n
j,...,jk≥

Hj (x|λ) · · ·Hjk (x|λk)

=
k∑

r=

∑

|J|=r

λJ

 – λ · · ·λk

∑

l+l+···+lk–r=n
l,l,...,lk–r≥

(
n + k – 

l

)
Hl (x|λ · · ·λk)

× λir+ Hl (λir+ ) · · ·λik Hlk–r (λik ), (.)

where λ · · ·λk �= , λJ =
∏

j∈J ( – λj) and ir+, . . . , ik ∈ J .

The above Corollary . can be also found in [] where it was obtained by applying
(.) to Corollary .. If we take λ = · · · = λk = λ in Corollary ., we obtain that for a
non-negative integer n and a positive integer k,

∑

j+···+jk =n
j,...,jk≥

Hj (x|λ) · · ·Hjk (x|λ)

=
k∑

r=

(
k
r

)
λk–r( – λ)r

 – λk

∑

l+l+···+lk–r=n
l,l,...,lk–r≥

(
n + k – 

l

)
Hl

(
x|λk)

× Hl (λ) · · ·Hlk–r (λ). (.)

Obviously, the case λ = – and  � k in (.) gives Agoh and Dilcher’s identity (.). If we
take k =  in (.), we get that for a non-negative integer n,

∑

j+j=n
j,j≥

Hj (x|λ)Hj (x|λ) =
λ( – λ)

 – λ

∑

l+l=n
l,l≥

(
n + 

l

)
Hl

(
x|λ)Hl (λ)

+
( – λ)

 – λ

(
n + 

n

)
Hn

(
x|λ) (λ �= –), (.)

which gives formula (.) immediately.

3 The proof of Theorem 2.1
For convenience, we denote by [ti

 · · · tik
k ]f (t, . . . , tk) the coefficients of ti

 · · · tik
k in the

power series expansion of f (t, . . . , tk). It is clear that for non-negative integers i, . . . , ik ,
we have

[
ti


i!
· · · tik

k
ik !

]
f (t, . . . , tk) = i! · · · ik ! · [ti

 · · · tik
k
]
f (t, . . . , tk). (.)
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We now recall the famous Euler’s pentagonal number theorem: for |x| < ,

( – x)
(
 – x)( – x) · · · =  +

∞∑

n=

(–)n{x

 n(n–) + x


 n(n+)}, (.)

which can be used effectively for the calculation of the number of partitions of n (see, e.g.,
[]). In his original proof of (.), Euler used the following beautiful idea:

( + x)( + x)( + x) · · ·
= ( + x) + x( + x) + x( + x)( + x) + · · · . (.)

Obviously, the finite form of (.) can be expressed as (see, e.g., [])

( + x)( + x) · · · ( + xk)

= ( + x) + x( + x) + · · · + xk( + x)( + x) · · · ( + xk–). (.)

If we replace xr by xr –  for  ≤ r ≤ k in (.), then we have

x · · ·xk –  =
k∑

r=

(xr – )x · · ·xr–, (.)

where x · · ·xr– is considered to be equal to  when r = . By taking xr = λretr for  ≤ r ≤ k
in (.), we obtain that for a positive integer k,

λ · · ·λket+···+tk –  =
k∑

r=

(
λretr – 

) r–∏

i=

λieti , (.)

which implies

k∏

i=

(λi – )exiti

λieti – 
=

k∑

r=

λretr – 
λ · · ·λket+···+tk – 

r–∏

i=

λieti
k∏

i=

(λi – )exiti

λieti – 
. (.)

Observe that

(
λretr – 

) r–∏

i=

λieti
k∏

i=

(λi – )exiti

λieti – 

= (λr – )exr(t+···+tk )
r–∏

i=

λi
(λi – )e(xi–xr+)ti

λieti – 

k∏

i=r+

(λi – )e(xi–xr)ti

λieti – 
. (.)

It follows from (.) and (.) that

k∏

i=

(λi – )exiti

λieti – 
=

k∑

r=

(λr – )exr (t+···+tk )

λ · · ·λket+···+tk – 

×
r–∏

i=

λi
(λi – )e(xi–xr+)ti

λieti – 

k∏

i=r+

(λi – )e(xi–xr)ti

λieti – 
. (.)
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It is obvious that substituting /λ for λ in (.) gives

λ – 
λet – 

ext =
∞∑

n=

Hn

(
x
∣∣∣


λ

)
tn

n!
, (.)

and from (.) and (.) we get that for a non-negative integer k and a complex number a,

(a)k = (–)kk! ·
(

–a
k

)
. (.)

It follows from (.), (.) and (.) that for a non-negative integer n and complex num-
bers a, . . . , ak ,

∑

j+···+jk =n
j,...,jk≥

(
–a

j

)
· · ·

(
–ak

jk

)[
tj


j!
· · · tjk

k
jk !

]( k∏

i=

(λi – )exiti

λieti – 

)

=
∑

j+···+jk =n
j,...,jk≥

(
–a

j

)
· · ·

(
–ak

jk

)
Hj

(
x

∣∣∣

λ

)
· · ·Hjk

(
xk

∣∣∣

λk

)

=
(–)n

n!
∑

j+···+jk =n
j,...,jk≥

(
n

j, . . . , jk

)
(a)j · · · (ak)jk

× Hj

(
x

∣∣∣

λ

)
· · ·Hjk

(
xk

∣∣∣

λk

)
. (.)

