
Rahman et al. Advances in Difference Equations  (2017) 2017:176 
DOI 10.1186/s13662-017-1237-8

R E S E A R C H Open Access

The composition of extended
Mittag-Leffler functions with
pathway integral operator
G Rahman1*, A Ghaffar2, S Mubeen3, M Arshad1 and SU Khan4

*Correspondence:
gauhar55uom@gmail.com
1Department of Mathematics,
International Islamic University,
Islamabad, Pakistan
Full list of author information is
available at the end of the article

Abstract
In this paper, we present certain composition formulae of the pathway fractional
integral operators associated with two extended Mittag-Leffler functions. Here, we
find out the relevant connections of some particular cases of the main results with
those earlier ones.
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1 Introduction
Mittag-Leffler functions play a vital role in determining the solutions of fractional differ-
ential and integral equations which are associated with an extensive variety of problems
in diverse areas of mathematics and mathematical physics. In addition, from exponen-
tial behavior, the deviations of physical phenomena could also be represented by means
of Mittag-Leffler functions. Therefore, the uses of Mittag-Leffler functions are constantly
rising, especially in physics. For more details about the recent research in the field of dy-
namical systems theory, stochastic systems, non-equilibrium statistical mechanics and
quantum mechanics, the readers may refer to the recent work of the researchers [–]
and the references cited therein.

Now, we begin with the Mittag-Leffler functions Eα(z) and Eα,β (z) defined in the form
of the following series:

Eα(z) =
∞∑

n=

zn

�(αn + )
, z ∈ C;�(α) >  ()

and

Eα,β (z) =
∞∑

n=

zn

�(αn + β)
, z,β ∈C;�(α) > , ()

respectively. For further study of Mittag-Leffler functions like generalizations and applica-
tions, the readers may refer to the work of researchers [–], Kilbas et al. [], and Saigo
and Kilbas []. In recent years, the Mittag-Leffler function () and some of its general-
izations have been numerically established in the complex plane [, ]. A new general-
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ization of the Mittag-Leffler functions Eα,β (z) in () has been defined by Prabhakar [] as
given below:

Eγ

α,β (z) =
∞∑

n=

(γ )n

�(αn + β)
zn

n!
, z,β ∈C;�(α) > , ()

where (γ )n denotes the well-known Pochhammer’s symbol which is defined by

(γ )n =

{
 (n = ,γ ∈C),
γ (γ + ) · · · (γ + n – ) (n ∈N,γ ∈C).

In fact, the following special cases are satisfied:

E
α,β (z) = Eα,β (z) = E

α,(z) = Eα(z). ()

Many researchers have established the significance and great consideration of Mittag-
Leffler functions in the theory of special functions to explore the generalizations and some
applications. Various extensions for these functions are found in [–]. Srivastava and
Tomovski [] defined the further generalization of the Mittag-Leffler function Eγ

α,β (z) as
given in (), which is defined as

Eγ ,κ
α,β (z) =

∞∑

n=

(γ )nκ

�(αn + β)
zn

n!
, ()

where z,β ,γ ∈ C; �(α) > max{,�(κ) – }; �(κ) > .
Özarslan and Yilmaz [] investigated an extended Mittag-Leffler function Eγ ;c

α,β(z; p),
which is defined as

Eγ ;c
α,β (z; p) =

∞∑

n=

Bp(γ + n, c – γ )
B(γ , c – γ )

(c)n

�(αn + β)
zn

n!
, ()

where p ≥ , �(c) > �(γ ) >  and Bp(x, y) is an extended beta function defined in [, ]
as follows:

Bp(x, y) =
∫ 


tx–( – t)y–e– p

t(–t) dt, ()

where �(p) > , �(x) >  and �(y) > . If p = , then the function Bp(x, y) reduces to the
following beta function:

B(x, y) =
∫ 


tx–( – t)y– dt. ()

The gamma function is defined by

�(z) =
∫ ∞


tz–e–t dt; �(z) > . ()
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By inspection, we conclude the following relation:

�(z + ) = z�(z). ()

Mittal et al. [] defined an extended generalized Mittag-Leffler function as

Eγ ,q;c
α,β (z; p) =

∞∑

n=

Bp(γ + nq, c – γ )
B(γ , c – γ )

(c)nq

�(αn + β)
zn

n!
, ()

where α,β ,γ ∈ C, �(α) > , �(β) > , �(γ ) > , q >  and Bp(x, y) is an extended beta
function defined in ().

