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Abstract
In order to comprehend the effects of the duration of pesticide residual effectiveness
on successful pest control, a stochastic integrated pest management (IPM) model
with pesticides which have residual effects is proposed. Firstly, we show that our
model has a global and positive solution and give its explicit expression when pest
goes extinct. Then the sufficient conditions for pest extinction combined with the
ones for the global attractivity of the pest solution only chemical control are
established. Moreover, we also derive sufficient conditions for weak persistence which
show that the solution of stochastic IPM models is stochastically ultimately bounded
under some conditions.
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1 Introduction
Integrated pest management (IPM) was introduced and was widely practised recently [–
]. IPM is a long time management strategy that uses a combination of cultural, biological
and chemical tactics that reduce pests to tolerable levels with little cost to the grower and
a minimal effect on the environment.

Especially, spraying of pesticides to crops is intended to reduce the population of pest,
but can under some circumstances exacerbate a pest problem. This phenomenon, fre-
quently called insecticide-induced resistance, has several possible mechanisms including
reduction in herbivore-herbivore competition, physiological enhancement of pest fecun-
dity, altered host plant nutrition, changes in pest behavior, and the killing of natural preda-
tors and parasites of the pest [–]. As a result, considerable emphasis has been placed
on tactics other than chemical controls, including cultural, biological, and genetic meth-
ods and the deployment of crop varieties that are resistant to pests. Researchers have found
that the cultural and biological pest controls are ecologically sound and could provide so-
lutions that are sustainable in the long term [, ].

However, chemical pesticides may have long-term residual effects which reduce the
populations of pest for several weeks, months or years. On the other hand, population
dynamics in the real world is inevitably affected by environmental noises. So it is very
important to study stochastic population systems to analyze the effect of environmental
noises on population systems [–].
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Based on the above discussions, this paper is to construct a stochastic integrated pest
management (IPM) model with pesticides that have residual effects firstly. In the first
place, we derive that the model has a global positive solution by using the mathematical
induction method. On the other hand, the explicit expression of the pest-eradication solu-
tion is given. Moreover, in order to show residual effects, the sufficient condition for pest
extinction and the global attractivity of the pest solution when the natural enemy disap-
pears are established. Furthermore, we establish sufficient conditions for weak persistence
in the mean and also show that the solution of stochastic IPM models is stochastically ul-
timately bounded under some conditions. The methods may have applications for a wider
range of aspects of theoretical biology.

2 The killing efficiency rate with pulses of chemical control
It is universally acknowledged that the residual effects of pesticides exert desirable impacts
on pest control. Therefore, a more realistic and appropriate method for modeling chemical
control in such a case is to use continuous or piecewise-continuous periodic functions
which affect the growth rate in the logistic model [–]. Such periodic functions make the
growth rate fluctuate so that it decreases significantly, or even takes on negative values
when the effects of pesticides have disappeared, but increases again during the recovery
stage.

As mentioned above, more and more pesticides have a residual effect, which decays with
time because of the degradation of pesticide and natural clearance [, ]. In general, the
killing efficiency rate h(t) can take on various periodic (period T ) forms including the step
function of the form []

h(t) =

⎧
⎨

⎩

m, nT ≤ t ≤ nT + τ ,

, nT + τ ≤ t ≤ (n + )T ,
(.)

where τ is the duration of pesticide residues. For simplicity, we will focus on the step
function h(t) of the form defined by (.) throughout this paper (see Figure ).

3 The stochastic IPM model with residual effects of pesticides
The complex interactions amongst pests, natural enemies and pesticides can be enhanced
with mathematical modeling [, ]. Modeling advances regarding IPM strategies include
analyses of continuous and discrete predator-prey models [–]. In addition, discrete

Figure 1 The residual effects of pesticide
applications with τ = 2, T = 4, m = 0.8.



Tan et al. Advances in Difference Equations  (2017) 2017:197 Page 3 of 13

host-parasitoid models have been used to study four cases involving the timing of pesticide
applications when these also led to the death of the parasitoids [].

