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Abstract
In this paper, by using some fixed point theorems and the measure of
noncompactness, we discuss the existence of solutions for a boundary value problem
of impulsive integrodifferential equations of fractional order α ∈ (1, 2]. Our results
improve and generalize some known results in (Zhou and Chu in Commun. Nonlinear
Sci. Numer. Simul. 17:1142-1148, 2012; Bai et al. in Bound. Value Probl. 2016:63, 2016).
Finally, an example is given to illustrate that our result is valuable.
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1 Introduction
Fractional differential equations arise in many engineering and scientific disciplines as the
mathematical modeling of systems and processes in the fields of physics, chemistry, aero-
dynamics, electrodynamics of complex medium, polymer rheology, and they have been
emerging as an important area of investigation in the last few decades; see [–].

The theory of impulsive differential equations is a new and important branch of dif-
ferential equation theory, which has an extensive physical, population dynamics, ecology,
chemical, biological systems, and engineering background. Therefore, it has been an ob-
ject of intensive investigation in recent years, some basic results on impulsive differential
equations have been obtained and applications to different areas have been considered
by many authors, see [–]. However, the concept of solutions for impulsive fractional
differential equations [–] has been argued extensively, while the concept presented
in Refs. [–, ] could be controversial and deserves a further argument and mending.
In [, , ], Wang et al. and Shu et al. gave a new concept of some impulsive differen-
tial equations with fractional derivative, which is a correction of that of piecewise con-
tinuous solutions used in [, , ]. Furthermore, the theory of boundary value prob-
lems for nonlinear impulsive fractional differential equations is still in the initial stages
and many aspects of this theory need to be explored, we refer the readers to [, , –
].
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In [], Zhou discussed the existence of solutions for a nonlinear multi-point boundary
value problem of integro-differential equations of fractional order as follows:

⎧
⎨

⎩

cDα
+ u(t) = f (t, u(t), (Hu)(t), (Ku)(t)), t ∈ [, ],α ∈ (, ],

au() – bu′() = du(ξ), au() + bu′() = du(ξ),

where cDα
+ denotes the fractional Caputo derivative and

(Hu)(s) =
∫ t


g(t, s)u(s) ds, (Ku)(s) =

∫ t


h(t, s)u(s) ds

with respect to strong topology.
In [], Bai studied the existence of solutions for an impulsive fractional differential equa-

tion with nonlocal conditions in a Banach space E

⎧
⎪⎪⎨

⎪⎪⎩

cDα
+ u(t) = f (t, u(t)), t ∈ J ′,

�u(tk) = Ik(u(tk)), �u′(tk) = I∗
k (u(tk)), k = , , . . . , p,

u() + u′() = , u() + u′() = ,

by using the contraction mapping principle and Krasnoselskii’s fixed point theorem.
Dong et al. [] investigated the boundary value problem for p-Laplacian fractional dif-

ferential equations

⎧
⎨

⎩

Dα(φp(Dαu(t))) = f (t, u(t)),  < t < ,

u() = u() = Dαu() = Dαu() = ,

where  < α ≤  is a real number, Dα is the conformable fractional derivative, φp(s) = |s|p–s,
p > , φ–

p = φq, 
p + 

q = , f : [, ] × [, +∞) → [, +∞) is continuous. By the approxima-
tion method and fixed point theorems on cone, some existence and multiplicity results of
positive solutions are obtained.

Bai et al. [] investigated the boundary value problem of fractional differential equa-
tions

⎧
⎨

⎩

Dα
+ u(t) = f (t, u(t)), t ∈ (, h),

t–αu(t)|t= = u,

where f ∈ C([, h] × R, R), Dα
+ u(t) is the standard Riemann-Liouville fractional deriva-

tive,  < α < . The existence of the blow-up solution, that is to say, u ∈ C(, h] and
limt→+ u(t) = ∞, is obtained by the use of the lower and upper solution method.

In this paper, motivated by the above references, we investigate the existence of solutions
to the following impulsive fractional integro-differential equations with mixed boundary
conditions:

⎧
⎪⎪⎨

⎪⎪⎩

cDα
+ u(t) = f (t, u(t), (Tu)(t), (Su)(t)), t ∈ J ′,

�u(tk) = Ik(u(tk)), �u′(tk) = I∗
k (u(tk)), k = , , . . . , p,

au() + bu′() = γ(u), au() + bu′() = γ(u),

(.)
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where f ∈ C(J × E × E × E, E), Ik , I∗
k ∈ C(E, E), J = [, ], J ′ = J \ {t, t, . . . , tp}, cDα

+ is the
Caputo fractional derivative of order α ∈ (, ], {tk} satisfy  = t < t < t < · · · < tp < tp+ =
, p ∈ N , �u(tk) = u(t+

k ) – u(t–
k ), �u′(tk) = u′(t+

k ) – u′(t–
k ), u(t+

k ) and u(t–
k ) represent the right

and left limits of u(t) at t = tk , respectively. T and S are two linear operators defined by

(Tu)(t) =
∫ t


k(t, s)p

(
s, u(s)

)
ds, (Su)(t) =

∫ a


h(t, s)p

(
s, u(s)

)
ds,

where k ∈ C(D, R+), h ∈ C(D, R+), D = {(t, s) ∈ R :  ≤ s ≤ t ≤ a}, D = {(t, s) ∈ R :  ≤
t, s ≤ a} and pi ∈ C(J × E, E), γi : J → E (i = , ) is to be specified later.

The paper is organized as follows. In Section  we recall some basic known results. In
Section  we discuss the existence theorem of solutions for problem (.). In Section , we
provide an example to illustrate our result.

2 Preliminaries
In this section, we introduce notations, definitions and preliminary results which will be
used throughout this paper.

Let E be a real Banach space and denote by � the family of all functions ψ : R+ → R+

satisfying the following conditions:

(�) ψ is nondecreasing;
(�)

∑∞
n= ψn < ∞ for all t > , where ψn is the nth iterate of ψ .

For each ψ ∈ � , the following assertions hold:
() limn→∞ ψn(t) =  for all t > ;
() ψ(t) < t for all t > ;
() ψ() = .
Furthermore, we write B(x, r) to denote the closed ball centered at x with radius r and

X, ConvX to denote the closure and closed convex hull of X, respectively. Moreover, let
mE indicate the family of all nonempty bounded subsets of E and nE indicate the family of
all relatively compact sets.

