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1 Introduction
In this paper, we deal with the following delay differential equations at resonance:

x′′ +



nx + g
(
x(t), x(t – τ )

)
= p(t), (.)

where g : (,∞) × R → R is continuous, τ ≥  is a constant, p(t) is continuous and π-
periodic, and the function g has a singularity of repulsive type at the origin for its first
variable, that is, lims→∞ g(s, s) = –∞.

The periodic problems of singular differential equations had attracted the attentions
of many researchers during more than the last two decades because of their background
in applied science [–]. A landmark work on mathematical treatment of the differen-
tial equations with singularities, as we all know, is done by Lazer and Solimini []. From
then on, some classical mathematical tools were used successfully to study these singular
equations, such as Mawhin’s continuation theorem in the coincidence degree theory [],
the method of upper and lower solutions [], some fixed point theorems in cones [], the
Poincaré-Birkhoff theorem [], the phase-plane analysis and topological degree methods
[], and so on.

Wang and Ma [] first studied the resonant singular equation

x′′ +



nx + g(x) = p(t), (.)
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where g has a singularity and satisfies

lim
x→∞ g(x) = g(+∞).

They obtained the existence of π-periodic solutions of (.) under the following so-called
Lazer-Leach-type condition:

g(+∞) –
∫ π


p(t)

∣∣
∣∣sin

(
θ +

nt


)∣∣
∣∣dt �=  for all θ ∈R. (.)

Note that they perfectly answered the open problem raised by del Pino and Manase-
vich [].

After that, Wang [] discussed the periodic problem of the resonant Liénard equation
with constant delay but without singularity and established some Lazer-Leach-type con-
ditions depending on the delay. A natural and delicate idea is that the delay may affect the
existence of periodic solutions not only for the equations in [], but also for many other
kinds of equations. Based on this, in the present paper, we consider equation (.) and look
for Lazer-Leach-type conditions. The main difficulty to overcome is the coexistence of the
singularity and delay. A possible way for us is to use the phase-plane analysis and topolog-
ical degree methods, also used in [], and give the following fundamental hypotheses.

(H) The variables of g are separable, that is, there exist two functions g and g such
that g(x(t), x(t – τ )) = g(x(t)) + g(x(t – τ )). Moreover, g is bounded on [, +∞),
limx→+∞ g(x) = , and limx→+∞ g(x) = g(+∞) is finite.

(H) For all θ ∈R,

 cos
nτ


g(+∞) �=

∫ π


p(t)

∣∣
∣∣sin

(
n


t + θ

)∣∣
∣∣dt. (.)

(H) Put G(x) =
∫ x

 g(s) ds. It satisfies

lim
x→+

g(x) = –∞, lim
x→+

G(x) = +∞. (.)

Furthermore, there exist  < ε ≤ ,  < l ≤ , and  < L < ∞ such that

–g(x)
G+l

 (x)
> L for all x ∈ (, ε). (.)

We now state our main theorem.

Theorem . Let (H), (H), and (H) hold. Then (.) has at least one periodic solution.

Remark . (H) is a universal strong singularity condition. We give some examples to
show that (H) can be satisfied.

• g(x) = – 
x . Then G(x) = – ln x, and (.) holds. Let ε = e– and l = L = . By using a

short calculation we can obtain that (.) holds.
• g(x) = – 

x . Then G(x) = 
x – 

 , and (.) holds. Let ε = L =  and l = 
 . We can

also check that (.) holds.
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• g,(x) + g,(x), where the functions g,i(x) (i = , ) satisfy (.) and (.). In fact, it is
easy to see that (.) holds for g,(x) + g,(x) and G,(x) + G,(x), where
G,i(x) =

∫ x
 g,i(s) ds (i = , ). On the other hand, we assume that there exist

 < ε,i ≤ ,  < li ≤ , and  < Li ≤ ∞ such that

–g,i(x)
G+l

,i (x)
> Li for all x ∈ (, ε,i).

Without loss of generality, we assume also that G,i(x) >  and g,i(x) < – for all
x ∈ (, ε,i). Set ε = min{ε,, ε,}. For all x ∈ (, ε), if G,(x) > G,(x), then

–g,(x) – g,(x)
[G,(x) + G,(x)]+l >

–g,(x)
[G,(x)]+l >

L

+l ;

otherwise,

–g,(x) – g,(x)
[G,(x) + G,(x)]+l >

–g,(x)
[G,(x)]+l >

L

+l .