In [], they first take into account the simplest case where in each impulsive period T
there is a pesticide application, so the killing efficiency rate function can be formulated by
the exponentially decaying piecewise periodic function. Further, in each impulsive period
T , there is an introduction constant R for the natural enemies which does not depend on
the size of the populations. These assumptions result in the following pest-natural enemy
model:

⎧
⎪⎨

⎪⎩

dP(t)
dt = P(t)(r – bP(t)) – h(t)P(t) – βP(t)N(t),

dN(t)
dt = λβP(t)N(t) – dN(t),

}

t �= nT ,

N(nT+) = N(nT) + R, t = nT ,
(.)

where P(t) and N(t) are the population density of the pest and the natural enemy at time t,
respectively, and the function h(t) is defined by (.), r represents the intrinsic growth rate
and r/b is the carrying capacity parameter, β denotes the attack rate of the predator, λ

represents conversion efficiency and d is the predator mortality rate. The same model (.)
but without any residual effects of the pesticides on the pest (i.e., only an instantaneous
killing efficiency was considered) has been investigated, see [, ] for details.

On the other hand, in the real world, the growth of species usually suffers some dis-
crete changes of relatively short time interval at some fixed times with some natural and
man-made factors, such as drought, harvesting, fire, earthquake, flooding, deforestation,
hunting and so on. These phenomena cannot be considered with certainty, so in this case,
the determined model (.) cannot be applicable. In order to describe these phenomena
more accurately, some authors considered the stability of stochastic differential equation
(SDE) []. However, as far as our knowledge is concerned, there is very little amount of
work on the impulsive stochastic population model. By now, there have been no results
related to the stochastic IPM model with residual effects of pesticides with impulsive ef-
fects.

Inspired by the above discussions, we develop the following stochastic IPM model with
residual effects of pesticides with impulsive effects:

⎧
⎪⎨

⎪⎩

dP(t) = [P(t)(r – bP(t)) – h(t)P(t) – βP(t)N(t)] dt + αP(t) dB(t),
dN(t) = λβP(t)N(t) dt – dN(t) dt + αN(t) dB(t),

}

t �= nT ,

N(nT+) = N(nT)( + q(nT)), t = nT ,
(.)

where α and α are the coefficients of the effects of environmental stochastic perturba-
tions on the pest and the natural enemy, Bi(t), i = , , are the standard Brownian motions
independent of each other and with the initial condition Bi() = , i = , , q(nT) repre-
sents the proportion of releasing natural enemies at time nT , the other parameters are the
same as in model (.).

3.1 Mathematical analysis of the pest-free solution
One of the main purposes of investigating model (.) is to determine how to implement
an IPM strategy so that the population goes extinct eventually. To do this, we first need to
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consider the following subsystem:

⎧
⎪⎨

⎪⎩

dN(t) = –dN(t) dt + αN(t) dB(t), t �= nT ,
N(nT+) = N(nT)( + q(nT)), t = nT ,
N(+) = N().

(.)

In order obtain the globally positive pest-free solution, we will give a solution of the defi-
nition of an impulsive stochastic differential equation.

Throughout this paper, let (�,F , {Ft}t≥,P) be a complete probability space with a fil-
tration {Ft}t≥ satisfying the usual conditions. Let B(t) denote a standard Brownian mo-
tion defined on this probability space. Moreover, we always assume that a product equals
unity if the number of factors is zero.

Definition  ([]) Consider the following ISDE:

{
dX(t) = f (t, X(t)) dt + σ (t, X(t)) dB(t), t �= nT ,
X(nT+) = ( + q(nT))X(nT), t = nT ,

(.)

with the initial condition X(). A stochastic process X(t) = (X(t), X(t), . . . , Xn(t))τ , t ∈ R+,
is said to be s solution of ISDE (.) if:

(i) X(t) is Ft-adapted and continuous on (, T) and each interval (nT , (n + )T) ⊂ R+,
n ∈N ; f (t, X(t)) ∈ L (R+; Rn), σ (t, X(t)) ∈ L (R+; Rn), where L n(R+; Rn) is all
Rn-valued measurable Ft-adapted processes g(t) satisfying

∫ ζ

 |g(t)|n dt < ∞ a.s.
(almost surely) for every ζ > ;

(ii) for each nT , n ∈N , X(nT+) = limt→nT+ X(t) and X(nT–) = limt→nT– X(t) exist and
X(nT) = X(nT–) with probability one;

(iii) for almost all t ∈ (, T], P(t) obeys the integral equation

X(t) = X() +
∫ t


f
(
s, X(s)

)
ds +

∫ t


σ
(
s, X(s)

)
dB(s).

And for almost all t ∈ (nT , (n + )T], n ∈N , X(t) obeys the integral equation

X(t) = X
(
nT+) +

∫ t

nT
f
(
s, X(s)

)
ds +

∫ t

nT
σ
(
s, X(s)

)
dB(s).

Moreover, X(t) satisfies the impulsive conditions at each t = nT , n ∈N with
probability one.