Let J = (, t], J = (t, t], . . . , Jp– = (tp–, tp], Jp = (tp, ] and C(J , E) denote the Banach
space of all continuous E-valued functions on the interval J , PC(J , E) = {u : J → E|u ∈
C(J ′, E), u(t+

k ), u(t–
k ) exist and u(t–

k ) = u(tk),  ≤ k ≤ p}. Obviously, PC(J , E) is a Banach
space with the norm ‖u‖ = supt∈J ‖u(t)‖E .

We use the following definition of the measure of noncompactness given in [].

Definition . A mapping μ : mE → R+ is said to be a measure of noncompactness in E
if it satisfies the following conditions:

() The family kerμ = {X ∈ mE : μ(X) = } is nonempty and kerμ ⊂ nE .
() X ⊂ Y ⇒ μ(X) ≤ μ(Y ).
() μ(X) = μ(X).
() μ(ConvX) = μ(X).
() μ(λX + ( – λ)Y ) ≤ λμ(X) + ( – λ)μ(Y ) for λ ∈ [, ].
() If (Xn) is a sequence of closed sets from mE such that Xn+ ⊂ Xn (n = , , . . .) and if

limn→∞ μ(Xn) = , then the intersection set X∞ =
⋂∞

n= Xn is nonempty.

Lemma . ([]) Let ϕ : R+ →R+ be a nondecreasing and upper semicontinuous function.
Then the following two conditions are equivalent:
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(i) limn→∞ ϕn(t) =  for any t > ;
(ii) ϕ(t) < t for any t > .

For any nonempty bounded subset, X ∈ mE . For x ∈ X; T >  and ε > , let

ω(x, ε) = sup
{∣
∣x(t) – x(s)

∣
∣ : t, s ∈ J , |t – s| ≤ ε

}
,

ω(X, ε) = sup
{

wT (x, ε) : x ∈ X
}

,

ω(X) = lim
ε→

ω(X, ε), X(t) =
{

x(t) : x ∈ X
}

,

diam X(t) = sup
{∣
∣x(t) – y(t)

∣
∣ : x, y ∈ X

}
,

and

μ(X) = ω(X) + lim
t→∞ sup diam X(t). (.)

In [], Banaś has shown that the function μ is a measure of noncompactness in the spaces
PC(J , E).

For completeness, we recall the definition of the Caputo derivative of fractional order.

Definition . The fractional integral of order α of a function f : [,∞) → R is defined
as

Iα
+ f (t) =


(α)

∫ t


(t – s)α–f (s) ds, t > ,α > ,

provided the right-hand side is point-wise defined on (,∞), where (·) is the gamma
function.

Definition . The Riemann-Liouville derivative of order α with the lower limit zero for
a function f : [,∞) →R can be written as

Dα
+ f (t) =


(n – α)

dn

dtn

∫ t



f (s)
(t – s)α+–n ds, t > , n –  < α < n.

Definition . The Caputo fractional derivative of order α for a function f : [,∞) → R

can be written as

cDα
+ f (t) = Dα

+

[

f (t) –
n–∑

k=

tk

k!
f (k)()

]

, t > , n –  < α < n,

where n = [α] +  and [α] denotes the integer part of α.

Remark . In the case f (t) ∈ Cn[,∞), then

cDα
+ f (t) =


(n – α)

∫ t


(t – s)n–α–f (n)(s) ds = In–α

+ f n(t), t > , n –  < α < n.
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That is to say, Definition . is just the usual Caputo fractional derivative. In this paper,
we consider an impulsive problem, so Definition . is appropriate.

Moreover, we need the following known results.

Lemma . Let α > , then the differential equation

cDα
+ u(t) = 

has the solution u(t) = c + ct + ct + · · · + cntn–, ci ∈ R, i = , , . . . , n, n = [α] + .

In view of Lemma ., we have the following.

Lemma . Let α > , then

Iα
+

(cDα
+u(t)

)
= u(t) + c + ct + ct + · · · + cntn–

for some ci ∈ R, i = , , . . . , n, n = [α] + .

Definition . ([]) Let (E, d) be a metric space with w-distance p and f : E → E be a
given mapping. We say that f is a (γ ,ψ , p)-contractive mapping if there exist two functions
γ : E × E → [,∞) and ψ ∈ � such that

γ (x, y)p(fx, fy) ≤ ψ
(
p(x, y)

)

for all x, y ∈ E.

In the following, we will show some fixed point theorems of Darbo type proved by Agha-
jani et al. and that (γ ,ψ , p) is a contractive mapping, which plays a key role in the proof of
our main results.

Lemma . ([]) Let � be a nonempty, bounded, closed and convex subset of a Banach
space E, and let T : � → � be a continuous operator satisfying the inequality

μ(TX) ≤ φ
(
μ(X)

)
(.)

for any nonempty subset X of �, where μ is an arbitrary measure of noncompactness and
φ : R+ → R+ is a nondecreasing function such that limn→∞ ϕn(t) =  for each t ≥ . Then
T has at least one fixed point in the set �.

Lemma . ([]) Let p be a w-distance on a complete metric space (E, d), and let f : E → E
be a (γ ,ψ , p)-contractive mapping. Suppose that the following conditions hold:

(i) f is a γ -admissible mapping;
(ii) there exists a point x ∈ E such that γ (x, fx) ≥ ;

(iii) either f is continuous or, for any sequence {xn} in E, if γ (xn, xn+) ≥  for all n ∈N

and xn → x ∈ E as n → ∞, then γ (xn, x) ≥  for all n ∈N. Then there exists a point
u ∈ E such that fu = u. Moreover, if γ (u, u) ≥ , then p(u, u) = .
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3 Main results
In this section, we establish the existence theorems of solutions for problem (.). For con-
venience, we give some notations.

For B ⊂ PC(J , E), let B(t) = {u(t) : u ∈ B} and denote BR = {u ∈ B : ‖u‖ ≤ R}.
Now, following [, , ], let us introduce the definition of a solution of problem (.).

