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Abstract
The existence theory for the vector-valued stochastic differential equations driven by
G-Brownian motion and pure jump G-Lévy process (G-SDEs) of the type
dYt = f (t,Yt)dt + gj,k(t,Yt)d〈Bj ,Bk〉t + σi(t,Yt)dBit +

∫
Rd0
K (t,Yt , z)L(dt,dz), t ∈ [0, T ], with first

two and last discontinuous coefficients, is established. It is shown that the G-SDEs
have more than one solution if the coefficients f , g, K are discontinuous functions. The
upper and lower solution method is used.
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1 Introduction
In recent years much effort has been made to develop the theory of sublinear expecta-
tions connected with the volatility uncertainty and the so-called G-Brownian motion. G-
Brownian motion was introduced by Shige Peng in [, ] as a way to incorporate the un-
known volatility into financial models. Its theory is tightly associated with the uncertainty
problems involving an undominated family of probability measures. Soon other connec-
tions have been discovered, not only in the field of financial mathematics, but also in the
theory of path-dependent partial differential equations or backward stochastic differential
equations. Thus G-Brownian motion and connected G-expectation are attractive mathe-
matical objects.

Returning, however, to the original problem of volatility uncertainty in the financial
models, one feels that G-Brownian motion is not sufficient to model the financial world, as
both G- and the standard Brownian motion share the same property, which makes them
often unsuitable for modeling, namely, the continuity of paths. Therefore, it is not surpris-
ing that Hu and Peng [] introduced the process with jumps, which they called G-Lévy
process. Then Ren [] introduced the representation of the sublinear expectation as an
upper-expectation. In [], the author concentrated on establishing the integration theory
for G-Lévy process with finite activity, introduced the integral w.r.t. the jump measure as-
sociated with the pure jump G-Lévy process and gave the Itô formula for general G-Itô
Lévy process.
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Under the integration theory for G-Lévy process, Paczka [] established the existence
and uniqueness of solutions for the following stochastic differential equation driven by G-
Brownian motion and pure jump G-Lévy process with Lipschitz continuous coefficients:

Yt = Y +
∫ t


f (s, Ys) ds +

∫ t


gj,k(s, Ys) d

〈
Bj, Bk 〉

s

+
∫ t


σi(s, Ys) dBi

s +
∫ t



∫

Rd


K(s, Ys, z)L(ds, dz), (.)

where Y ∈ Rn, (〈Bj, Bk〉t)t≥ is the mutual variation process of the G-Brownian mo-
tion (Bt)t≥, L(t, z) is pure jump G-Lévy process. For each x ∈ Rn, the coefficients
f (t, x), gj,k(t, x),σi(t, x) are in the space M̂

G(, T ; Rn), K(t, x, z) ∈ Ĥ
G([, T] × Rd

; Rn) (which
will be introduced in Section ). A process Yt belonging to M̂

G(, T ; Rn) and satisfying
G-SDE (.) is said to be its solution.

Motivated by the importance of discontinuous functions, Faizullah and Piao [] es-
tablished the existence of solutions for the stochastic differential equations driven by G-
Brownian motion with a discontinuous drift coefficient. Then Faizullah [] developed the
existence theory when the coefficient f or the coefficients f and g simultaneously are dis-
continuous functions. Motivated by the aforementioned works, in this paper, we consider
equation (.) and assume that f (t, x), g(t, x) and K(t, x, z) are discontinuous for all x ∈ Rn.

The rest of this paper is organized as follows. In Section , we introduce some prelimi-
naries. In Section , the existence of solutions for G-SDE (.) with simultaneous discon-
tinuous coefficients f , g and K is developed.

2 Preliminaries
In this section, we introduce some notations and preliminary results in G-framework
which are needed in the sequence. More details can be found in [, –].

Definition . Let � be a given set, and letH be a linear space of real-valued functions de-
fined on �. Moreover, if Xi ∈ H, i = , , . . . , d, then ϕ(X, . . . , Xd) ∈ H for all ϕ ∈ Cb,lip(Rd),
where Cb,lip(Rd) is the space of all bounded real-valued Lipschitz continuous functions.
A sublinear expectation E is a functional E : H → R satisfying the following properties:
for all X, Y ∈H, we have:

(i) Monotonicity: E[X] ≥ E[Y ] if X ≥ Y ;
(ii) Constant preserving: E[C] = C for C ∈ R;

(iii) Sub-additivity: E[X + Y ] ≤ E[X] + E[Y ];
(iv) Positive homogeneity: E[λX] = λE[X] for λ ≥ .