Let us state and prove the following result.

Theorem  For any initial value N(+) = N(), there exists a unique positive solution N(t)
to ISDE (.) a.s., which is global and explicit

N(t) =
∏

<nT<t

(
 + q(nT)

)
N() exp

{(
–d – .α


)
t + αB(t)

}
.

Proof Consider a Lyapunov function V (t) defined by

V
(
N(t), t

)
= ln N(t), t ≥ .
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Making use of Itô’s formula

dV
(
N(t), t

)
=

dN(t)
N(t)

–



(dN(t))

N(t)
,

we can obtain that

d
(
ln N(t)

)
=
(
–d – .α


)

dt + α dB(t).

Suppose t ∈ (nT , (n + )T], n ∈N . Integrating both sides from nT to t, one can see that

ln N(t) – ln N(nT) =
(
–d – .α


)
(t – nT) + α

(
B(t) – B(nT)

)
.

Applying the impulse condition N(nT+) = ( + q(nT))N(nT), we can obtain that

N(t) =
(
 + q(nT)

)
N(nT) exp

{(
–d – .α


)
(t – nT) + α

(
B(t) – B(nT)

)}
.

Applying the mathematical induction method, we get

N(t) =
∏

<nT<t

(
 + q(nT)

)
N() exp

{(
–d – .α


)
t + αB(t)

}
. �

3.2 Mathematical analysis of chemical control only
As the natural enemy disappeared, one of the main purposes of investigating model (.)
is to determine under what circumstances the pest goes extinct eventually. To do this, we
first need to consider the following subsystem:

dP(t) =
[
P(t)

(
r – bP(t)

)
– h(t)P(t)

]
dt + αP(t) dB(t). (.)

In order to establish a sufficient condition for pest extinction and prove the global attrac-
tivity of solution of model (.), we introduce some useful definitions and lemmas.

Definition  If N(t), N(t) are two arbitrary solutions of model (.) with the initial values
N(), N()>, respectively. If limt→∞ |N(t) – N(t)| =  a.s., then Eq. (.) is globally
attractive.

Lemma  If N(t) is a solution of (.) without impulsive effects for any initial value
N() = N > . If Assumption  holds, then almost every sample path of N(t) is uniformly
continuous for t ≥ .

Lemma  If f is a non-negative function defined on R+ such that f is integrable on R+ and
is uniformly continuous on R+, then limt→∞ f (t) = .

In the following, we will give our main result.

Theorem  If r –.α
 – mτ

T < , then the solution P(t) of SDE (.) with any positive initial
value has limt→∞ P(t) = .
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Proof Making use of Itô’s formula, we derive the following form in model (.):

d
(
log P(t)

)
=
[
r – .α

 – h(t) – bP(t)
]

dt + α dB(t).

Integrating both sides from  to t, we have

log P(t) = log P +
∫ t



[
r – .α

 – h(t)
]

ds – b
∫ t


P(s) ds + α

∫ t


dB(s)

≤ log P +
∫ t



[
r – .α

 – h(t)
]

ds + M(t),

where M(t) is a martingale defined by

M(t) = α

∫ t


dB(s).

The quadratic variation of this martingale is

〈
M(t), M(t)

〉
= α

 t.

Making use of the strong law of large numbers for local martingales (see [], p.) leads
to

lim
t→∞ M(t)/t = .

According to the hypothesis,

lim
t→∞ sup

log P(t)
t

≤ lim
t→∞ sup

∫ t
 [r – .α

 – mτ
T ] ds

t
.= λ∗ < ,

hence, we can derive that

lim
t→∞ P(t) = . �

Theorem  The solution of model (.) is globally attractive.

Proof Let P(t), P(t) be two arbitrary solutions of model (.) with the initial values
P(), P() > , respectively. Suppose that the solution of the equation

dP(t) =
[
P(t)

(
r – bP(t)

)
– h(t)P(t)

]
dt + αP(t) dB(t) with P() = P()

is P(t) and the solution of the equation

dP(t) =
[
P(t)

(
r – bP(t)

)
– h(t)P(t)

]
dt + αP(t) dB(t) with P() = P()

is P(t). Consider a Lyapunov function V (t) defined by

V (t) =
∣
∣ln P(t) – ln P(t)

∣
∣, t ≥ .

Then V (t) is continuous. So a direct calculation of the right differential d+V (t) of V (t)
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along the solutions leads to

d+V (t) = sgn
(
P(t) – P(t)

)
d
(
ln P(t) – ln P(t)

)

= sgn
(
P(t) – P(t)

)[
–b
(
P(t) – P(t)

)]
dt

= –b
∣
∣P(t) – P(t)

∣
∣dt.