Definition . A function u ∈ PC(J , E) is said to be a solution of problem (.) if
u(t) = uk(t) for t ∈ (tk , tk+) and uk ∈ C([, tk+], E) satisfies the equation cDα

+ u(t) =
f (t, u(t), (Tu)(t), (Su)(t)) a.e. on (, tk+), and the conditions �u(tk) = Ik(u(tk)), �u′(tk) =
I∗

k (u(tk)), k = , , . . . , p, and au() + bu′() = γ(u), au() + bu′() = γ(u) hold.

By using a similar technique as in [], Section , we obtain the following lemma.

Lemma . Let ρ ∈ C(J , E) and α ∈ (, ], a function u given by

u(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩


(α)

∫ t
 (t – s)α–ρ(s) ds + ( b

a – t)[ 
(α)

∫ 
 ( – s)α–ρ(s) ds

+ b
a(α–)

∫ 
 ( – s)α–ρ(s) ds] + 

a [(a( – t) + b)γ(u) + (at – b)γ(u)],

t ∈ [, t];


(α)
∫ t

 (t – s)α–ρ(s) ds + ( b
a – t)[ 

(α)
∫ 

 ( – s)α–ρ(s) ds

+ b
a(α–)

∫ 
 ( – s)α–ρ(s) ds] + ( b

a +  – t)
∑p

j= I∗
j (u(tj))( b

a – tj)

+ ( b
a +  – t)

∑p
j= Ij(u(tj)) – (t – tj)

∑p
j=k+ I∗

j (u(tj)) –
∑p

j=k+ Ij(u(tj))

+ 
a [(a( – t) + b)γ(u) + (at – b)γ(u)],

t ∈ (tk , tk+], k = , , . . . , p – ;


(α)
∫ t

 (t – s)α–ρ(s) ds + ( b
a – t)[ 

(α)
∫ 

 ( – s)α–ρ(s) ds

+ b
a(α–)

∫ 
 ( – s)α–ρ(s) ds] + ( b

a +  – t)
∑p

j= I∗
j (u(tj))( b

a – tj)

+ ( b
a +  – t)

∑p
j= Ij(u(tj)) + 

a [(a( – t) + b)γ(u) + (at – b)γ(u)],

t ∈ (tp, tp+]

(.)

is a unique solution of the following impulsive problem:

⎧
⎪⎪⎨

⎪⎪⎩

cDα
+ u(t) = ρ(t), t ∈ J ′,

�u(tk) = Ik(u(tk)), �u′(tk) = I∗
k (u(tk)), k = , , . . . , p,

au() + bu′() = γ(u), au() + bu′() = γ(u).

(.)

Proof With Lemma ., a general solution u of the equation cDα
+ u(t) = ρ(t) on each inter-

val (tk , tk+] (k = , , , . . . , p) is given by

u(t) =


(α)

∫ t


(t – s)α–ρ(s) ds + ak + bkt, for t ∈ (tk , tk+], (.)

where t =  and tp+ = . Then we have

u′(t) =


(α – )

∫ t


(t – s)α–ρ(s) ds + bk , for t ∈ (tk , tk+].
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We have

u() = a, u′() = b,

u() =


(α)

∫ 


( – s)α–ρ(s) ds + ap + bp,

u′() =


(α – )

∫ 


( – s)α–ρ(s) ds + bp.

So, applying the boundary conditions (.), we have

aa + bb = γ(u), (.)

a
(α)

∫ 


( – s)α– ds +

b
(α – )

∫ 


( – s)α– ds + aap + abp + bbp = γ(u). (.)

Furthermore, in view of �u′(tk) = u′(t+
k ) – u′(t–

k ) = I∗
k (u(tk)), we have

bk = bk– + I∗
k
(
u(tk)

)
, (.)

bk = bp –
p∑

j=k+

I∗
j
(
u(tj)

)
(k = , , . . . , p – ). (.)

In the same way, using the impulsive condition �u(tk) = u(t+
k ) – u(t–

k ) = Ik(u(tk)), we have

ak + bktk = ak– + bk–tk + Ik
(
u(tk)

)
, (.)

which by (.) implies that

ak = ak– – I∗
k
(
u(tk)

)
tk + Ik

(
u(tk)

)
. (.)

Thus

ak = ap +
p∑

j=k+

I∗
j
(
u(tj)

)
tj –

p∑

j=k+

Ij
(
u(tj)

)
(k = , , , . . . , p – ). (.)

Combining (.), (.), (.) with (.) yields

ap =
(a + b)γ(u) – bγ(u)

a +
b

a(α)

∫ 


( – s)α–ρ(s) ds

+
b

a(α – )

∫ 


( – s)α–ρ(s) ds –

(
b
a

+ 
) p∑

j=

I∗
j
(
u(tj)

)
(

tj –
b
a

)

+
(

b
a

+ 
) b∑

j=

Ij
(
u(tj)

)
, (.)
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bp =
γ(u) – γ(u)

a
–


(α)

∫ 


( – s)α–ρ(s) ds

–
b

a(α – )

∫ 


( – s)α–ρ(s) ds +

p∑

j=

I∗
j
(
u(tj)

)
(

tj –
b
a

)

–
p∑

j=

Ij
(
u(tj)

)
. (.)

Furthermore, by (.), (.), (.) and (.), we have

ak = ap +
p∑

j=k+

I∗
j
(
u(tj)

)
tj +

p∑

j=k+

Ij
(
u(tj)

)

=
(a + b)γ(u) – bγ(u)

a +
b
a


(α)

∫ 


( – s)α–ρ(s) ds

+
b

a


(α – )

∫ 


( – s)α–ρ(s) ds –

(
b
a

+ 
) p∑

j=

I∗
j
(
u(tj)

)
(

tj –
b
a

)

+
(

b
a

+ 
) b∑

j=

Ij
(
u(tj)

)
+

p∑

j=k+

I∗
j
(
u(tj)

)
tj

+
p∑

j=k+

Ij
(
u(tj)

)
(k = , , , . . . , p – ), (.)

bk = bp –
p∑

j=k+

I∗
j
(
u(tj)

)

=
γ(u) – γ(u)

a
–


(α)

∫ 


( – s)α–ρ(s) ds

–
b
a


(α – )

∫ 


( – s)α–ρ(s) ds +

p∑

j=

I∗
j
(
u(tj)

)
(

tj –
b
a

)

–
p∑

j=

Ij
(
u(tj)

)
–

p∑

j=k+

I∗
j
(
u(tj)

)
(k = , , , . . . , p – ). (.)