Hence (.) holds.

Remark . When τ = , condition (.) degenerates to condition (.). Therefore The-
orem . generalizes the result in []. Moreover, the delay τ may affect the existence of
periodic solutions.

This paper is structured into three sections. Section  is devoted to the proof of a useful
lemma. In Section , we state some lemmas to prove the main theorem.

2 Preliminary lemma
To use the phase-plane analysis and topological degree methods, we embed (.) into a
family of equations with one parameter λ ∈ [, ],

x′′ +



nx + ( – λ)
(

– –

x

)
+ λg

(
x(t), x(t – τ )

)
= λp(t). (.)

Now, we give the following fundamental lemma.

Lemma . Suppose that there exist three positive constants M, M, and M such that,
for any π -periodic solution x(t) of (.),

M < x(t) < M for all t ∈R

and

∥∥x′∥∥∞ � max
t∈[,π ]

∣∣x′(t)
∣∣ < M.

Then Eq. (.) has at least one π -periodic solution.

Since the proof is similar as that in [], we omit it.
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Remark . In fact, Lemma . is also valid if we embed (.) into the following family of
equations with one parameter λ ∈ [, ]:

x′′ +



nx + ( – λ)
(

 –

x

)
+ λg

(
x(t), x(t – τ )

)
= λp(t). (.)

3 The proof of the main theorem
Condition (H) reduces to

(H′
) for all θ ∈R,

 cos
nτ


g(+∞) <

∫ π


p(t)

∣
∣∣
∣sin

(
n


t + θ

)∣
∣∣
∣dt

or

(H′′
) for all θ ∈R,

 cos
nτ


g(+∞) >

∫ π


p(t)

∣∣
∣∣sin

(
n


t + θ

)∣∣
∣∣dt.

In this section, we always assume that (H′
) holds. The argument for (H′′

) is similar.
We first suppose that the sequence {(xk , yk)}∞k= satisfies

x′
k = yk , y′

k = –



nxk – g
(
xk , xk(t – τ ),λk

)
(.)

with ‖xk‖∞ + ‖yk‖∞ → ∞ as k → ∞, where

g
(
xk , xk(t – τ ),λk

)
= ( – λk)

(
– –


x

k

)
+ λkg(xk) + λkg

(
xk(t – τ )

)
– λkp(t).

In this position, we only consider λk → λ ∈ [, ]. Even if λk has no limit, we can consider
its convergent subsequence {λki} and the corresponding solution sequence {(xki , yki )} for
(.) because the sequence {λk} is bounded. For simplicity, we omit these discussions. It
is easy to see that ‖xk‖∞ + ‖yk‖∞ → ∞ is equivalent to ‖xk‖∞ → ∞ and ‖yk‖∞ → ∞ as
k → ∞. Define

g(xk ,λk) = –( – λk)


x
k

+ λkg(xk)

and

g
(
xk(t – τ ),λk

)
= –( – λk) + λkg

(
xk(t – τ )

)
.

Obviously, g(xk ,λk) satisfies condition (H).
Take the transformation

xk =  + rk cos θk , yk =
n


rk sin θk .
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Then system (.) is equivalent to the following system:

⎧
⎨

⎩

dθk
dt = – n

 – 
nrk

g( + rk cos θk ,  + rk(t – τ ) cos θk(t – τ ),λk) cos θk + n
rk

cos θk ,
drk
dt = – n

 sin θk – 
n g( + rk cos θk ,  + rk(t – τ ) cos θk(t – τ ),λk) sin θk .

(.)

Lemma . Assume that (H) and (H) hold. For k large enough, we have

θ ′
k(t) <  ∀t ∈R.

Proof By (H) and the definition of g(xk , xk(t – τ ),λk) we have that there exists  < δ < 
such that

g
(
xk , xk(t – τ ),λk

)
–

n


< .

Noticing that cos θk <  for  < xk ≤ δ < , we get, for  < xk ≤ δ,

dθk

dt
≤ –

n


. (.)

Since ‖xk‖∞ → ∞ and ‖yk‖∞ → ∞ as k → ∞, we have that if xk > δ, then

rk → ∞ as k → ∞.