Integrating both sides and then taking the expectation, we have that

V (t) – V () = –b
∫ t



∣
∣P(s) – P(s)

∣
∣ds.

Consequently, it gives that

V (t) + b
∫ t



∣
∣P(s) – P(s)

∣
∣ds = V () < ∞.

Then it follows from V (t) ≥  that |P(s) – P(s)| ∈ L[,∞). Combining Lemma  with
Lemma  can derive that

lim
t→∞

∣
∣P(t) – P(t)

∣
∣ = . �

3.3 The persistence and stochastically ultimate boundedness
In order to investigate the persistence and stochastically ultimate boundedness, we need
to guarantee the existence and uniqueness of the positive solution. In the following, we
illustrate the definitions of solutions of system (.).

Theorem  Model (.) has a unique solution (P(t), N(t)) on t >  for any given initial
value (P(), N()) ∈ R

+ = {(P(t), N(t)) ∈ R
+ | P(t) > , N(t) > } and the solution will remain

in R
+ a.s.

Proof According to [], consider the following SDE without impulse effects:

⎧
⎪⎪⎨

⎪⎪⎩

dP(t) = [P(t)(r – bP(t)) – h(t)P(t) – β
∏

<nT<t( + q(nT))P(t)N(t)] dt

+ αP(t) dB(t),

dN(t) = λβP(t)N(t) dt – dN(t) dt + αN(t) dB(t)

(.)

with the initial value (P(), N()) = (P(), N()). Model (.) has a unique global positive
solution (P(t), N(t)). Let N(t) =

∏
<nT<t( + q(nT))N(t), we may prove that (P(t), N(t))

is the solution to model (.) with the initial value (P(), N()). Because of the first equa-
tion of (.), we only consider the second equation of model (.), by the fact that N(t) is
continuous on (, T] and each interval t ∈ (nT , (n + )T] ⊂ [,∞), n ∈N and for t �= nT

dN(t) = d
[ ∏

<nT<t

(
 + q(nT)

)
N(t)

]

=
∏

<nT<t

(
 + q(nT)

)
dN(t)

= λβ
∏

<nT<t

(
 + q(nT)

)
P(t)N(t) dt – d

∏

<nT<t

(
 + q(nT)

)
N(t) dt
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+ α
∏

<nT<t

(
 + q(nT)

)
N(t) dB(t)

= λβP(t)N(t) dt – dN(t) dt + αN(t) dB(t).

Moreover, for every n ∈N and t �= nT ,

N
(
nT+) = lim

t→nT+
N(t)

= lim
t→nT+

∏

<iT<t

(
 + q(iT)

)
N(t)

= lim
t→nT+

∏

<iT≤nT

(
 + q(iT)

)
N
(
nT+)

=
(
 + q(nT)

) ∏

<iT<nT

(
 + q(iT)

)
N(nT)

=
(
 + q(nT)

)
N(nT).

On the other hand,

N
(
nT–) = lim

t→nT–
N(t)

= lim
t→nT–

∏

<iT<t

(
 + q(iT)

)
N(t)

= lim
t→nT+

∏

<iT<nT

(
 + q(iT)

)
N
(
nT–)

=
∏

<iT<nT

(
 + q(iT)

)
N(nT) =

(
 + q(nT)

)
N(nT). �

Theorem  indicates that model (.) has a unique global positive solution. This main
result allows us to further examine how the solution varies in R

+ in more detail. Now let
us further examine how this solution pathwisely moves in R+.

Assumption  There are two positive constants L and U such that L ≤ ∏
<nT<t( +

q(nT)) ≤ U .

Theorem  Under Assumption , the solution (P(t), N(t)) of model (.) satisfies the fol-
lowing inequalities:

lim
t→∞ sup E

[√(
P

 (s) + N
 (s)

)]≤K
(
K ∈ R+).

Proof According to model (.), we define

A =

[
–b –β

∏
<nT<t( + q(nT))

λβ 

]

, (.)

then there exist two constants ν and ν (see) such that

λmax
(
C̃A + AT C̃

)
< , (.)
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where C̃ = diag(c, c), and λmax(C̃A + AT C̃) is the largest eigenvalue of C̃A + AT C̃. In order
to show this statement, define a C-function V: R

+ → R+ by

V
(
P(t), N(t)

)
= cP(t) + cN(t).