Hence, for k = , , , . . . , p – , (.) and (.) imply

ak + bkt =
(

b
a

– t
)[


(α)

∫ 


( – s)α–ρ(s) ds +

b
a(α – )

∫ 


( – s)α–ρ(s) ds

]

+
(

b
a

+  – t
) p∑

j=

I∗
j
(
u(tj)

)
(

b
a

– tj

)

+
(

b
a

+  – t
) p∑

j=

Ij
(
u(tj)

)

– (t – tj)
p∑

j=k+

I∗
j
(
u(tj)

)
–

p∑

j=k+

Ij
(
u(tj)

)

+


a

[(
a( – t) + b

)
γ(u) + (at – b)γ(u)

]
. (.)
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For k = p, (.) and (.) imply

ak + bkt =
(

b
a

– t
)[


(α)

∫ 


( – s)α–ρ(s) ds +

b
a(α – )

∫ 


( – s)α–ρ(s) ds

]

+
(

b
a

+  – t
) p∑

j=

I∗
j
(
u(tj)

)
(

b
a

– tj

)

+
(

b
a

+  – t
) p∑

j=

Ij
(
u(tj)

)

+


a

[(
a( – t) + b

)
γ(u) + (at – b)γ(u)

]
. (.)

Now it is clear that (.), (.), (.) imply that (.) holds.
Conversely, assume that u satisfies (.). By a direct computation, it follows that the

solution given by (.) satisfies (.). This completes the proof. �

To prove our main results, we state the following basic assumptions of this paper.
(H) f : R+ × E × E × E → E is continuous and there exists a nondecreasing and upper

semicontinuous function ϕ ∈ � ; furthermore, there exist nondecreasing
continuous functions �,� : R→R with �() = �() =  such that

∥
∥f

(
t, u(t), (Tu)(t), (Su)(t)

)
– f

(
t, v(t), (Tv)(t), (Sv)(t)

)∥
∥

≤ ϕ
(‖u – v‖) + �

(‖Tu – Tv‖) + �
(‖Su – Sv‖).

(H) The function defined by |f (t, , , )| is bounded on J , i.e.,

M = sup
{∣
∣f (t, , , )

∣
∣ : t ∈ J

}
< ∞.

(H) γi (i = , ): E → E are continuous and compact mappings and there exists a
nondecreasing and upper semicontinuous function ϕi ∈ � ; furthermore, there
exist constants Ni such that ‖γi(u) – γi(v)‖ ≤ ϕi(‖u – v‖) and ‖γi(u)‖ ≤ Ni (i = , )
for any u, v ∈ BR.

(H) The functions Ik , I∗
k : E → E are continuous, and there exists a nondecreasing and

upper semicontinuous function ϕ,ϕ ∈ � ; furthermore, there exist constants
μ >  and ρ >  such that

∥
∥Ik(u) – Ik(v)

∥
∥ ≤ ϕ

(‖u – v‖) and
∥
∥Ik(u)

∥
∥ ≤ μ,

for all u, v ∈ BR, k = , , . . . , p,
∥
∥I∗

k (u) – I∗
k (v)

∥
∥ ≤ ϕ

(‖u – v‖) and
∥
∥I∗

k (u)
∥
∥ ≤ ρ,

for all u, v ∈ BR, k = , , . . . , p.

(H) There exists a positive solution r of the inequality

{
(b + a)

a(α + )
+

b
a(α)

}
(
ϕ
(‖u‖) + �(D) + �(D) + M

)

+
p
a

(
a(b + a)μ +

(
a + ab + b)ρ

)
+

a + b
a (N + N) ≤ r,
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where D is a positive constant defined by the equality

D = sup

{∣
∣
∣
∣

∫ t


k(t, s)p

(
s, u(s)

)
ds

∣
∣
∣
∣ : t, s ∈ J , u ∈ BR

}

,

D = sup

{∣
∣
∣
∣

∫ a


h(t, s)p

(
s, u(s)

)
ds

∣
∣
∣
∣ : t, s ∈ J , u ∈ BR

}

.

Moreover,

lim
t→∞

∫ t



∥
∥k(t, s)

[
p

(
s, u(s)

)
– p

(
s, v(s)

)]∥
∥ds = 

and

lim
a→∞

∫ a



∥
∥h(t, s)

[
p

(
s, u(s)

)
– p

(
s, v(s)

)]∥
∥ds = .

Theorem . Let E be a Banach space, suppose that conditions (H)-(H) are satisfied.
Then problem (.) has at least one solution in the space PC(J , E).

Proof First we consider the operator Q : PC(J , E) → PC(J , E) defined by

(Qu)(t) :=


(α)

∫ t


(t – s)α–f

(
s, u(s), (Tu)(s), (Su)(s)

)
ds

+
(

b
a

– t
)[


(α)

∫ 


( – s)α–f

(
s, u(s), (Tu)(s), (Su)(s)

)
ds

+
b

a(α – )

∫ 


( – s)α–f

(
s, u(s), (Tu)(s), (Su)(s)

)
ds

]

+
(

b
a

+  – t
) p∑

j=

I∗
j
(
u(tj)

)
(

b
a

– tj

)

+
(

b
a

+  – t
) p∑

j=

Ij
(
u(tj)

)

– (t – tj)
p∑

j=k+

I∗
j
(
u(tj)

)
–

p∑

j=k+

Ij
(
u(tj)

)

+


a

[(
a( – t) + b

)
γ(u) + (at – b)γ(u)

]
, t ∈ (tk , tk+], k = , , . . . , p – .

It is easy to see that the fixed points of Q are the solutions of nonlocal problem (.). Set
Br = {u ∈ B : ‖u(t)‖ ≤ r, t ∈ J}, then Br is a closed ball in PC(J , E) with center θ and radius
r. For ∀u ∈ Br , by means of (H), (H) and the triangle inequality, we get

∥
∥f

(
s, u(s), (Tu)(s), (Su)(s)

)∥
∥ ≤ ∥

∥f
(
s, u(s), (Tu)(s), (Su)(s)

)
– f (s, , , )

∥
∥ +

∥
∥f (s, , , )

∥
∥

≤ ϕ
(‖u‖) + �

(‖Tu‖) + �
(‖Su‖) + M

≤ ϕ
(‖u‖) + �(D) + �(D) + M. (.)