Meanwhile, if xk > δ, by (H), then we get that there exists M >  such that

∣
∣g

(
xk , xk(t – τ ),λk

)∣∣ < M.

Hence, for k large enough, if xk > δ, then

∣
∣∣
∣–


nrk

g
(
 + rk cos θk ,  + rk(t – τ ) cos θk(t – τ ),λk

)
cos θk +

n
rk

cos θk

∣
∣∣
∣ <

n


,

and then

dθk

dt
≤ –

n


+
n


= –
n


. (.)

From (.) and (.) we obtain the conclusion of Lemma .. �

From Lemma . we conclude that, for k large enough, the solution (xk(t), xk(t)) of (.)
makes clockwise rotations around the point (, ). Without loss of generality, we take the
initial point (xk(tm,k

 ), yk(tm,k
 )) of the mth rotation that satisfies

xk
(
tm,k


)
= , yk

(
tm,k


)
= x′

k
(
tm,k


)
> ,

and

θk
(
tm,k


)
=

π


– (m – )π ,

where m = , , . . . .
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Let (xk(t), yk(t)) take exactly one rotation from tm,k
 . Then there are two points where

the curve (xk(t), yk(t)) meets the line xk =  and two points where the curve (xk(t), yk(t))
meets the xk-axis. We denote them by (xk(tm,k

 ), ), (, yk(tm,k
 )), (xk(tm,k

 ), ), and (, yk(tm,k
 )),

where xk(tm,k
 ) > , yk(tm,k

 ) < ,  < xk(tm,k
 ) < , and yk(tm,k

 ) = yk(tm+,k
 ) > .

Define

R
k(t) =

(
xk(t) – 

) +

n y

k(t) +
∫ t

t,k



n yk(s)

(
g
(
xk(s), xk(s – τ ),λk

)
+




n
)

ds. (.)

Since dR
k

dt ≡ , we get R
k(t) = R

k , where Rk > . Obviously, we also get that

R
k(t) = x

k(t) +

n y

k(t) +
∫ t

t,k



n yk(s)g

(
xk(s), xk(s – τ ),λk

)
ds – 

and define

Gk(t) =
∫ t

t,k



n yk(s)

(
g
(
xk(s), xk(s – τ ),λk

)
+




n
)

ds. (.)

Therefore we have R
k = r

k (t) + Gk(t).

Lemma . Assume that (H) and (H) hold. Then

lim
k→∞

xk
(
tm,k


)
= +∞ and lim

k→∞
xk

(
tm,k


)
= 

for m = , , . . . .

Proof Without loss of generality, we assume that there exist a positive integer m∗ such
that

xk
(
tm∗ ,k


)
= max

t∈R
xk(t).

Noticing that limk→∞ maxt∈R xk(t) → ∞, we get limk→∞ xk(tm∗ ,k
 ) → ∞. We will prove

that limk→∞ xk(tm∗ ,k
 ) =  and limk→∞ xk(tm∗+,k

 ) = +∞, and the others are similar.
We first prove that limk→∞ xk(tm∗ ,k

 ) = . Assume by contradiction that there exists
a constant  < c <  such that xk(tm∗ ,k

 ) > c for k ∈ N
+. Thus, if t ∈ [tm∗ ,k

 , tm∗ ,k
 ], then

g(xk , xk(t –τ ),λk) is bounded. Hence, from the second equality of (.) we obtain rk(tm∗ ,k
 ) =

rk(tm∗ ,k
 ) + O(). Therefore, rk(tm∗ ,k

 ) → ∞, which contradicts the fact  < xk(tm∗ ,k
 ) <  and

x′
k(tm∗ ,k

 ) = . Consequently, limk→∞ xk(tm∗ ,k
 ) = .

Next, we prove that limk→∞ xk(tm∗+,k
 ) = +∞. Since g(xk , xk(t – τ ),λk) is bounded

for t ∈ [tm∗ ,k
 , tm∗ ,k

 ], we have limk→∞ rk(tm∗ ,k
 ) → ∞. It follows from xk(tm∗ ,k

 ) =  that
limk→∞ yk(tm∗ ,k

 ) → ∞. By (.) we obtain

Gk
(
tm∗+,k


)
– Gk

(
tm∗ ,k


)
= Gk

(
tm∗ ,k


)
– Gk

(
tm∗ ,k


)

=
∫ tm∗ ,k



tm∗ ,k



n yk(s)

(
g
(
xk(s), xk(s – τ ),λk

)
+




n
)

ds
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=
∫ tm∗ ,k



tm∗ ,k


λk

n yk(s)g
(
xk(s – τ )

)
ds

= o
(
r

k
(
tm∗ ,k


))
.