The triple (�,H,E) is called a sublinear expectation space. X ∈ H is called a random
variable in (�,H,E). We often call Y = (Y, . . . , Yd), Yi ∈H a d-dimensional random vector
in (�,H,E).

Definition . In a sublinear expectation space (�,H,E), an n-dimensional random vec-
tor Y = (Y, . . . , Yn) is said to be independent from an m-dimensional random vector
X = (X, . . . , Xm) if for each ϕ ∈ Cb,lip(Rm+n),

E
[
ϕ(X, Y )

]
= E

[
E

[
ϕ(x, Y )

]
x=X

]
.
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Definition . Let X, X be two n-dimensional random vectors defined on sublinear
expectation spaces (�,H,E) and (�,H,E), respectively. They are called identically
distributed, denoted by X

d= X, if

E
[
ϕ(X)

]
= E

[
ϕ(X)

]
, ∀ϕ ∈ Cb,lip

(
Rn).

X̄ is said to be an independent copy of X if X̄ is identically distributed with X and inde-
pendent of X.

Definition . (G-Lévy process) Let X = (Xt)t≥ be a d-dimensional càdlàg process on a
sublinear expectation space (�,H,E). We say that X is a Lévy process if:

(i) X = ,
(ii) for each s, t ≥ , the increment Xt+s – Xs is independent of (Xt , . . . , Xtn ) for every

n ∈ N and every partition  ≤ t ≤ t ≤ · · · ≤ tn ≤ s,
(iii) the distribution of the increment Xt+s – Xs, s, t ≥  is stationary, i.e., does not

depend on s.
Moreover, we say that a Lévy process X is a G-Lévy process if it satisfies additionally the

following conditions:
(iv) there is a d-dimensional Lévy process (Xc

t , Xd
t )t≥ such that for each t ≥ ,

Xt = Xc
t + Xd

t ,
(v) processes Xc

t and Xd
t satisfy the following conditions:

lim
t↓

E
[∣∣Xc

t
∣
∣]t– = ; E

[∣∣Xd
t
∣
∣] < Ct for all t ≥ .

Peng and Hu noticed in their paper that each G-Lévy process might be characterized by
a non-local operator GX .

Theorem . ([]) Let X be a G-Lévy process in Rd . For every f ∈ C
b(Rd) such that f () = ,

we put

GX
[
f (·)] := lim

δ↓
E

[
f (Xδ)

]
δ–.

The above limit exists. Moreover, GX has the following Levy-Khintchine representation:

GX
[
f (·)] = sup

(v,p,Q)∈U

{∫

Rd


f (z)v(dz) +
〈
Df (), p

〉
+




tr
[
Df ()QQT]

}

,

where Rd
 := Rd\{}, U is a subset U ⊂ V × Rd × Rd×d and V is a set of all Borel measures

on (Rd
,B(Rd

)). We know additionally that U has the property

sup
(v,p,Q)∈U

{∫

Rd


|z|v(dz) + |p| + tr
[
QQT]

}

< ∞. (.)

Theorem . ([]) Let X be a d-dimensional G-Lévy process. For each φ ∈ Cb,lip(Rd), de-
fine u(t, x) := E[φ(x + Xt)]. Then u is the unique viscosity solution of the following integro-
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PDE:

 = ∂tu(t, x) – GX
[
u(t, x + ·) – u(t, x)

]

= ∂tu(t, x) – sup
(v,p,Q)∈U

{∫

Rd


[
u(t, x + z) – u(t, x)

]
v(dz)

+
〈
Du(t, x), p

〉
+




tr
[
Du(t, x)QQT]

}

, (.)

with the initial condition u(, x) = φ(x).