On the other hand, since for a positive integer k and a non-negative integer N (see, e.g.,
[]),

(t + · · · + tk)N =
∑

l+···+lk =N
l,...,lk≥

(
N

l, . . . , lk

)
tl
 · · · tlk

k , (.)

so by (.) and (.) we have

(λ · · ·λk – )exr(t+···+tk )

λ · · ·λket+···+tk – 
=

∞∑

N=

HN

(
xr

∣∣∣


λ · · ·λk

) ∑

l+···+lk =N
l,...,lk≥

tl


l!
· · · tlk

k
lk !

. (.)

If we multiply both sides of (.) by [tj
 · · · tjk

k ], with the help of (.) and (.), we dis-
cover

[
tj
 · · · tjk

k
]
( k∏

i=

(λi – )exiti

λieti – 

)

=
k∑

r=

λr – 
λ · · ·λk – 

∑

l,...,lr–,
lr+,...,lk≥

Hl+···+lr–+jr+lr++···+lk (xr| 
λ···λk

)
l! · · · lr–! · jr ! · lr+! · · · lk !

×
r–∏

i=

λi
Hji–li (xi – xr + | 

λi
)

(ji – li)!

k∏

i=r+

Hji–li (xi – xr| 
λi

)
(ji – li)!

. (.)
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Hence, by replacing li by ji – li for i �= r in (.), in light of (.), we obtain

[
tj


j!
· · · tjk

k
jk !

]( k∏

i=

(λi – )exiti

λieti – 

)

=
k∑

r=

λr – 
λ · · ·λk – 

∑

l+···+lk =j+···+jk
l,...,lk≥

Hlr

(
xr

∣∣∣


λ · · ·λk

)

×
r–∏

i=

λi

(
ji
li

)
Hli

(
xi – xr + 

∣∣∣

λi

) k∏

i=r+

(
ji
li

)
Hli

(
xi – xr

∣∣∣

λi

)
. (.)

It follows from (.) that

∑

j+···+jk =n
j,...,jk≥

(
–a

j

)
· · ·

(
–ak

jk

)[
tj


j!
· · · tjk

k
jk !

]( k∏

i=

(λi – )exiti

λieti – 

)

=
∑

j+···+jk =n
j,...,jk≥

k∑

r=

λr – 
λ · · ·λk – 

∑

l+···+lk =n
l,...,lk≥

(
–ar

jr

)
Hlr

(
xr

∣∣∣


λ · · ·λk

)

×
r–∏

i=

λi

(
–ai

ji

)(
ji
li

)
Hli

(
xi – xr + 

∣∣∣

λi

)

×
k∏

i=r+

(
–ai

ji

)(
ji
li

)
Hli

(
xi – xr

∣∣∣

λi

)
. (.)

It is clear from (.) that for non-negative integers k, n and a complex number a,

(
a
n

)(
n
k

)
=

(
a
k

)(
a – k
n – k

)
, (.)

which together with the famous Chu-Vandermonde convolution identity showed in []
yields that for non-negative integers l, . . . , lk with l + · · · + lk = n,

∑

j+···+jk =n
j,...,jk≥

(
–ar

jr

) k∏

i=
i�=r

(
–ai

ji

)(
ji
li

)

=
k∏

i=
i�=r

(
–ai

li

) ∑

j+···+jk =n
j,...,jk≥

(
–ar

jr

) k∏

i=
i�=r

(
–ai – li

ji – li

)

=
k∏

i=
i�=r

(
–ai

li

)(
–(a + · · · + ak) – (n – lr)

n – (n – lr)

)
. (.)
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By applying (.) to (.), in view of (.), we obtain

∑

j+···+jk =n
j,...,jk≥

(
–a

j

)
· · ·

(
–ak

jk

)[
tj


j!
· · · tjk

k
jk !

]( k∏

i=

(λi – )exiti

λieti – 

)

=
(–)n

n!

k∑

r=

λr – 
λ · · ·λk – 

∑

l+···+lk =n
l,...,lk≥

(
n

l, . . . , lk

)
(a + · · · + ak + n – lr)lr

× Hlr

(
xr

∣∣∣


λ · · ·λk

) r–∏

i=

λi(ai)li Hli

(
xi – xr + 

∣∣∣

λi

)

×
k∏

i=r+

(ai)li Hli

(
xi – xr

∣∣∣

λi

)
. (.)

Observe that

(a + · · · + ak + n – lr)lr · (a + · · · + ak)n–lr = (a + · · · + ak)n. (.)

By equating (.) and (.), in light of (.), we get

∑

j+···+jk =n
j,...,jk≥

(
n

j, . . . , jk

)
(a)j · · · (ak)jk
(a + · · · + ak)n

Hj

(
x

∣∣∣

λ

)
· · ·Hjk

(
xk

∣∣∣

λk

)

=
k∑

r=

λr – 
λ · · ·λk – 

∑

l+···+lk =n
l,...,lk≥

(
n

l, . . . , lk

)


(a + · · · + ak)n–lr

× Hlr

(
xr

∣∣∣


λ · · ·λk

) r–∏

i=

λi(ai)li Hli

(
xi – xr + 

∣∣∣

λi

)

×
k∏

i=r+

(ai)li Hli

(
xi – xr

∣∣∣

λi

)
. (.)

Thus, by replacing λi by /λi for  ≤ i ≤ k in (.), the desired result follows immediately.
This completes the proof of Theorem ..
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