It follows from the relation R
k = r

k (t) + Gk(t) that

r
k
(
tm∗+,k


)
= r

k
(
tm∗ ,k


)
–

(
Gk

(
tm∗+


)
– Gk

(
tm∗ ,k


))
= r

k
(
tm∗ ,k


)
+ o

(
r

k
(
tm∗ ,k


))
.

Hence, rk(tm∗+,k
 ) → ∞. By using the second equality of (.) again we obtain rk(tm∗+,k

 ) →
∞. Equivalently, limk→∞ xk(tm∗+,k

 ) = +∞. �

Denote by τm
k the required time for the solution (xk(t), yk(t)) to complete the mth rota-

tion around the point (, ). Then,

τm
k =

(
tm,k
 – tm,k


)

+
(
tm,k
 – tm,k


)
.

Lemma . Assume that (H) and (H) hold. Then, for k large enough,

τm
k =

π

n
+ o().

Proof We first compute tm,k
 – tm,k

 . Since g(xk , xk(t – τ ),λk) is bounded on the interval
[tm,k

 , tm,k
 ], we get from the first equality of (.) that

dt
dθk

= –

n

+ o(),

which implies tm,k
 – tm,k

 = π
n + o().

Next, we estimate (tm,k
 – tm,k

 ). By (.) we have, for t ∈ [tm,k
 , tm,k

 ],

dt
dxk

=

yk

= –

n


√
R

k – (xk(t) – ) – Gk(t)
.

Furthermore,

–

n

dxk =
√
R

k –
(
xk(t) – 

) – Gk(t) dt. (.)

By (H) and Remark . we have that there exist  < ε ≤ ,  < l ≤ , and  < L < ∞ such
that

–g(xk ,λk)
G+l

 (xk ,λk)
> L for all x ∈ (, ε).

For above l, we can choose tm,k
– ∈ [tm,k

 , tm,k
 ] such that

Gk
(
tm,k
–

)
= R


+ l


k ,

R


+ l


k ≤ Gk(t) ≤R
k for t ∈ [

tm,k
– , tm,k


]
,
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and

Gk(t) ≤R


+ l


k for t ∈ [
tm,k
 , tm,k

–
]
.

Integrating over [tm,k
 , tm,k

– ] for (.), we have

∫ xk (tm,k
– )

xk (tm,k
 )

–

n

dxk =
∫ tm,k

–

tm,k


√
R

k –
(
xk(t) – 

) – Gk(t) dt.

Noticing that xk(tm,k
 ) →  and xk(tm,k

– ) → , we get

∫ xk (tm,k
– )

xk (tm,k
 )

–

n

dxk =

n

(
 – xk

(
tm,k
–

))
=


n

+ o().

On the other hand, we get

∫ tm,k
–

tm,k


√
R

k –
(
xk(t) – 

) – Gk(t) dt

=
(
tm,k
– – tm,k


)∫ 



√
R

k –
(
xk

(
tm,k
 + s

(
tm,k
– – tm,k


))

– 
) – Gk

(
tm,k
 + s

(
tm,k
– – tm,k


))

ds

=
(
tm,k
– – tm,k


)
Rk

∫ 



√

 –
(xk(tm,k

 + s(tm,k
– – tm,k

 )) – )

R
k

–
Gk(tm,k

 + s(tm,k
– – tm,k

 ))
R

k
ds.

Thus we have


n + o()

(tm,k
– – tm,k

 )Rk
=

∫ 



√

 –
(xk(tm,k

 + s(tm,k
– – tm,k

 )) – )

R
k

–
Gk(tm,k

 + s(tm,k
– – tm,k

 ))
R

k
ds.

Passing to limits and using the Lebesgue dominated convergence theorem, we get

lim
k→∞

Rk
(
tm,k
– – tm,k


)

=

n

,

which implies

tm,k
– – tm,k

 =


nRk
+ o

(

Rk

)
. (.)