Theorem . LetU satisfy (.). Consider the canonical space � := D(R+, Rd) of all càdlàg
functions taking values in Rd equipped with the Skorohod topology. Then there exists a
sublinear expectation Ê on D(R+, Rd) such that the canonical process (Xt)t≥ is a G-Lévy
process satisfying Levy-Khintchine representation with the same set U .

The proof might be found in []. We will give, however, the construction of Ê as it is
important to understand it.

We denote �T := {w·∧T : w ∈ �}. Put

Lip(�T ) :=
{
ξ ∈ L(�T ) : ξ = φ(Xt , Xt – Xt , . . . , Xtn – Xtn– ),

φ ∈ Cb,lip
(
Rd×n),  ≤ t < · · · < tn < T

}
,

where Xt(w) = wt is the canonical process on the space D(R+, Rd) and L(�) is the space
of all random variables, which are measurable to the filtration generated by the canonical
process. We also set

Lip(�) :=
∞⋃

T=

Lip(�T ).

Firstly, consider the random variable ξ = φ(Xt+s – Xs),φ ∈ Cb,lip(Rd). We define

Ê[ξ ] := u(s, ),

where u is a unique viscosity solution of integro-PDE (.) with the initial condition
u(, x) = φ(x). For general

ξ = φ(Xt , Xt – Xt , . . . , Xtn – Xtn– ), φ ∈ Cb,lip
(
Rd×n),

we set Ê[ξ ] := φn, where φn is obtained via the following iterated procedure:

φ(x, . . . , xn–) = Ê
[
φ(x, . . . , xn–, Xtn – Xtn– )

]
,

φ(x, . . . , xn–) = Ê
[
φ(x, . . . , xn–, Xtn– – Xtn– )

]
,

...

φn–(x) = Ê
[
φn–(x, Xt – Xt )

]
,

φn = Ê
[
φn–(Xt )

]
.



Wang and Yuan Advances in Difference Equations  (2017) 2017:188 Page 5 of 13

Lastly, we extend the definition of Ê on the completion of Lip(�T ) (respectively Lip(�))
under the norm ‖ · ‖p

p = Ê[| · |p], p ≥ . We denote such a completion by Lp
G(�T ) (or resp.

Lp
G(�)).
Let B(�) be the Borel σ -algebra of �. It was proved in [] that there exists a weakly

compact probability measure family P defined on (�,B(�)) such that

Ê[X] = sup
p∈P

EP[X], ∀X ∈ L
G(�),

where EP is the linear expectation with respect to P.

Definition . We define the capacity c associated with Ê by putting

c(A) := sup
p∈P

P(A), A ∈ B(�).

We will say that a set A ∈ B(�) is polar if c(A) = . We say that a property holds quasi-surely
(q.s.) if it holds outside a polar set.

Remark . The condition (v) in Definition . implies that Xc is a d-dimensional gen-
eralized G-Brownian motion and the pure jump part Xd is of finite variation (see []).
Moreover, Xc is just the d-dimensional G-Brownian motion Bt when p =  in (.). In this
paper, we always let p = , i.e., the G-Lévy process X consists of G-Brownian motion Bt

and the pure jump part.

Let M,p
G (, T) be the collection of processes of the following form: for a given partition

{t, . . . , tN } = πT of [, T],

ηt =
N–∑

i–

ξi(w)I[ti ,ti+)(t),

where ξi ∈ Lp
G(�ti ), i = , , . . . , N – , p ≥ . For each p ≥ , denote by Mp

G(, T) the com-
pletion of M,p

G (, T) under the norm ‖η‖Mp
G

:= (Ê[
∫ T

 |ηt|p dt])

p .

For each η ∈ Mp
G(, T), p ≥ , the G-Itô integral {∫ t

 ηs dBi
s}t∈[,T] is well defined. For each

η
j,k
s ∈ Mp

G(, T), p ≥ , the integral {∫ t
 η

j,k
s d〈Bj, Bk〉s}t∈[,T] is well defined. i, j, k = , . . . , d.

See Peng [] and Li et al. [].

Lemma . ([]) Let η
j,k
t , ζ j,k

t ∈ M
G(, T). If η

j,k
t ≤ ζ

j,k
t for t ∈ [, T], then

∫ T


η

j,k
t d

〈
Bj, Bk 〉

t ≤
∫ T


ζ

j,k
t d

〈
Bj, Bk 〉

t .