First, we notice that the continuity of Q(u)(t) for any u ∈ PC(J , E) is obvious, and by (.),
we have

∥
∥(Qu)(t)

∥
∥ ≤ 

(α)

∫ t


(t – s)α–∥∥f

(
s, u(s), (Tu)(s), (Su)(s)

)∥
∥ds

+
∣
∣
∣
∣
b
a

– t
∣
∣
∣
∣

[


(α)

∫ 


( – s)α–∥∥f

(
s, u(s), (Tu)(s), (Su)(s)

)∥
∥ds
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+
b

a(α – )

∫ 


( – s)α–∥∥f

(
s, u(s), (Tu)(s), (Su)(s)

)∥
∥ds

]

+
∣
∣
∣
∣
b
a

+  – t
∣
∣
∣
∣

p∑

j=

∥
∥I∗

j
(
u(tj)

)∥
∥ ·

∣
∣
∣
∣
b
a

– tj

∣
∣
∣
∣ +

∣
∣
∣
∣
b
a

+  – t
∣
∣
∣
∣

p∑

j=

∥
∥Ij

(
u(tj)

)∥
∥

– |t – tj|
p∑

j=k+

∥
∥I∗

j
(
u(tj)

)∥
∥ –

p∑

j=k+

∥
∥Ij

(
u(tj)

)∥
∥

+


a

[∣
∣a( – t) + b

∣
∣ · ∥∥γ(u)

∥
∥ + |at – b| · ∥∥γ(u)

∥
∥
]

≤ (
ϕ
(‖u‖) + �(D) + �(D) + M

)
{∫ t



(t – s)α–

(α)
ds

+
b
a

[∫ 



( – s)α–

(α)
ds +

b
a

∫ 



( – s)α–

(α – )
ds

]}

+
b
a

(
b
a

+ 
) p∑

j=

∥
∥I∗

j
(
u(tj)

)∥
∥ +

(
b
a

+ 
) p∑

j=

∥
∥Ij

(
u(tj)

)∥
∥

+
p∑

j=k+

∥
∥I∗

j
(
u(tj)

)∥
∥ +

p∑

j=k+

∥
∥Ij

(
u(tj)

)∥
∥ +

a + b
a (N + N)

≤
{

(b + a)
a(α + )

+
b

a(α)

}
(
ϕ
(‖u‖) + �(D) + �(D) + M

)

+
p
a

(
a(b + a)μ +

(
a + ab + b)ρ

)
+

a + b
a (N + N),

and D, D are given by (H). Thus

∥
∥(Qu)(t)

∥
∥ ≤

{
(b + a)

a(α + )
+

b
a(α)

}
(
ϕ
(‖u‖) + �(D) + �(D) + M

)

+
p
a

(
a(b + a)μ +

(
a + ab + b)ρ

)
+

a + b
a (N + N) ≤ r.

Now Q is well defined, we have Q(Br ) ⊂ Br , where r is a constant appearing in assump-
tion (H).

We shall show that Q is continuous from Br into Br . To show this, take u, v ∈ Br and
ε >  arbitrarily such that ‖u – v‖ < ε, for t ∈ J , we have

∥
∥Qu(t) – Qv(t)

∥
∥

≤ 
(α)

∫ t


(t – s)α–∥∥f

(
t, u(t), (Tu)(t), (Su)(t)

)
– f

(
t, v(t), (Tv)(t), (Sv)(t)

)∥
∥ds

+
∣
∣
∣
∣
b
a

– t
∣
∣
∣
∣

[∫ 



( – s)α–

(α)
∥
∥f

(
t, u(t), (Tu)(t), (Su)(t)

)
– f

(
t, v(t), (Tv)(t), (Sv)(t)

)∥
∥ds

+
b
a

∫ 



( – s)α–

(α – )
∥
∥f

(
t, u(t), (Tu)(t), (Su)(t)

)
– f

(
t, v(t), (Tv)(t), (Sv)(t)

)∥
∥ds

]

+
∣
∣
∣
∣
b
a

+  – tk

∣
∣
∣
∣

p∑

j=

∥
∥I∗

j
(
u(tj)

)
– I∗

j
(
v(tj)

)∥
∥ ·

∣
∣
∣
∣
b
a

– tj

∣
∣
∣
∣
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+
∣
∣
∣
∣
b
a

+  – tk

∣
∣
∣
∣

p∑

j=

∥
∥Ij

(
u(tj)

)
– Ij

(
v(tj)

)∥
∥ – |t – tj| +

p∑

j=k+

∥
∥I∗

j
(
u(tj)

)
– I∗

j
(
v(tj)

)∥
∥

+
p∑

j=k+

∥
∥Ij

(
u(tj)

)
– Ij

(
v(tj)

)∥
∥ +


a

[(
a( – t) + b

)∥
∥γ(u) – γ(v)

∥
∥

+ (at – b)
∥
∥γ(u) – γ(v)

∥
∥
]

≤
{

(b + a)
a(α + )

+
b

a(α)

}{

ϕ
(‖u – v‖)

+ �

(∣
∣
∣
∣

∫ t


k(t, s)

[
p

(
s, u(s)

)
– p

(
s, v(s)

)]
ds

∣
∣
∣
∣

)

+ �

(∣
∣
∣
∣

∫ a


h(t, s)

[
p

(
s, u(s)

)
– p

(
s, v(s)

)]
ds

∣
∣
∣
∣

)}

+
p
a

(
a(b + a)ϕ

(‖u – v‖)

+
(
a + ab + b)ϕ

(‖u – v‖)) +
b + a

a

(
ϕ

(‖u – v‖) + ϕ
(‖u – v‖))

≤
{

(b + a)
a(α + )

+
b

a(α)

}
{
ϕ
(‖u – v‖) + �

(
δ(t, u, v)

)
+ �

(
γ (t, u, v)

)}

+
p
a

(
a(b + a)ϕ

(‖u – v‖) +
(
a + ab + b)ϕ

(‖u – v‖))

+
b + a

a

(
ϕ

(‖u – v‖) + ϕ
(‖u – v‖)), (.)

where

δ(t, u, v) =
∣
∣
∣
∣

∫ t


k(t, s)

[
p

(
s, u(s)

)
– p

(
s, v(s)

)]
ds

∣
∣
∣
∣,

γ (t, u, v) =
∣
∣
∣
∣

∫ a


h(t, s)

[
p

(
s, u(s)

)
– p

(
s, v(s)

)]
ds

∣
∣
∣
∣.