By (.) we get, for t ∈ [tm,k
– , tm,k

 ],

dt
dyk

=


– 
 nxk – g(xk , xk(t – τ ),λk)

=


– 
 nxk – g(xk ,λk) – g(xk(t – τ ),λk) + λkp(t)

=


–g(xk ,λk) + O()
.
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Since xk(t) →  as k → ∞ for t ∈ [tm,k
– , tm,k

 ], we obtain, for k large enough, [xk(tm,k
 ),

xk(tm,k
– )] ⊂ (, ε). Then, for t ∈ [tm,k

– , tm,k
 ],


–g(xk ,λk)

<

L


G+l

 (xk ,λk)
,

which yields that, for t ∈ [tm,k
– , tm,k

 ],

dt
dyk

≤ 
L


G+l

 (xk ,λk)
+ o

(


G+l
 (xk ,λk)

)

=

L


G+l

k (t)
+ o

(


G+l
k (t)

)

≤ 
L



R
(+l)
+ l


k

+ o
(



R
(+l)
+ l


k

)
.

Integrating over [tm,k
– , tm,k

 ] and noticing that yk(t) ≤ n
Rk , we have

tm,k
 – tm,k

– ≤ n

LR
(+l)
+ l


k – 

+ o
(



R
(+l)
+ l


k – 

)
,

which implies that

tm,k
 – tm,k

– = o
(


Rk

)
. (.)

It follows from (.) and (.) that

tm,k
 – tm,k

 =


nRk
+ o

(

Rk

)
. (.)

Using a similar argument, we can prove that tm,k
 – tm,k

 = 
nRk

+ o( 
Rk

). It follows that

tm,k
 – tm,k

 =


nRk
+ o

(

Rk

)
. (.)

Then tm,k
 – tm,k

 = o(). This completes the proof. �

Since (xk , yk) is π-periodic, by Lemma . we know that, for k sufficiently large, (xk , yk)
makes exactly n clockwise revolutions around the point (, ) as t varies from  to π .

We use the following lemma to estimate the maxima.

Lemma . Assume that (H), (H′
), and (H) hold. There exist two positive constants M

and M such that, for any π -periodic solution x(t) of Eq. (.),

‖x‖∞ < M,
∥
∥x′∥∥∞ < M. (.)
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Proof Assume by contradiction that there exists a sequence {(xk , yk)}∞k= satisfying the
system (.) with ‖xk‖∞ + ‖yk‖∞ → ∞ as k → ∞. It follows that ‖xk‖∞ → ∞ and
‖yk‖∞ → ∞.

Using the transformation

xk =  + rk cos θk , yk =
n


rk sin θk ,

we have system (.).
Without loss of generality, we take the initial point (xk(tm,k

 ), yk(tm,k
 )) of the mth rotation

satisfying

xk
(
tm,k


)
= , yk

(
tm,k


)
= x′

k
(
tm,k


)
> ,

and

θk
(
tm,k


)
=

π


– (m – )π

for m = , , . . . , n.
Let (xk(t), yk(t)) take exactly one rotation from tm,k

 . Denote by τk the required time for
the solution (xk(t), yk(t)) to complete n rotations around the point (, ). Then,

τk =
n∑

m=

τm
k =

n∑

m=

(
tm,k
 – tm,k


)

=
n∑

m=

(
tm,k
 – tm,k


)

+
n∑

m=

(
tm,k
 – tm,k


)
.

We further estimate
∑n

m=(tm,k
 – tm,k

 ). By the second equality of (.) we get, for t ∈
(tm,k

 , tm,k
 ),

rk(t) = rk
(
tm

)

+ O().

Hence, for all t ∈ [tm,k
 , tm,k

 ],  ≤ m ≤ n,

rk(t) = Rk + o(Rk). (.)

Furthermore, 
rk (t) = 

Rk
+ o( 

Rk
) for t ∈ [tm,k

 , tm,k
 ].