Assume that the G-Lévy process X has finite activity, i.e.,

λ := sup
v∈V

v
(
Rd


)

< ∞.
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Let Xu– denote the left limit of X at point u, Xu = Xu – Xu–, then we can define a random
measure L(·, ·) associated with the G-Lévy process X by putting

L(]s, t], A) =
∑

s<u≤t
IA(Xu), q.s.

for any  < s < t < ∞ and A ∈ B(Rd
). The random measure is well defined and may be used

to define the pathwise integral.
Let HS

G([, T] × Rd
) be a space of all elementary random fields on [, T] × Rd

 of the form

K(u, z)(w) =
n–∑

k=

m∑

l=

Fk,l(w)I]tk ,tk+](u)ψl(z), n, m ∈N,

where  ≤ t < · · · < tn ≤ T is the partition of [, T], {ψl}m
l= ⊂ Cb,lip(Rd) are functions with

disjoint supports s.t. ψl() =  and Fk,l = φk,l(Xt , . . . , Xtk – Xtk– ), φk,l ∈ Cb,lip(Rd×k). We
introduce the norm on this space

‖K‖Hp
G([,T]×Rd

) := Ê

[∫ T


sup
v∈V

∫

Rd


∣
∣K(u, z)

∣
∣pv(dz) du

] 
p

, p = , .

Definition . Let  ≤ s < t ≤ T . The Itô integral of K ∈ HS
G([, T] × Rd

) w.r.t. jump mea-
sure L is defined as

∫ t

s

∫

Rd


K(u, z)L(du, dz) :=
∑

s<u≤t
K(u,Xu), q.s.

Lemma . For every K ∈ HS
G([, T] × Rd

), we have that
∫ T


∫

Rd


K(u, z)L(du, dz) is an ele-
ment of L

G(�T ).

Let Hp
G([, T] × Rd

) denote the topological completion of HS
G([, T] × Rd

) under the
norm ‖ · ‖Hp

G([,T]×Rd
), p = , . Then Itô integral can be continuously extended to the whole

space Hp
G([, T] × Rd

), p = , . Moreover, by Lemma . we know that the extended oper-
ator takes value in L

G(�T ), p = , .

Lemma . Let K (t, z), K(t, z) ∈ H
G([, T] × Rd

). If K (t, z) ≤ K(t, z) for t ∈ [, T], then

∫ T



∫

Rd


K (t, z)L(dt, dz) ≤
∫ T



∫

Rd


K(t, z)L(dt, dz).

Proof Let K (t, z), K(t, z) ∈ HS
G([, T] × Rd

), by Definition ., the following holds:

∫ T



∫

Rd


K (t, z)L(dt, dz) =
∑

<u≤T

K (u,Xu)

≤
∑

<u≤T

K(u,Xu) =
∫ T



∫

Rd


K(t, z)L(dt, dz).

For K(t, z) ∈ Hp
G([, T] × Rd

), the inequality still holds under a regular argument. �
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To consider the solution of G-SDEs, let us introduce the new norm on the integrands:
for a process η, define

‖η‖p
M̂p

G(,T)
:=

∫ T


Ê
[|ηt|p

]
dt, p ≥ .

The completion of the space under this norm will be denoted as M̂p
G(, T). Note that

Ê

[∫ T


|ηt|p dt

]

≤
∫ T


Ê

[|ηt|p
]

dt,

thus appropriate integrals will be always well defined.
Similarly, we need to adjust the space of integrands for the jump measure. Let Ĥ

G([,
T] × Rd

) denote the completion of all HS
G([, T] × Rd

) under the norm

‖K‖
Ĥ

G([,T]×Rd
) :=

∫ T


Ê

[

sup
v∈V

∫

Rd


K(u, z)v(dz)
]

du.

We consider the following G-SDE driven by d-dimensional G-Brownian motion B and
the pure jump G-Lévy process L (in this paper we always use Einstein’s convention):

dYt = f (t, Yt) dt + gj,k(t, Yt) d
〈
Bj, Bk 〉

t + σi(t, Yt) dBi
t

+
∫

Rd


K(t, Yt , z)L(dt, dz). (.)