Furthermore, considering conditions (H) and (H), there exists a >  such that for t ≥ a
we have

�
(
δ(t, u, v)

)
< ε, �

(
γ (t, u, v)

)
< ε. (.)

Then, from (.) and (.) for t ≥ a, we have

∥
∥(Qu)(t) – (Qv)(t)

∥
∥

≤
{

(b + a)
a(α + )

+
b

a(α)
+

p
a (a(b + a) +

(
a + ab + b) +

b + a
a

}

ϕmax(ε),

where ϕmax(ε) := max{ϕ(ε),ϕi(ε), i = , , , }.
Now we assume that t ∈ J , then by using the continuity of p, p on J × J × [–r, r] and

condition (H), we can obtain

�
(
δ(t, u, v)

) → , �
(
γ (t, u, v)

) → ,

as ε → . Thus, we proved that Q : Br → Br is a continuous operator.
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Now we show that for any nonempty set X ⊂ Br , μ(QX) ≤ φ(μ(X)). First, we demon-
strate that the operator Q : Br → Br is equicontinuous. In view of (.), we define fmax =
sup(t,u)∈J×Br

‖f (s, u, Tu, Su)‖. For any u ∈ Br and tk– ≤ τ < τ ≤ tk ∈ J with |τ – τ| ≤ ε,
we get that

∥
∥(Qu)(τ) – (Qu)(τ)

∥
∥

=

∥
∥
∥
∥
∥

∫ τ

τ

(τ – s)α–

(α)
f
(
s, u(s), (Tu)(s), (Su)(s)

)
ds

+
∫ τ



(
(τ – s)α– – (τ – s)α–

(α)

)

f
(
s, u(s), (Tu)(s), (Su)(s)

)
ds

+ (τ – τ)
[∫ 



( – s)α–

(α)
f
(
s, u(s), (Tu)(s), (Su)(s)

)
ds

+
b
a

∫ 



( – s)α–

(α – )
f
(
s, u(s), (Tu)(s), (Su)(s)

)
ds

]

+ (τ – τ)
p∑

j=

I∗
j
(
u(tj)

)
(

b
a

– tj

)

+ (τ – τ)
p∑

j=

Ij
(
u(tj)

)
+ (τ – τ)

p∑

j=k+

I∗
j
(
u(tj)

)

+
(τ – τ)

a
(
γ(u) – γ(u)

)
∥
∥
∥
∥
∥

≤ fmax

{(


(α + )
+

b
a(α)

)

|τ – τ| +


(α + )
(τ – τ)α

}

+ p
((

b
a

+ 
)

ρ + μ

)

|τ – τ| +
|τ – τ|

a
(μ + ρ).

In conclusion , ω(Qu, ε) →  as ε → , which implies that Q(Br ) is equicontinuous.
Linking these statements with the above estimate and formula (.), we deduce the fol-

lowing inequality:

ω(QX) ≤
{

(b + a)
a(α + )

+
b

a(α)

}

ϕ
(
ω(X)

)
.

Also, for fixed t ∈ J and u, v ∈ Br , from (.) we obtain

∥
∥(Qu)(t) – (Qv)(t)

∥
∥

≤
{

p
a

(
a(b + a) +

(
a + ab + b)) +

b + a
a

}

ϕmax
(‖u – v‖)

+
{

(b + a)
a(α + )

+
b

a(α)

}
{
ϕmax

(‖u – v‖) + �
(
δ(t, u, v)

)
+ �

(
γ (t, u, v)

)}
,

where ϕmax(‖u – v‖) := max{ϕ(‖u – v‖),ϕi(‖u – v‖), i = , , , }. By using condition (.)
and t → ∞, we deduce that

lim
t→∞ sup diam(QX)(t) ≤

[
p
a

(
a(b + a) +

(
a + ab + b)) +

b + a
a

+
{

(b + a)
a(α + )

+
b

a(α)

}]

lim
t→∞ sup diamϕmax

(
X(t)

)
.
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Consequently, by considering μ defined by (.), we have

μ(QX) ≤
[

p
a

(
a(b + a) +

(
a + ab + b)) +

b + a
a +

(b + a)
a(α + )

+
b

a(α)

]

ϕ
(
μ(X)

)
,

where φ(s) = [ p
a (a(b + a) + (a + ab + b)) + b+a

a + (b+a)
a(α+) + b

a(α) ]ϕ(s) ∈ � . Combining
the above estimate with all properties of the operator Q, by Lemma ., we complete the
proof. �

Theorem . Let ξ : E ×E →R
+ be a given function. Assume that the following conditions

hold:
(A) There exists ψ ∈ � such that

∥
∥f

(
s, u(s), (Tu)(s), (Su)(s)

)
– f

(
s, v(s), (Tv)(s), (Sv)(s)

)∥
∥

≤ a(α)(α + )
[a(α)(a + b) + b(α + )]

ψ
(‖u – v‖),

∥
∥γi(u) – γi(v)

∥
∥ ≤ a

(a + b)
ψ

(‖u – v‖),

∥
∥Ik

(
u
(
t–
k
))

– Ik
(
v
(
t–
k
))∥

∥ ≤ a

p(a(b + a))
ψ

(‖u – v‖),

∥
∥I∗

k
(
u
(
t–
k
))

– I∗
k
(
v
(
t–
k
))∥

∥ ≤ a

p(a + ab + b)
ψ

(‖u – v‖)

for all t ∈ J and for all u, v ∈ E with ξ (u, v) ≥ , i = , , k = , , . . . , p.
(B) There exists u ∈ PC(J , E) such that ξ (u(t), Qu(t)) ≥  for all t ∈ J , where a mapping

Q : PC(J , E) → PC(J , E) is defined by

(Qu)(t) :=


(α)

∫ t


(t – s)α–f

(
s, u(s), (Tu)(s), (Su)(s)

)
ds

+
(

b
a

– t
)[


(α)

∫ 


( – s)α–f

(
s, u(s), (Tu)(s), (Su)(s)

)
ds

+
b

a(α – )

∫ 


( – s)α–f

(
s, u(s), (Tu)(s), (Su)(s)

)
ds

]

+
(

b
a

+  – t
) p∑

j=

I∗
j
(
u(tj)

)
(

b
a

– tj

)

+
(

b
a

+  – t
) p∑

j=

Ij
(
u(tj)

)

– (t – tj)
p∑

j=k+

I∗
j
(
u(tj)

)
–

p∑

j=k+

Ij
(
u(tj)

)

+


a

[(
a( – t) + b

)
γ(u) + (at – b)γ(u)

]
, t ∈ (tk , tk+], k = , , . . . , p – .