By the first equality of (.), we obtain, for t ∈ [tm,k
 , tm,k

 ],

dt
dθk

= –

n

· 
 + 

nRk
g( + rk cos θk ,  + rk(t – τ ) cos θk(t – τ ),λk) cos θk + 

Rk
cos θk + o( 

Rk
)

= –

n

+


nRk
g
(
 + rk cos θk ,  + rk(t – τ ) cos θk(t – τ ),λk

)
cos θk

+


nRk
cos θk + o

(

Rk

)
.
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Integrating over [– π
 – (m – )π , π

 – (m – )π ], we get

tm,k
 – tm,k



=
∫ π

 –(m–)π

– π
 –(m–)π

[

n

–


nRk
g
(
 + rk cos θk ,  + rk(t – τ ) cos θk(t – τ ),λk

)
cos θk

–


nRk
cos θk + o

(

Rk

)]
dθk

=
π

n
–


nRk

–
∫ π

 –(m–)π

– π
 –(m–)π


nRk

· g
(
 + rk cos θk ,  + rk(t – τ ) cos θk(t – τ ),λk

)
cos θk dθk + o

(

Rk

)
.

Recalling that λk → λ ∈ [, ], we distinguish two cases.
Case : λ = . In this case, recalling that g(xk) + g(xk(t – τ )) – p(t) is bounded for

θk ∈ (– π
 – (m – )π , π

 – (m – )π ), we have, for k large enough,

∣
∣λkg(xk) + λkg

(
xk(t – τ )

)
– λkp(t)

∣
∣ <




.

Then it follows from the definition of g( + rk cos θk ,  + rk(t – τ ) cos θk(t – τ ),λk) that, for
k large enough (such that λk < 

 ) and for θk ∈ (– π
 – (m – )π , π

 – (m – )π ),

g
(
 + rk cos θk ,  + rk(t – τ ) cos θk(t – τ ),λk

)
< –( – λk) +




< –



.

Hence,

tm,k
 – tm,k

 >
π

n
–


nRk

+


nRk
+ o

(

Rk

)
,

and then

n∑

m=

(
tm,k
 – tm,k


)

> π –

Rk

+


nRk
+ o

(

Rk

)
.

Therefore, by (.) we have, for k large enough,

τk =
n∑

m=

(
tm,k
 – tm,k


)

+
n∑

m=

(
tm,k
 – tm,k


)

> π ,

which is a contradiction. Consequently, (.) holds.
Case : λ > . Then there exists a constant l >  such that, for k large enough, λk ≥ l.

From (.) and the first equality of (.) we have, for θk ∈ (– π
 – (m – )π , π

 – (m – )π ),

t(θk) = t,k
 +


n

(
π


– θk

)
–

(m – )π
n

+ o().
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Then, from the definition of g( + rk cos θk ,  + rk(t – τ ) cos θk(t – τ ),λk) we obtain

∫ π
 –(m–)π

– π
 –(m–)π

g
(
 + rk cos θk ,  + rk(t – τ ) cos θk(t – τ ),λk

)
cos θk dθk

≤ λk

∫ π
 –(m–)π

– π
 –(m–)π

(
g

(
 + rk(t – τ ) cos θk(t – τ )

)
– p(t)

)
cos θk dθk

= –
nλk



∫ t,k
 + (m–)π

n +o()

t,k
 + mπ

n +o()

(
g

(
xk(t – τ )

)
– p(t)

) ·
∣
∣∣
∣cos

(
π


–

n


t
)∣

∣∣
∣dt

=
nλk



∫ mπ
n

(m–)π
n

(
g

(
xk(t – τ )

)
– p(t)

) ·
∣
∣∣∣cos

(
π


–

n


t
)∣

∣∣∣dt + o().

Denote

I =
[

(m – )π
n

,
mπ

n

]
∩ {

t : xk(t – τ ) ≥ 
}

and

I =
[

(m – )π
n

,
mπ

n

]
∩ {

t : xk(t – τ ) < 
}

.

Then mes(I) = o(). Denote again

I ′
 =

[
(m – )π

n
– τ ,

mπ

n
– τ

]
∩ {

t : xk(t) ≥ 
}

.