Let M̂
G(, T ; Rn) denote the space of Rn-valued process and for each element belong to

M̂
G(, T). We can define the space Ĥ

G([, T] × Rd
; Rn) in a similar way.

Theorem . ([]) Suppose that f (t, x), gj,k(t, x), σi(t, x), K(t, x) are Lipschitz continu-
ous w.r.t. x uniformly. For each x ∈ Rn, f (·, x), gj,k(·, x),σi(·, x) ∈ M̂

G(, T ; Rn), K(·, x, ·) ∈
Ĥ

G([, T] × Rd
; Rn). Then G-SDE (.) with the initial condition Y ∈ Rn has a unique so-

lution Yt ∈ M̂
G(, T ; Rn).

3 Existence of solution for G-SDEs with discontinuous coefficients
Definition . If, for any  ≤ s ≤ t, the process Ut ∈ M̂

G(, T ; Rn) satisfies the following
inequality:

Ut ≥ Us +
∫ t

s
f (u, Uu) du +

∫ t

s
gj,k(u, Uu) d

〈
Bj, Bk 〉

u

+
∫ t

s
σi(u, Uu) dBi

u +
∫ t

s

∫

Rd


K(u, Uu, z)L(du, dz), (.)

q.s., then it is said to be an upper solution of G-SDE (.) on the interval [, T].
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Definition . If, for any  ≤ s ≤ t, the process Lt ∈ M̂
G(, T ; Rn) satisfies the following

inequality:

Lt ≤ Ls +
∫ t

s
f (u, Lu) du +

∫ t

s
gj,k(u, Lu) d

〈
Bj, Bk 〉

u

+
∫ t

s
σi(u, Lu) dBi

u +
∫ t

s

∫

Rd


K(u, Lu, z)L(du, dz), (.)

q.s., then it is said to be a lower solution of G-SDE (.) on the interval [, T].

Suppose that Ut and Lt are the respective upper and lower solutions of the G-SDE

dYt = f (t, w) dt + gj,k(t, w) d
〈
Bj, Bk 〉

t + σi(t, Yt) dBi
t

+
∫

Rd


K(t, w, z)L(dt, dz), t ∈ [, T], w ∈ �, (.)

where f (·, w), gj,k(·, w) ∈ M̂
G(, T ; Rn), K(·, w, ·) ∈ Ĥ

G([, T] × Rd
; Rn) for w ∈ �, σi(·, x) ∈

M̂
G(, T ; Rn) for each x ∈ Rn and σi(t, x) is Lipschitz continuous in x. Define two functions

p, q : [, T] × Rn × � → Rn by

p(t, x, w) = max
{

Lt(w), min
{

Ut(w), x
}}

,

q(t, x, w) = p(t, x, w) – x,
(.)

and consider the following G-SDE:

dYt = f̃ (t, Yt) dt + g̃j,k(t, Yt) d
〈
Bj, Bk 〉

t + σ̃i(t, Yt) dBi
t

+
∫

Rd


K̃(t, Yt , z)L(dt, dz), t ∈ [, T] (.)

with a given constant initial condition Y ∈ Rn, where

f̃ (t, x, w) = f (t, w) + q(t, x, w),

g̃j,k(t, x, w) = gj,k(t, w) + q(t, x, w),

σ̃i(t, x, w) = σi
(
t, p(t, x, w)

)
,

K̃ (t, x, z) = K(t, w, z) + q(t, x, w).

(.)

It is clear that f̃ , g̃j,k , σ̃i, K̃ are Lipschitz continuous in x, thus the conditions of Theorem .
are satisfied. Then G-SDE (.) has a unique solution Yt ∈ M̂

G(, T ; Rn).