In view of Itô’s formula, we get

dV
(
P(t), N(t)

)
= LV

(
P(t), N(t)

)
dt + cαP(t) dB(t)cαN(t) dB(t), (.)

where LV (P(t), N(t)): R
+ → R+ is defined by

LV
(
P(t), N(t)

)

= cP(t)
[

r – bP(t) – h(t) – β
∏

<nT<t

(
 + q(nT)

)
N(t)

]

+ cN(t)
(
λβP(t) – d

)

= rcP(t) – dcN(t) +


(
P(t), N(t)

)(
C̃A + AT C̃

)(
P(t), N(t)

)T

≤ rcP(t) – dcN(t) +


λmax

(
C̃A + AT C̃

)(
P

 (t) + N
 (t)

)
. (.)

In the following, consider a Lyapunov function V(t) defined by

V(t) = etV
(
P(t), N(t)

)
, t ≥ .

Making use of Itô’s formula, we get

d
[
etV

(
P(t), N(t)

)]
= etV

(
P(t), N(t)

)
dt + etV

(
P(t), N(t)

)

=
(
cP(t) – cN(t)

)
et dt + et(LV

(
P(t), N(t)

))
dt

+ cαP(t) dB(t) – cαN(t) dB(t)

≤ et
[

cP(t) – cN(t) + rcP(t) – dcN(t)

+


λmax

(
C̃A + AT C̃

)(
P

 (t) + N
 (t)

)
]

dt

+ et[cαP(t) dB(t) – cαN(t) dB(t)
]
.

Let

g
(
P(t), N(t)

) .= cP(t) – cN(t) + rcP(t) – dcN(t)

+


λmax

(
C̃A + AT C̃

)(
P

 (t) + N
 (t)

)
.

It is easy to see that there exists a constant K >  such that g(P(t), N(t)) ≤K, so we have
that

d
[
etV

(
P(t), N(t)

)]≤Ket dt + et[cαP(t) dB(t) – cαN(t) dB(t)
]
.
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Integrating from  to t and then taking expectations, one can get

etE
[
V
(
P(t), N(t)

)]≤ V
(
P(), N()

)
+ K

(
et – 

)
.

Taking superior limit of both sides, we get

lim
t→∞ sup E

[
V
(
P(t), N(t)

)]≤K. (.)

On the other hand,

√(
P

 (t) + N
 (t)

)≤ P(t) + N(t) ≤ V
(
P(t), N(t)

)/
min{c, c}.

Consequently,

lim
t→∞ sup E

[√(
P

 (t) + N
 (t)

)]≤ lim
t→∞ sup E

[
V
(
P(t), N(t)

)]/
min{c, c}

≤K/ min{c, c} .= K. (.)

�

For better discussion later, we give several definitions, then try to explore sufficient con-
ditions for them.

Definition  If limt→∞ sup
∫ t

 P(s) ds
t >  a.s., then the species P(t) is weakly persistent in

the mean.

Definition  A solution Z (t) = (P(t), N(t)) of Eq. (.) is said to be stochastically ulti-
mately bounded if ∀ε ∈ (, ),∃δ = δ∗ >  such that

lim
t→∞ supP

[∣
∣Z (t)

∣
∣ > δ

]
< ε

for any initial value (P(), N()) ∈ R
+.

We are now in a position to prove persistence. For the pest P(t) and the natural enemy
N(t), we have the following results.

Theorem 
(i) If r – .α

 – mτ
T > , limt→∞ sup

∑
<nT<t ln(+q(nT))

t < –d + .α
 , then the pest P(t) is

weakly persistent in the mean.
(ii) If λβ(r – .α

 – mτ
T ) + b limt→∞ sup

∑
<nT<t ln(+q(nT))

t + d – .α
 > , and

limt→∞ sup
∑

<nT<t ln(+q(nT))
ln t < ∞, then the natural enemy N(t) will be weakly

persistent in the mean.

Proof For the pest P(t), consider a Lyapunov function V (t) defined by

V (t) = ln P(t), t ≥ .
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Applying Itô’s formula to the first equation of Eq. (.) yields

d ln P(t) =
dP(t)
P(t)

–
(dP(t))

P(t)
= r – h(t) – .α

 – bP(t) – βN(t) + α dB(t).

Integrating both sides from  to t and both dividing by t, one can see that

ln[P(t)/P()]
t

= r – .α
 –

mτ

T
–

b
∫ t

 P(s) ds
t

–
β
∫ t

 N(s) ds
t

+
M(t)

t
. (.)