The fractional calculus is a field of applied mathematics that deals with the fractional
derivatives and fractional integrals of arbitrary orders. During the last few decades, many
researchers have applied fractional calculus to all fields of science such as engineering and
mathematics. The researchers have developed a significant contributions in the field of
fractional calculus such as fractional derivatives of constant and variable orders, global
existence solution of differential equations; an alternative method for solving generalized
differential equations of fractional order, a new type of fractional derivative formula con-
taining the normalized sine function without singular kernel. For the recent development
in the field of fractional calculus, the readers are referred to the work of [–] and [–
].

Recently, Nair [] introduced a pathway fractional integral operator by using the idea
of Mathai [], and Mathai and Haubold [, ], which is defined as

(
Pμ,λ

+ f
)
(x) = xμ

∫ [ x
α(–λ) ]



[
 –

α( – λ)τ
x

] μ
(–λ)

f (τ ) dτ , ()

where f ∈ L(a, b) (L(a, b) is a Lebesgue measurable real or complex-valued function),
μ ∈C, �(μ) > , α >  and λ <  (λ is a pathway parameter) (cf. []). For a given scalar
λ and scalar random variables, the pathway model is defined by the following probability
density function:

f (x) = c|x|ν–[ – α( – λ)|x|η] μ
(–λ) , ()

where x ∈ (–∞,∞); η > ; μ > ; [ – α( – λ)|x|η]
μ

(–λ) > ; ν >  and where c and λ denote
the normalizing constant and pathway parameter, respectively.

Moreover, the normalizing constants for λ ∈R are defined by the following:

c =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩




η[α(–λ)]
ν
η �( ν

η + μ
λ– +)

�( ν
η )�( μ

–λ
+) (λ < ),




η[α(–λ)]
ν
η �( μ

λ– )
�( ν

η )�( μ
λ– – ν

η ) ( 
λ– – ν

η
> ,λ > ),




(αμ)
ν
η

�( ν
η ) (λ → ).

It is noted that if λ < , we have [ – α( – λ)|x|η]
μ

(–λ) > , and () can be consid-
ered a member of the extended generalized type- beta family. Also the extended type-
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 beta density, the triangular density, the uniform density and many other probability
density functions are specific cases of the pathway density function defined in () for
λ < .

For instance, if λ > , and by putting ( – λ) = –(λ – ) in (), then it yields

(
Pμ,λ

+ f
)
(x) = xμ

∫ [ x
–α(–λ) ]



[
 +

α(λ – )τ
x

] μ
–(λ–)

f (τ ) dτ ()

and

f (x) = c|x|ν–[ + α(λ – )|x|η]– μ
(λ–) , ()

where x ∈ (–∞,∞); η > ; μ > ; and λ >  represents the extended generalized type- beta
model for real x. The type- beta density function, the F density function, the student
t density function and many other density functions are particular cases of the density
function defined in (). Furthermore, if λ → –, then () reduces to the Laplace integral
transform. Similarly, if λ = , α =  and μ is replaced by μ – , then () reduces to the
well-known Riemann-Liouville fractional integral operator.

The pathway fractional integral operator () leads to several other interesting exam-
ples such as fractional calculus related to several probability density functions and their
applications in statistical theory. Nisar et al. [] presented the pathway fractional inte-
gral formulae associated with Struve function of the first kind. The results given in []
are a slight generalization of the result provided by Agarwal and Purohit [] and Nair
[]. Recently, Nisar et al. [] provided the composition of pathway integral operator
associated with generalized k-Mittag-Leffler functions. The main aim of this study is to
obtain pathway fractional integral operators associated with extended Mittag-Leffler func-
tions.

2 Pathway fractional integration of an extended Mittag-Leffler function
In this section, we derive the pathway integration formulae involving the extended Mittag-
Leffler functions from ().