Lemma . Suppose that Ut and Lt are the respective upper and lower solutions of G-SDE
(.) satisfying Lt ≤ Ut for t ∈ [, T]. Then Ut and Lt are the upper and lower solutions of
G-SDE (.), respectively.
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Proof For  ≤ s ≤ t, we have

Us +
∫ t

s
f̃ (u, Uu) du +

∫ t

s
g̃j,k(u, Uu) d

〈
Bj, Bk 〉

u

+
∫ t

s
σ̃i(u, Uu) dBu +

∫ t

s

∫

Rd


K̃(u, Uu, u)L(du, dz)

= Us +
∫ t

s

[
f (u, w) + q(u, Uu, w)

]
du +

∫ t

s

[
gj,k(u, w) + q(u, Uu, w)

]
d
〈
Bj, Bk 〉

u

+
∫ t

s
σi

(
u, p(u, Uu, w)

)
dBi

u +
∫ t

s

∫

Rd


[
K(u, w, z) + q(u, Uu, w)

]
L(du, dz)

= Us +
∫ t

s
f (u, w) du +

∫ t

s
gj,k(u, w) d

〈
Bj, Bk 〉

u

+
∫ t

s
σi(u, Uu) dBi

u +
∫ t

s

∫

Rd


K(u, w, z)L(du, dz)

≤ Ut , (.)

where we have used p(t, Ut , w) = Ut and q(t, Ut , w) = . Therefore Ut is an upper solution
of G-SDE (.). One can show that Lt is a lower solution of G-SDE (.) in a similar way
as above. �

By Lemma . we know that if Ut and Lt are upper and lower solutions of G-SDE (.),
then they are the respective upper and lower solutions for G-SDE (.). Suppose that Yt is
the solution of G-SDE (.) such that

Lt < Yt < Ut , t ∈ [, T], q.s. (.)

Since p(t, Yt , w) = Yt , q(t, Yt , w) = , then

dYt = f̃ (t, Yt) dt + g̃j,k(t, Yt) d
〈
Bj, Bk 〉

t + σ̃i(t, Yt) dBi
t +

∫

Rd


K̃(t, Yt , z)L(dt, dz)

=
[
f (t, w) + q(t, Yt , w)

]
dt +

[
gj,k(t, w) + q(u, Yt , w)

]
d
〈
Bj, Bk 〉

t

+ σi
(
t, p(t, Yt , w)

)
dBi

t +
∫

Rd


[
K(t, w, z) + q(t, Yt , w)

]
L(dt, dz)

= f (t, w) dt + gj,k(t, w)d
〈
Bj, Bk 〉

t + σi(t, Yt) dBi
t +

∫

Rd


K(t, w, z)L(dt, dz), (.)

which implies that Yt is a solution of G-SDE (.). Thus, if we can show that any solution
Yt of problem (.) does satisfy inequality (.), then Yt is also the solution of G-SDE (.).

Theorem . Suppose that
(i) f (·, w), gj,k(·, w) ∈ M̂

G(, T ; Rn), K(·, w, ·) ∈ Ĥ
G([, T] × Rd

; Rn) for w ∈ �,
σi(·, x) ∈ M̂

G(, T ; Rn) for each x ∈ Rn and σ (t, x) is Lipschitz continuous in x;
(ii) the respective upper and lower solutions Ut and Lt of G-SDE (.) satisfy Lt < Ut for

t ∈ [, T];
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(iii) Y ∈ Rn is a given initial value with Ê[|Y|] < ∞ and L < Y < U.
Then there exists a unique solution Yt ∈ M̂

G(, T ; Rn) of G-SDE (.) such that Lt < Yt < Ut

for t ∈ [, T], q.s.

Proof We only need to prove that the solution Yt of G-SDE (.) does satisfy inequality
(.). Assume that there exists an arbitrary interval (t, t) ⊂ [, T] such that Yt = Lt and
Yt < Lt for t ∈ (t, t), then we have

Yt – Lt ≥
∫ t

t

f̃ (u, Yu) du +
∫ t

t

g̃j,k(u, Yu) d
〈
Bj, Bk 〉

u

+
∫ t

t

σ̃i(u, Yu) dBi
u +

∫ t

t

∫

Rd


K̃(u, Yu, z)L(du, dz)

–
∫ t

t

f̃ (u, Lu) du –
∫ t

t

g̃j,k(u, Lu) d
〈
Bj, Bk 〉

u

–
∫ t

t

σ̃i(u, Lu) dBi
u –

∫ t

t

∫

Rd


K̃(u, Lu, z)L(du, dz)