In the same way,

ln[N(t)/N()]
t

=
∑

<nT<t ln( + q(nT))
t

+ d – .α
 +

λβ
∫ t

 P(s) ds
t

+
M(t)

t
, (.)

where Mi(t) =
∫ t

 αi dBi(s), i = , . Then Mi(t) is a local martingale whose quadratic vari-
ation 〈Mi(t), Mi(t)〉 =

∫ t
 α

i d(s). Making use of the strong law of large numbers for local
martingales ([], p.) leads to

lim
t→∞

Mi(t)
t

= , a.s. i = , . (.)

Case (i). By Theorem , we have that limt→∞ sup P(t)
t <  a.s. Then taking the superior

limit for (.) leads to

lim
t→∞ sup

(b
∫ t

 P(s) ds
t

–
β
∫ t

 N(s) ds
t

)

> r – .α
 –

mτ

T
a.s. (.)

There limt→∞ sup
∫ t

 P(s) ds
t >  a.s. In fact, for ∀ω ∈ {limt→∞ sup P(t,ω)

t = }, it follows from
(.) that limt→∞ sup N(t,ω)

t > . On the other hand, taking the superior limit for (.) and
using limt→∞ sup P(t,ω)

t =  a.s., according to the hypothesis (i), lead to

lim
t→∞ sup

ln N(t,ω)
t

≤ lim
t→∞ sup

∑
<nT<t ln( + q(nT))

t
+ d – .α

 < .

This is to say limt→∞ N(t,ω) = , which is a contraction. So we have limt→∞ sup P(t,ω)
t > 

a.s.
Case (ii). Multiplying (.) and (.) by λβ and b, respectively, we find

λβ
ln[P(t)/P()]

t
+ b

ln[N(t)/N()]
t

= λβ

(

r – .α
 –

mτ

T

)

+ b
(∑

<nT<t ln( + q(nT))
t

+ d – .α


)

–
λβ ∫ t

 N(s) ds
t

+
λβM(t)

t
+

bM(t)
t

. (.)

Using the strong law of large numbers for local martingales leads to

lim
t→∞

λβM(t)
t

= , lim
t→∞

bM(t)
t

= .
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Noting that limt→∞ ln P(t)
t ≤ , limt→∞ ln N(t)

t ≤  a.s. and taking the superior limit for (.)
lead to

lim
t→∞ sup

λβ ∫ t
 N(s) ds

t

≥ λβ

(

r – .α
 –

mτ

T

)

+ b lim
t→∞ sup

∑
<nT<t ln( + q(nT))

t
+ d – .α

 > . �

Theorem  The solution (P(t), N(t)) of the equation system (.) is stochastically bounded.

Proof According to Theorem , we obtain

lim
t→∞ sup E

√
P(t) + N(t)

= lim
t→∞ sup E

√
√
√
√P(t) +

[ ∑

<nT<t

ln
(
 + q(nT)

)
N(t)

]

≤
√(

 + M
)

lim
t→∞ sup E

√

P
 (t) + N

 (t)

=
√(

 + M
)
K .= U∗.

Let δ = U∗/ε, by Chebyshev’s inequality, we have

P
{∣
∣P(t)

∣
∣ > δ

}≤ E
√

P(t) + N(t)
δ

.

Taking the superior limit for both sides, we get

lim
t→∞ supP

[∣
∣P(t)

∣
∣ > δ

]
< ε. �

4 Discussion
In this paper, a simple stochastic mathematical model of IPM systems with pesticides that
have residual effects is proposed and studied. Theorem  shows that our model has a global
positive solution for any given positive initial value, and we obtain its explicit expression
under the pest-eradication condition. Firstly, we consider chemical control only, with the
other parameters left the same as in model (.). Secondly, under r – .α

 – mτ
T < , which

implies that the pest will die out eventually, we also prove the global attractivity of the pest
solution when the natural enemy disappears.

It follows from Theorem  that we prove the persistence of pest and natural enemy when
they satisfy the conditions respectively. Fortunately, Theorem  proves that the solution
of model (.) is stochastically bounded with L ≤ ∏

<nT<t( + q(nT)) ≤ U (L and U are
positive constants).

Integrated pest management is a complex process. In fact, farmers and other pest man-
agers usually control pests so that they cannot exceed the economic injury level. How to
model an IPM strategy with residual effects of pesticides, taking account of the economic
injury level, will also be studied in future research to include analyses of dynamical behav-
ior of the models and the biological implications of the results.
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