For m = i – , i = , , . . . , we have

∫ mπ
n

(m–)π
n

g
(
xk(t – τ )

) ·
∣∣
∣∣cos

(
π


–

n


t
)∣∣

∣∣dt

=
∫ mπ

n

(m–)π
n

g
(
xk(t – τ )

) · sin

(
n


t
)

dt

=
∫

I

g
(
xk(t – τ )

) · sin

(
n


t
)

dt +
∫

I

g
(
xk(t – τ )

) · sin

(
n


t
)

dt

=
∫

I

g
(
 + rk(t – τ ) cos θk(t – τ )

) · sin

(
n


t
)

dt + o()

=
∫

I

g

(
Rk sin

(
n


t –
n

τ

)
+ O()

)
· sin

(
n


t
)

dt + o()

=
∫

I′
g

(
Rk sin

(
n


t
)

+ O()
)

· sin

(
n


t +
n

τ

)
dt + o()

= cos

(
n

τ

)∫

I′
g

(
Rk sin

(
n


t
)

+ O()
)

· sin

(
n


t
)

dt

+ sin

(
n

τ

)∫

I′
g

(
Rk sin

(
n


t
)

+ O()
)

· cos

(
n


t
)

dt + o().
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Passing to limits, we get

lim
k→∞

∫ mπ
n

(m–)π
n

g
(
xk(t – τ )

) ·
∣∣
∣∣cos

(
π


–

n


t
)∣∣

∣∣dt =

n

cos

(
n

τ

)
g(+∞).

For m = i, i = , , . . . , we similarly get

lim
k→∞

∫ mπ
n

(m–)π
n

g
(
xk(t – τ )

) ·
∣∣
∣∣cos

(
π


–

n


t
)∣∣

∣∣dt =

n

cos

(
n

τ

)
g(+∞).

Therefore we have

∫ mπ
n

(m–)π
n

g
(
xk(t – τ )

) ·
∣∣
∣∣cos

(
π


–

n


t
)∣∣

∣∣dt =

n

cos

(
n

τ

)
g(+∞) + o().

Consequently, we get

n∑

m=

∫ π
 –(m–)π

– π
 –(m–)π

g
(
 + rk cos θk ,  + rk(t – τ ) cos θk(t – τ ),λk

)
cos θk dθk

≤
n∑

m=

nλk



∫ mπ
n

(m–)π
n

(
g

(
xk(t – τ )

)
– p(t)

) ·
∣∣
∣∣cos

(
π


–

n


t
)∣∣

∣∣dt + o()

=
nλk



(
 cos

(
n

τ

)
g(+∞) –

∫ π


p(t)

∣
∣∣
∣sin

(
n


t + θ

)∣
∣∣
∣dt

)
+ o().

By (H′
) we obtain, for k large enough,

n∑

m=

∫ π
 –(m–)π

– π
 –(m–)π

g
(
 + rk cos θk ,  + rk(t – τ ) cos θk(t – τ ),λk

)
cos θk dθk < .

Consequently, for k large enough,

n∑

m=

(
tm,k
 – tm,k


)

> π –

Rk

,

and then

τk > π ,

which also contradicts the π-periodicity of (xk(t), yk(t)). This completes the proof. �

Remark . Similarly, if (H), (H′′
), and (H) hold, then the result in Lemma . is valid.

Under these conditions, to estimate the maxima, we can we embed (.) into (.).

Lemma . Assume (H), (H), and (H) hold. Then there exists a positive constant M

such that, for any π -periodic solution x(t) of Eq. (.),

min
t∈R

x(t) > M.
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Proof Let Rk be defined by (.). We first prove that there exists c >  such that, for all
k ∈N

+,

xk
(
t,k


)
> c. (.)

Assume by contradiction that xk(t,k
 ) →  (as k → ∞). By Lemma . and Remark .

there exist M >  and M >  such that

‖xk‖∞ < M,
∥∥x′

k
∥∥∞ < M.

Then Rk(t) ≡ c < +∞. However, by (H),

r
k
(
t,k


)
– r

k
(
t,k


)
=


n

∫ t,k


t,k


ykg
(
xk , xk(t – τ ),λk

)
dt

=
λk

n

∫ t,k


t,k


yk

x

k
dt – ( – λk)


n

∫ t,k


t,k


ykg(xk) dt + O()

=
λk

n · 
x

k(t,k
 )

– ( – λk)

n

∫ 

x(t,k
 )

g(xk) dxk + O()

→ +∞,

which is impossible. Therefore (.) holds. Similarly, we can obtain

xk
(
tm,k


)
> cm

for m = , , . . . , n. Consequently, we get the conclusion of Lemma .. �

Proof of Theorem . The result is obtained directly by Lemma ., Lemma ., Re-
mark ., and Lemma .. �
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