(C) For each t ∈ J , and u, v ∈ PC(J , E), ξ (u(t), v(t)) ≥  implies that ξ (Qu(t), Qv(t)) ≥ .
(D) For each t ∈ J , if {un} is a sequence in PC(J , E) such that un → u in PC(J , E) and

ξ (un(t), un+(t)) ≥  for all n ∈N, then

ξ
(
un(t), u(t)

) ≥ 

for all n ∈N. Then problem (.) has at least one solution.
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Proof First of all, let E = PC(J , E). By Lemma ., it is easy to see that u ∈ E is a solution of
(.) given by (.), then problem (.) is equivalent to finding u∗ ∈ E which is a fixed point
of Q.

Now, let u, v ∈ E such that ξ (u(t), v(t)) ≥  for all t ∈ J . By condition (A), we have

∥
∥Qu(t) – Qv(t)

∥
∥

≤ 
(α)

∫ t


(t – s)α–∥∥f

(
t, u(t), (Tu)(t), (Su)(t)

)
– f

(
t, v(t), (Tv)(t), (Sv)(t)

)∥
∥ds

+
∣
∣
∣
∣
b
a

– t
∣
∣
∣
∣

[∫ 



( – s)α–

(α)
∥
∥f

(
t, u(t), (Tu)(t), (Su)(t)

)
– f

(
t, v(t), (Tv)(t), (Sv)(t)

)∥
∥ds

+
b
a

∫ 



( – s)α–

(α – )
∥
∥f

(
t, u(t), (Tu)(t), (Su)(t)

)
– f

(
t, v(t), (Tv)(t), (Sv)(t)

)∥
∥ds

]

+
∣
∣
∣
∣
b
a

+  – tk

∣
∣
∣
∣

p∑

j=

∥
∥I∗

j
(
u(tj)

)
– I∗

j
(
v(tj)

)∥
∥ ·

∣
∣
∣
∣
b
a

– tj

∣
∣
∣
∣

+
∣
∣
∣
∣
b
a

+  – tk

∣
∣
∣
∣

p∑

j=

∥
∥Ij

(
u(tj)

)
– Ij

(
v(tj)

)∥
∥ – |t – tj| +

p∑

j=k+

∥
∥I∗

j
(
u(tj)

)
– I∗

j
(
v(tj)

)∥
∥

+
p∑

j=k+

∥
∥Ij

(
u(tj)

)
– Ij

(
v(tj)

)∥
∥ +


a

[(
a( – t) + b

)∥
∥γ(u) – γ(v)

∥
∥

+ (at – b)
∥
∥γ(u) – γ(v)

∥
∥
]

≤ ψ
(‖u – v‖).

This implies that for each u, v ∈ E with ξ (u(t), v(t)) ≥  for all t ∈ J , we obtain that

∥
∥Qu(t) – Qv(t)

∥
∥ ≤ ψ

(‖u – v‖) (.)

for all u, v ∈ E. Now, we define the function γ : E × E → [,∞) by

γ (u, v) =

⎧
⎨

⎩

 if ξ (u(t), v(t)) ≥  for all t ∈ J ,

 otherwise,

and also we define the w-distance p on E by p(u, v) = ‖u – v‖. From (.), we have

γ (u, v)p(Qu, Qv) ≤ ψ
(
p(u, v)

)

for all u, v ∈ E. This implies that Q is a (γ ,ψ , p)-contractive mapping. From condition (B),
there exists u ∈ E such that γ (u, Qu) ≥ . Next, by using condition (C), the following
assertions hold for all u, v ∈ E:

γ (u, v) ≥  ⇒ ξ
(
u(t), v(t)

) ≥ 

⇒ ξ
(
Qu(t), Qv(t)

) ≥ 

⇒ γ (Qu, Qv) ≥ 
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and hence Q is a γ -admissible mapping. Finally, from condition (D) we get that condition
(iii) of Lemma . holds. Therefore, by Lemma ., we find x∗ ∈ E such that x∗ = Qx∗, and
so x∗ is a solution of problem (.), which completes the proof. �

4 An example
In this section we give an example to illustrate the usefulness of our results.

Example . We consider the following impulsive fractional differential equation:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

cD


+ u(t) = t

+t ln( + |u(t)|) +
∫ t


se–t cos u(t)
+| sin u(t)| ds

+
∫ t


s| cos u(t)|+es(+sin u(t))

et (+sin u(t)) ds,

�u( 
 ) = |u( 

 )|
+|u( 

 )| , �u′( 
 ) = |u( 

 )|
+|u( 

 )| ,

u() + u′() =
∑m

i= ηiu( 
 ), u() + u′() =

∑m
i= η̃ĩu( 

 ),

(.)

where  < η < η < · · · < ,  < η̃ < η̃ < · · · < , and ηi, η̃i are given positive constants with
∑m

i= ηi < 
 and

∑m
j= η̃j < 

 . Take J := [, ] and α = 
 , p = , a = , b = .