Theorem  Suppose that ρ;β ;γ ; c;μ ∈ C; {�(ρ);�(β);�(μ);�(c)} > ; �( μ

–λ
) > –; λ < ;

p ≥  and ω ∈ R. Then the following formula holds true:

Pμ,λ
+

[
τβ–Eγ ;c

ρ,β
[(

ωτρ
)
; p

]]
(x) =

�( + μ

–λ
)xμ+β

[α( – λ)]β
Eγ ;c

ρ,β+(+ μ
–λ

)

[
ω

(
x

α( – λ)

)ρ

; p
]

. ()

Proof By using () and (), we have

Pμ,λ
+

[
τβ–Eγ ;c

ρ,β
[(

ωτρ
)
; p

]]
(x) = xμ

∫ [ x
α(–λ) ]


τβ–

[
 –

α( – λ)τ
x

] μ
–λ

Eγ ;c
ρ,β

(
ωτρ ; p

)
dτ .
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We denote the right-hand side of the above equation by I, and after interchanging the
order of integration and summation, we have

I = xμ

∫ [ x
α(–λ) ]


τβ–

[
 –

α( – λ)τ
x

] μ
–λ

∞∑

n=

Bp(γ + n, c – γ )
B(γ , c – γ )

(c)n

�(ρn + β)
(ωτρ)n

n!
dτ

= xμ

∞∑

n=

Bp(γ + n, c – γ )
B(γ , c – γ )

(c)n

�(ρn + β)
(ω)n

n!

∫ [ x
α(–λ) ]


τβ+ρn–

[
 –

α( – λ)τ
x

] μ
–λ

dτ

= xμ

∞∑

n=

Bp(γ + n, c – γ )
B(γ , c – γ )

(c)n

�(ρn + β)
(ω)n

n!

(
x

α( – λ)

)ρn+β �( + μ

–λ
)�(ρn + β)

�(ρn + β +  + μ

–λ
)

=
xμ+β�( + μ

–λ
)

[α( – λ)]β

∞∑

n=

Bp(γ + n, c – γ )
B(γ , c – γ )

(c)n

�(ρn + β +  + μ

–λ
)

(ω( x
α(–λ) )ρ)n

n!

=
xμ+β�( + μ

–λ
)

[α( – λ)]β
Eγ ;c

ρ,β++ μ
–λ

(
ω

(
x

α( – λ)

)ρ

; p
)

,

which completes the required proof. �

Corollary  If p = , then () leads to the following result of Mittag-Leffler function (see
[]):

Pμ,λ
+

[
τβ–Eγ ;c

ρ,β
[(

ωτρ
)]]

(x) =
xμ+β�( + μ

–λ
)

[α( – λ)]β
Eγ

ρ,β++ μ
–λ

(
ω

(
x

α( – λ)

)ρ)
. ()

Corollary  If δ = , α = , λ =  and μ = μ – , then () leads to the following fractional
integral formula of extended Mittag-Leffler function (see []):

Iμ
a+

[
τβ–Eγ

α,β
(
ω(τ )ρ , p

)]
(x) = �(μ)xμ+βEγ

ρ,β+μ

(
ω(x)ρ , p

)
. ()

Corollary  If we set p =  in (), then it leads to the following well-known result of Mittag-
Leffler function (see []):

Iμ
a+

[
τβ–Eγ

α,β
(
ω(τ )ρ

)]
(x) = �(μ)xμ+βEγ

ρ,β+μ

(
ω(x)ρ

)
. ()

Now, we derive the following result by assuming the case that λ >  and using equation
().

Theorem  Suppose that ρ;β ;γ ; c;μ ∈ C; {�(ρ);�(β);�(μ);�(c)} > ; �( μ

–λ
) > –; λ > ;

p ≥  and ω ∈ R. Then the following formula holds true:

Pμ,λ
+

[
τβ–Eγ ;c

ρ,β
[(

ωτρ
)
; p

]]
(x) =

�( – μ

λ– )xμ+β

[–α(λ – )]β
Eγ ;c

ρ,β+(– μ
λ– )

[
ω

(
x

–α(λ – )

)ρ

; p
]

. ()

Proof By using () and (), we have

Pμ,λ
+

[
τβ–Eγ ;c

ρ,β
[(

ωτρ
)
; p

]]
(x)

= xμ

∫ [ x
–α(–λ) ]


τβ–

[
 +

α(λ – )τ
x

] μ
–(λ–) [

Eγ ;c
ρ,β

[(
ωτρ

)
; p

]]
dτ .
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For convenience, we denote the right-hand side of the above equation by I, then

I = xμ

∫ [ x
–α(–λ) ]


τβ–

[
 +

α(λ – )τ
x

] μ
–(λ–) ∞∑

n=

Bp(γ + n, c – γ )
B(γ , c – γ )

(c)n

�(ρn + β)
(ωτρ)n

n!
dτ .

By interchanging the order of integration and summation, we obtain

I = xμ

∞∑

n=

Bp(γ + n, c – γ )
B(γ , c – γ )

(c)n

�(ρn + β)
ωn

n!

