ERRATUM

Open Access

Erratum to: The (k, s)-fractional calculus of k-Mittag-Leffler function

KS Nisar^{1*}, G Rahman², D Baleanu³, S Mubeen⁴ and M Arshad²

*Correspondence: n.sooppy@psau.edu.sa ¹Department of Mathematics, College of Arts and Science - Wadi Aldawaser, Prince Sattam bin Abdulaziz University, Alkharj, Kingdom of Saudi Arabia Full list of author information is available at the end of the article

Abstract

In this note we present some corrections to our previous paper (Nisar et al. in Adv. Differ. Equ. 2017:118, 2017).

1 Erratum

In the paper [1], the following errors are present on pages 4, 5, 6 and 7.

In Definition 3, in equations (20) and (21), one left bracket is misplaced inside the expression $\left[\left(\frac{1}{x^s}\frac{d}{dx}\right)^n\right]$ and $\left[\left(-\frac{1}{x^s}\frac{d}{dx}\right)^n\right]$, respectively. The correct forms of the expressions are as follows:

$${}^{(s}_{k}D^{\mu}_{a+}f)(x) = \left[\left(\frac{1}{x^{s}}\frac{d}{dx}\right)^{n}\right] \left(k^{n}{}^{s}_{k}I^{nk-\mu}_{a+}f\right)(x),\tag{1}$$

$${\binom{s}{k}}D^{\mu}_{a-}f)(x) = \left[\left(-\frac{1}{x^{s}}\frac{d}{dx}\right)^{n}\right]\left(k^{n}{}^{s}{}_{k}I^{nk-\mu}_{a-}f\right)(x),$$
(2)

respectively.

On page 5, in the proof of Lemma 1, line 6, the numerator confuses $(1 - \mu)$ and $(k - \mu)$, the correct expression is

$$\frac{1}{x^{s}} \frac{d}{dx} {sI_{a+}^{(1-\nu)(k-\mu)} \left[\left(t^{s+1} - a^{s+1} \right)^{\frac{\lambda}{k}-1} \right] \right)(x)} \\
= \frac{\left[(1-\nu)(k-\mu) + \lambda - k \right] \Gamma_{k}(\lambda)}{k(s+1)^{\frac{(1-\nu)(k-\mu)}{k}-1} \Gamma_{k}((1-\nu)(k-\mu) + \lambda)} \left(x^{s+1} - a^{s+1} \right)^{\frac{(1-\nu)(k-\mu)+\lambda}{k}-2}.$$

On page 6, Theorem 1, equation number (24) is misplaced and now equation (25) is (24) (accordingly, all equation numbers will change). In the statement of Theorem 1 at the beginning $\frac{1}{x^{\frac{3}{m}}}$ should instead read $\frac{1}{x^s}$. Also the power $\frac{c}{k}$ should instead read $\frac{\beta}{k}$. The correct expression is as follows:

Theorem 1 For k > 0, the following result always holds true:

$$\left(\frac{1}{x^{s}}\frac{d}{dx}\right)^{m} \left[\left(x^{s+1}-a^{s+1}\right)^{\frac{\beta}{k}-1} E_{k,\rho,\beta}^{\delta}\left(\omega\left(x^{s+1}-a^{s+1}\right)^{\frac{\rho}{k}}\right)\right]$$

$$= \frac{(s+1)^{m}(x^{s+1}-a^{s+1})^{\frac{\beta}{k}-m-1}}{k^{m}} E_{k,\rho,\beta-mk}^{\delta}\left(\omega\left(x^{s+1}-a^{s+1}\right)^{\frac{\rho}{k}}\right),$$

$$(3)$$

where $s \in \mathbb{R} \setminus \{-1\}$, $\mu, \rho, \beta, \delta \in \mathbb{C}$, $\Re(\mu) > 0$ and $\Re(\beta) > 0$, $\Re(\rho) > 0$, $\Re(\delta) > 0$.

© The Author(s) 2017. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Also, in the proof of Theorem 1, the error: $\frac{1}{x^{\frac{5}{m}}}$ should instead read: $\frac{1}{x^{s}}$. On page 7 in the proof of equation (27) (just after the sentences 'This completes the proof of (26). Now, we have' in the second line of the expression) the error: $(\frac{1}{\sqrt{2}} \frac{d}{dx})^n$ should instead read: $(\frac{1}{x^s}\frac{d}{dx})^n$. Also (just after the sentences 'and using (26) this takes the following form' in the second line of the expression) the error: $(\frac{1}{\sqrt{n}}\frac{d}{dx})^n$ should instead read: $(\frac{1}{x^s}\frac{d}{dx})^n$. This has now been included in this erratum.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

All the authors contributed equally and significantly in writing this paper. All authors read and approved the final manuscript.

Author details

¹Department of Mathematics, College of Arts and Science - Wadi Aldawaser, Prince Sattam bin Abdulaziz University, Alkharj, Kingdom of Saudi Arabia. ²Department of Mathematics, International Islamic University, Islamabad, Pakistan. ³Department of Mathematics, Cankaya University, Ankara, Turkey. ⁴Department of Mathematics, University of Sargodha, Sargodha, Pakistan.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 12 June 2017 Accepted: 12 June 2017 Published online: 07 July 2017

References

1. Nisar, KS, Rahman, G, Baleanu, D, Mubeen, S, Arshad, M: The (k,s)-fractional calculus of k-Mittag-Leffler function. Adv. Differ. Equ. 2017, 118 (2017). doi:10.1186/s13662-017-1176-4

Submit your manuscript to a SpringerOpen[®] journal and benefit from:

- Convenient online submission
- ► Rigorous peer review
- Open access: articles freely available online
- ► High visibility within the field
- Retaining the copyright to your article

Submit your next manuscript at > springeropen.com