Let

Tu =
∫ t



se–t cos u(t)
 + | sin u(t)| ds, Su =

∫ t



s| cos u(t)| + es( + sin u(t))
et( + sin u(t))

ds,

f (t, u, Tu, Su) =
t

 + t ln
(
 +

∣
∣u(t)

∣
∣
)

+ Fu + Gu,

Ik(u) =
|u( 

 )|
 + |u( 

 )| , I∗
k (u) =

|u( 
 )|

 + |u( 
 )| ,

γ(u) =
m∑

i=

ηiu
(




)

, γ(u) =
m∑

i=

η̃ĩu
(




)

,

then the impulsive fractional differential equation (.) can be transformed into the ab-
stract form of problem (.). We show that all the conditions of Theorem . are satisfied
for problem (.). Next, let u, v ∈ PC(J , E), we calculate

∥
∥f (t, u, Tu, Su) – f (t, v, Tv, Sv)

∥
∥

=
∥
∥
∥
∥

t

 + t

(
ln

(
 +

∣
∣u(t)

∣
∣
)

– ln
(
 +

∣
∣v(t)

∣
∣
))

+ (Tu – Tv) + (Su – Sv)
∥
∥
∥
∥

≤ 


∥
∥
∥
∥ln

(

 +
|u| – |v|
 + |u|

)∥
∥
∥
∥ + �

(‖Tu – Tv‖) + �
(‖Su – Sv‖)

≤ 


[



ln
(
 + |u – v|)

]

+ �
(‖Tu – Tv‖) + �

(‖Su – Sv‖)

≤ 


ln

(
 + |u – v|



)

+ �
(‖Tu – Tv‖) + �

(‖Su – Sv‖)
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≤ 


ln

(

 +
|u – v|



)

+ �
(‖Tu – Tv‖) + �

(‖Su – Sv‖)

≤ 


ln
(
 + |u – v|) + �

(‖Tu – Tv‖) + �
(‖Su – Sv‖)

= ϕ
(|u – v|) + �

(‖Tu – Tv‖) + �
(‖Su – Sv‖).

Obviously, the function ϕ(t) = 
 ln( + t) is nondecreasing on J and ϕ(t) < t for all t > ,

�(t) = �(t) = t, hence condition (H) holds.
On the other hand, the fact that M = sup{|f (t, , , )|, t ∈R+} =  shows condition (H)

is valid. Moreover, we have

∥
∥Ik(u) – Ik(v)

∥
∥ =

∥
∥
∥
∥

|u( 
 )|

 + |u( 
 )| –

|v( 
 )|

 + |v( 
 )|

∥
∥
∥
∥ ≤ 


‖u – v‖,

∥
∥I∗

k (u) – I∗
k (v)

∥
∥ =

∥
∥
∥
∥

|u( 
 )|

 + |u( 
 )| –

|v( 
 )|

 + |v( 
 )|

∥
∥
∥
∥ ≤ 


‖u – v‖,

∥
∥γ(u) – γ(v)

∥
∥ =

∥
∥
∥
∥
∥

m∑

i=

ηiu
(




)

–
m∑

i=

ηiv
(




)∥
∥
∥
∥
∥

≤ 


‖u – v‖,

∥
∥γ(u) – γ(v)

∥
∥ =

∥
∥
∥
∥
∥

m∑

i=

η̃ĩu
(




)

–
m∑

i=

η̃ĩv
(




)∥
∥
∥
∥
∥

≤ 


‖u – v‖,

∥
∥Ik(u)

∥
∥ =

∥
∥
∥
∥

|u( 
 )|

 + |u( 
 )|

∥
∥
∥
∥ ≤ 


‖u‖,

∥
∥I∗

k (u)
∥
∥ =

∥
∥
∥
∥

|u( 
 )|

 + |u( 
 )|

∥
∥
∥
∥ ≤ 


‖u‖,

∥
∥γ(u)

∥
∥ =

∥
∥
∥
∥
∥

m∑

i=

ηiu

∥
∥
∥
∥
∥

≤ 


‖u‖,
∥
∥γ(u)

∥
∥ =

∥
∥
∥
∥
∥

m∑

i=

η̃ĩu
(

x,



)∥
∥
∥
∥
∥

≤ 


‖u‖,

∣
∣k(t, s)

[
p(s, u) – p(s, v)

]∣
∣ ≤ s

et ,

∣
∣h(t, s)

[
p(s, u) – p(s, v)

]∣
∣ ≤ s

et ,

lim
t→∞

∫ t



∣
∣k(t, s)

[
p

(
s, u(s)

)
– p

(
s, v(s)

)]∣
∣ds ≤ lim

t→∞
s
et = lim

t→∞
t

et = 

and

lim
t→∞

∫ t



∣
∣h(t, s)

[
p

(
s, u(s)

)
– p

(
s, v(s)

)]∣
∣ds ≤ lim

t→∞
s

et = lim
t→∞

t

et = 

for any u, v ∈ PC(J , E). Also, we have

∣
∣
∣
∣

∫ t


k(t, s)p

(
s, u(s)

)
ds

∣
∣
∣
∣ ≤

∫ t



∣
∣k(t, s)p

(
s, u(s)

)∣
∣ds ≤

∫ t



s
et ds =

t

et , (.)

∣
∣
∣
∣

∫ t


h(t, s)p

(
s, u(s)

)
ds

∣
∣
∣
∣ ≤

∫ t



∣
∣h(t, s)p

(
s, u(s)

)∣
∣ds ≤

∫ t



s + es

et ds =
t + et – 

et . (.)
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Using (.), (.), we compute

D = sup

{∣
∣
∣
∣

∫ t


k(t, s)p

(
s, u(s)

)
ds

∣
∣
∣
∣ : t, s ∈ J , u ∈ C(J , E)

}

≤ sup

{
t

et : t > 
}

= e–,

D = sup

{∣
∣
∣
∣

∫ a


h(t, s)p

(
s, u(s)

)
ds

∣
∣
∣
∣ : t, s ∈ J , u ∈ C(J , E)

}

≤ sup

{
t + et – 

et : t > 
}

=
 + e – 

e

= .

Finally, let us consider the first inequality in assumption (H). On the basis of the above
calculations, we see that each number r ≥  satisfies the inequality in condition (H), i.e.,

{
(b + a)

a(α + )
+

b
a(α)

}
(
ϕ
(‖u‖) + �(D) + �(D) + M

)

+
p
a

(
a(b + a)μ +

(
a + ab + b)ρ

)
+

a + b
a (N + N) ≤ r.

Thus, as the number r, we can take r = . Consequently, all the conditions of Theorem .
are satisfied. Thus, problem (.) has at least one solution belonging to the ball Br in the
space PC(J , E).

5 Conclusions
The aim of this paper is to discuss the existence of solutions for a class of mixed boundary
value problems of impulsive integrodifferential equations of fractional order α ∈ (, ]. Our
results improve and generalize some known results.
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