∫ [ x
–α(–λ) ]


τβ+ρn–

[
 +

α(λ – )τ
x

] μ
–(λ–)

dτ .

By substituting –α(λ–)τ
x = u and using the definitions of beta function () and () in the

above equation, we get

I =
xμ+β

[–α(λ – )]β

∞∑

n=

Bp(γ + n, c – γ )
B(γ , c – γ )

(c)n

�(ρn + β)
(ω( x

–α(λ–) )ρ)n

n!

× �( – μ

λ– )�(ρn + β)
�(ρn + β +  – μ

λ– )

=
xμ+β�( – μ

λ– )
[–α(λ – )]β

∞∑

n=

Bp(γ + n, c – γ )
B(γ , c – γ )

(c)n

�(ρn + β +  – μ

λ– )
(ω( x

–α(λ–) )ρ)n

n!

=
xμ+β�( – μ

λ– )
[–α(λ – )]β

Eγ ;c
ρ,β+(– μ

λ– )

[
ω

(
x

–α(λ – )

)ρ

; p
]

,

which completes the required proof of (). �

Corollary  If p = , then () leads to the following result of Mittag-Leffler function re-
cently introduced by Nair []:

Pμ,λ
+

[
τβ–Eγ

ρ,β
[(

ωτρ
)]]

(x) =
�( – μ

λ– )xμ+β

[–α(λ – )]β
Eγ

ρ,β+(– μ
λ– )

[
ω

(
x

–α(λ – )

)ρ]
. ()

Corollary  Again, if δ = , α = , λ =  and μ = μ – , then () leads to the fractional
integral formula of extended Mittag-Leffler function as defined in ().

Corollary  If we set p =  in Corollary , then it leads to the fractional integral formula
of Mittag-Leffler function as defined in ().

3 Pathway fractional integral operator of an extended generalized
Mittag-Leffler function

In this section, we present the composition of pathway fractional integral operator asso-
ciated with an extended form of the generalized Mittag-Leffler function as defined in ().

Theorem  Suppose that ρ;β ;γ ; c;μ ∈ C; {�(ρ);�(β);�(μ);�(c)} > ; �( μ

–λ
) > –; λ < ;

p ≥ ; q >  and ω ∈R. Then the following formula holds true:

Pμ,λ
+

[
τβ–Eγ ,q;c

ρ,β
[(

ωτρ
)
; p

]]
(x) =

�( + μ

–λ
)xμ+β

[α( – λ)]β
Eγ ,q;c

ρ,β+(+ μ
–λ

)

[
ω

(
x

α( – λ)

)ρ

; p
]

. ()
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Proof By using () and (), we have

Pμ,λ
+

[
τβ–Eγ ,q;c

ρ,β
[(

ωτρ
)
; p

]]
(x) = xμ

∫ [ x
α(–λ) ]


τβ–

[
 –

α( – λ)τ
x

] μ
–λ

Eγ ,q;c
ρ,β

(
ωτρ ; p

)
dτ .

For simplicity, denote the right-hand side of the above equation by I, we have

I = xμ

∫ [ x
α(–λ) ]


τβ–

[
 –

α( – λ)τ
x

] μ
–λ

∞∑

n=

Bp(γ + nq, c – γ )
B(γ , c – γ )

(c)nq

�(ρn + β)
(ωτρ)n

n!
dτ .

By interchanging the order of integration and summation, we obtain the following:

I = xμ

∞∑

n=

Bp(γ + nq, c – γ )
B(γ , c – γ )

(c)nq

�(ρn + β)
(ω)n

n!

∫ [ x
α(–λ) ]


τβ+ρn–

[
 –

α( – λ)τ
x

] μ
–λ

dτ

= xμ

∞∑

n=

Bp(γ + nq, c – γ )
B(γ , c – γ )

(c)nq

�(ρn + β)
(ω)n

n!

(
x

α( – λ)

)ρn+β �( + μ

–λ
)�(ρn + β)

�(ρn + β +  + μ

–λ
)

=
xμ+β�( + μ

–λ
)

[α( – λ)]β

∞∑

n=

Bp(γ + nq, c – γ )
B(γ , c – γ )

(c)nq

�(ρn + β +  + μ

–λ
)

(ω( x
α(–λ) )ρ)n

n!