=
∫ t

t

[
f (u, w) + q(u, Yu, w)

]
du +

∫ t

t

[
gj,k(u, w) + q(u, Yu, w)

]
d
〈
Bj, Bk 〉

u

+
∫ t

t

σi
(
u, p(u, Yu, w)

)
dBi

u

+
∫ t

t

∫

Rd


[
K(u, z) + q(u, Yu, w)

]
L(du, dz) –

∫ t

t

[
f (u, w) + q(u, Lu, w)

]
du

–
∫ t

t

[
gj,k(u, w) + q(u, Lu, w)

]
d
〈
Bj, Bk 〉

u –
∫ t

t

σi
(
u, p(u, Lu, w)

)
dBi

u

–
∫ t

t

∫

Rd


[
K(u, z) + q(u, Lu, w)

]
L(du, dz). (.)

Since Yt ≤ Lt ≤ Ut for t ∈ (t, t), then p(t, Lt , w) = Lt and p(t, Yt , w) = Lt . Also q(t, Lt , w) = 
and q(t, Yt , w) = Lt – Yt . Thus

Yt – Lt ≥
∫ t

t

(Lu – Yu) du +
∫ t

t

(Lu – Yu) d
〈
Bj, Bk 〉

u

+
∫ t

t

∫

Rd


(Lu – Yu)L(du, dz) > , (.)

which yields a contradiction. Thus Yt ≥ Lt for t ∈ [, T]. By using similar arguments as
above, one can show that Yt ≤ Ut for t ∈ [, T]. Thus the proof is finished. �

Now we consider the following G-SDE:

dYt = f (t, Yt) dt + gj,k(t, Yt) d
〈
Bj, Bk 〉

t

+ σi(t, Yt) dBi
t +

∫

Rd


K(t, Yt , z)L(dt, dz), (.)
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where f (t, x), gj,k(t, x) and K(t, x, z) do not need to be Lipschitz continuous with respect to
x, only σi(t, x) is Lipschitz continuous in x.

Theorem . Suppose that
(i) for each x ∈ Rn, f (·, x), gj,k(·, x),σi(·, x) ∈ M̂

G(, T ; Rn), K(·, x, ·) ∈ Ĥ
G([, T] × Rd

; Rn);
(ii) σi(t, x) is Lipschitz continuous in x, f (t, x), gj,k(t, x) and K(t, x, z) are increasing in x;

(iii) Ut and Lt are the respective upper and lower solutions of G-SDE (.). Moreover,
K(·, Ut , ·), K(·, Lt , ·) ∈ Ĥ

G([, T] × Rd
; Rn) and Lt ≤ Ut for t ∈ [, T].

Then there exists at least one solution Yt ∈ M̂
G(, T ; Rn) of G-SDE (.) such that Lt ≤

Yt ≤ Ut for t ∈ [, T], q.s.

Proof Denote the order interval [L, U] in M̂
G(, T ; Rn) by H, that is, H = {Y : Y ∈

M̂
G(, T ; Rn) and Lt ≤ Yt ≤ Ut} for t ∈ [, T], which is closed and bounded. By using the

monotone convergence theorem in [], one can prove the convergence of a monotone se-
quence that belongs to H in M̂

G(, T ; Rn). Thus H is a regularly ordered metric space with
the norm of M̂

G(, T ; Rn).
Since f (t, x), gj,k(t, x) and K(t, x, z) are increasing in x, it is easy to see that for any process

V ∈H, Ut and Lt are the respective upper and lower solutions for the G-SDE

dYt = f (t, Vt) dt + gj,k(t, Vt) d
〈
Bj, Bk 〉

t + σi(t, Yt) dBi
t +

∫

Rd


K(t, Vt , z)L(dt, dz). (.)