=
xμ+β�( + μ

–λ
)

[α( – λ)]β
Eγ ,q;c

ρ,β++ μ
–λ

(
ω

(
x

α( – λ)

)ρ

; p
)

,

which completes the required proof. �

Corollary  If p = , and q = , then () leads to the following result of Mittag-Leffler
function (see []):

Pμ,λ
+

[
τβ–Eγ

ρ,β
[(

ωτρ
)]]

(x)

=
xμ+β�( + μ

–λ
)

[α( – λ)]β
Eγ

ρ,β++ μ
–λ

(
ω

(
x

α( – λ)

)ρ)
. ()

Corollary  If α = , λ =  and μ = μ– , then () leads to the following result of extended
Mittag-Leffler function (see []):

Pμ–,
+

[
τβ–Eγ ,q

ρ,β
[(

ωτρ
)
; p

]]
(x) = �(μ)xμ+βEγ ,q

ρ,β+μ

(
ω(x)ρ ; p

)
. ()

Remark  If we set p =  in Corollary , then we get the fractional integrals of Mittag-
Leffler function earlier proved in [].

Now, we derive the following result by assuming the case that λ > .

Theorem  Suppose that ρ;β ;γ ; c;μ ∈ C; {�(ρ);�(β);�(μ);�(c)} > ; �( μ

–λ
) > –; λ > ;

p ≥ ; q >  and ω ∈R. Then the following formula holds true:

Pμ,λ
+

[
τβ–Eγ ,q;c

ρ,β
[(

ωτρ
)
; p

]]
(x) =

�( – μ

λ– )xμ+β

[–α(λ – )]β
Eγ ,q;c

ρ,β+(– μ
λ– )

[
ω

(
x

–α(λ – )

)ρ

; p
]

. ()
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Proof By using () and (), we obtain

Pμ,λ
+

[
τβ–Eγ ,q;c

ρ,β
[(

ωτρ
)
; p

]]
(x)

= xμ

∫ [ x
–α(λ–) ]


τβ–

[
 +

α(λ – )τ
x

] μ
–(λ–) [

Eγ ,q;c
ρ,β

[(
ωτρ

)
; p

]]
dτ .

For convenience, we denote the right-hand side of the above equation by I, then

I = xμ

∫ [ x
–α(λ–) ]


τβ–

[
 +

α(λ – )τ
x

] μ
–(λ–) ∞∑

n=

Bp(γ + nq, c – γ )
B(γ , c – γ )

(c)nq

�(ρn + β)
(ωτρ)n

n!
dτ .

By interchanging the order of integration and summation, we obtain

I = xμ

∞∑

n=

Bp(γ + nq, c – γ )
B(γ , c – γ )

(c)nq

�(ρn + β)
ωn

n!

∫ [ x
–α(λ–) ]


τβ+ρn–

[
 +

α(λ – )τ
x

] μ
–(λ–)

dτ .

By substituting –α(λ–)τ
x = u and using the definitions of beta function () and () in the

above equation, we obtain

I =
xμ+β

[–α(λ – )]β

∞∑

n=

Bp(γ + nq, c – γ )
B(γ , c – γ )

(c)nq

�(ρn + β)
(ω( x

–α(λ–) )ρ)n

n!

× �( – μ

λ– )�(ρn + β)
�(ρn + β +  – μ

λ– )

=
xμ+β�( – μ

λ– )
[–α(λ – )]β

∞∑

n=

Bp(γ + nq, c – γ )
B(γ , c – γ )

(c)nq

�(ρn + β +  – μ

λ– )
(ω( x

–α(λ–) )ρ)n

n!

=
xμ+β�( – μ

λ– )
[–α(λ – )]β

Eγ ,q;c
ρ,β+(– μ

λ– )

[
ω

(
x

–α(λ – )

)ρ

; p
]

,

which completes the required proof of (). �

Corollary  If p =  and q = , then () leads to the following result of Mittag-Leffler
function recently introduced by Nair []:

Pμ,λ
+

[
τβ–Eγ

ρ,β
[(

ωτρ
)
; p

]]
(x) =

�( – μ

λ– )xμ+β

[–α(λ – )]β
Eγ

ρ,β+(– μ
λ– )

[
ω

(
x

–α(λ – )

)ρ]
. ()

Corollary  If α = , λ =  and μ = μ–, then () leads to the result of fractional integral
containing an extended Mittag-Leffler function in its kernel defined in Corollary .

4 Conclusion
In this paper, we have presented two pathway fractional integration formulae associated
with extended Mittag-Leffler functions. The obtained result provided extended forms of
the known results earlier proved by Nair [].
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