Hence, by Theorem ., for any Y ∈ Rn with Ê[|Y|] < ∞, and L ≤ Y ≤ U, G-SDE
(.) has a unique solution Yt ∈ M̂

G(, T ; Rn) such that Lt ≤ Yt ≤ Ut for t ∈ [, T], q.s.
Define an operator F : H → H by F(V ) = Y , where Y is the unique solution of G-SDE

(.). For all t ∈ [, T], let V 
t , V 

t ∈ H and V 
t ≤ V 

t and define Y 
t = F(V 

t ), Y 
t = F(V 

t ).
Since f , g , K are increasing functions, then

Y 
t = F

(
V 

t
)

= Y +
∫ t


f
(
u, V 

u
)

du +
∫ t


gj,k

(
t, V 

u
)

d
〈
Bj, Bk 〉

u +
∫ t


σi

(
t, Y 

t
)

dBi
t

+
∫ t



∫

Rd


K
(
t, V 

t , z
)
L(dt, dz)

≤ Y +
∫ t


f
(
u, V 

u
)

du +
∫ t


gj,k

(
t, V 

u
)

d
〈
Bj, Bk 〉

u +
∫ t


σi

(
t, Y 

t
)

dBi
t

+
∫ t



∫

Rd


K
(
t, V 

t , z
)
L(dt, dz), (.)

which implies that Y 
t is a lower solution of the G-SDE

Yt = Y +
∫ t


f
(
u, V 

u
)

du +
∫ t


gj,k

(
t, V 

u
)

d
〈
Bj, Bk 〉

u +
∫ t


σi(t, Yt) dBi

t

+
∫ t



∫

Rd


K
(
t, V 

t , z
)
L(dt, dz). (.)

However, this problem has an upper solution Ut . Then the solution of G-SDE (.) Y 
t

satisfies Y 
t ≤ Y 

t ≤ Ut . Hence F is an increasing mapping and, by Theorem ., it has a
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fixed point Y ∗ = F(Y ∗) ∈H such that Lt ≤ Y ∗
t ≤ Ut , q.s. and

Y ∗
t = Y +

∫ t


f
(
u, Y ∗

t
)

du +
∫ t


gj,k

(
t, Y ∗

t
)

d
〈
Bj, Bk 〉

u +
∫ t


σi

(
t, Y ∗

t
)

dBi
t

+
∫ t



∫

Rd


K
(
t, Y ∗

t , z
)
L(dt, dz). (.)

Thus the proof is finished. �

Example . Consider the following scalar stochastic differential equation:

dYt = H(Yt) dt + {Yt}d〈B〉t + dBt +
∫

Rd


{Yt}L(dt, dz), (.)

where the Heaviside function H : R → R is defined by

H(x) =

⎧
⎨

⎩

, if x < ;

, if x ≥ .
(.)

This is an important function in science, and it is considered to be a fundamental func-
tion in engineering. The fractional part function {x} : R → [, ) has discontinuities at the
integers and is defined by

{x} = x – [x], x ∈ R,

where [x] is the floor function. The importance of this function is clear from the sawtooth
waves which are used in music and computer graphics.

Let Ut = U +
∫ t

 du +
∫ t

 d〈B〉u +
∫ t

 dBu +
∫ t


∫

R
L(du, dz) for t ∈ [, T]. Then we have

Ut = U +
∫ t


du +

∫ t


d〈B〉u +

∫ t


dBu +

∫ t



∫

R

L(du, dz)

= Us +
∫ t

s
du +

∫ t

s
d〈B〉u +

∫ t

s
dBu +

∫ t

s

∫

R

L(du, dz)

≥ Us +
∫ t

s
H(Uu) du +

∫ t

s
{Uu}d〈B〉u +

∫ t

s
dBu +

∫ t

s

∫

R

{Uu}L(du, dz), (.)

where Us = U +
∫ s

 du +
∫ s

 d〈B〉u +
∫ s

 dBu +
∫ s


∫

R
L(du, dz) for  ≤ s ≤ t ≤ T . This implies

that Ut is the upper solution of equation (.). In a similar way, one can show that Lt =
L +

∫ t
 dBu is a lower solution of equation (.). Then, by Theorem ., there exists at

least one solution for equation (.).

For the following definition and theorem, see [].

Definition . An ordered metric space M is called regularly (resp. fully regularly) or-
dered if each monotone and order (resp. metrically ) bounded ordinary sequence of M
converges.
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Theorem . If [a, b] is a non-empty order interval in a regularly ordered metric space,
then each increasing mapping F : [a, b] → [a, b] has the least and the greatest fixed points.
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