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Abstract
The paper is concerned with a delayed diffusive predator-prey system where the
growth of prey population is governed by Allee effect and the predator population
consumes the prey according to Beddington-DeAngelis type functional response.
The situation of bi-stability and the existence of two coexisting equilibria for the
proposed model system are addressed. The stability of the steady state together with
its dependence on the magnitude of time delay has been obtained. The conditions
that guarantee the occurrence of the Hopf bifurcation in presence of delay are
demonstrated. Furthermore, the direction of the Hopf bifurcation and the stability of
the bifurcating periodic solutions are determined by the normal form theory and the
center manifold theorem. Finally, some numerical simulations have been carried out
in order to validate the assumptions of the model.
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1 Introduction
In this paper, we consider the following delayed diffusive predator-prey system with
Beddington-DeAngelis functional response and strong Allee effect:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂u
∂t = d�u + ru( – u

K )(u – m) – quv(t–τ )
a+bu+cv(t–τ ) , (x, t) ∈ � × (, +∞),

∂v
∂t = d�v + v(–d + eu

a+bu+cv ), (x, t) ∈ � × (, +∞),

u(x, t) = u(x, t), v(x, t) = v(x, t), (x, t) ∈ � × [–τ , ],
∂u(t,x)

∂n = ∂v(t,x)
∂n = , t > , x ∈ ∂�,

()

where u(x, t) represents the population of the prey and v(x, t) represents the population of
the predator. The parameters r, K , m, q, a, b, c, d, e, d, d are positive constants with d
representing the death rate of predator as well as r and K standing for the intrinsic rate
of increase and the carrying capacity for the prey population, respectively. The predator
consumes the prey with functional response of Beddington-DeAngelis type [–]. d and
d denote the diffusion coefficients of the prey and the predator,respectively. � denotes
the Laplacian operator, � is a bounded domain, n is the normal vector that goes out of
the bounded domain �. The homogeneous Neumann boundary conditions indicate that
there is no population flux across the boundaries. For the initial conditions, we assume
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that

ψj(s, x) ∈ C = C
(
[–τ , ], X

)

and X is defined by

X =
{

u ∈ W ,(�) :
∂u(t, x)

∂n
=

∂v(t, x)
∂n

= , x ∈ ∂�

}

with the inner product 〈·, ·〉.
The term

ru
(

 –
u
K

)

(u – m)

is the growth function considering Allee effect. The so-called Allee effect dates from ,
Allee reported that the prey growth rate is negative or an increasing function at low pop-
ulation density []. The Allee effect is caused by various kinds of biological and environ-
mental factors, such as difficulties in finding mates, low probability of successful mating,
depletion in inbreeding rate, anti-predator aggression, predator avoidance due to evolu-
tionary change, etc. [–]. Allee effects can be broadly classified into two types: the strong
Allee effect and the weak Allee effect []. For model (), the Allee effect is strong or weak
as m >  or m ≤ . In recent years, there have been some excellent papers with the Allee
effect in a predator-prey system (see, for example, [–]).

It is well known that delays which occur in the interaction between predator and prey
play a complicated role in a predator-prey system. Many researchers have incorporated it
into biological models [–] as delays could affect the stability of a predator-prey system
by creating instability, oscillation, and chaos phenomena. The reason for introducing a
delay into model () is that the predator species may need time τ to possess the ability of
predation after it was born.

On the other hand, in real life the species is spatially heterogeneous and hence indi-
viduals will tend to migrate towards regions of lower population density to increase the
possibility of survival []. Hence, in model (), we consider the factor of diffusion.

In this paper, we will study the Hopf bifurcation of system (), the direction of Hopf bi-
furcation and the stability of the bifurcating periodic solutions with the help of the theory
of the normal form and center manifold [].

The remaining part of this paper is organised as follows: In Section , we study the ex-
istence and boundedness of the system. The existence of possible equilibria are studied
in Section . The sufficient conditions ensuring linear stability of equilibria and the ex-
istence of Hopf bifurcation of the coexisting equilibrium are obtained in Section . In
Section , we investigate the direction and stability of Hopf bifurcation by applying the
center manifold method and the normal form theory. Numerical results for the proposed
model system are presented in Section . Finally, a conclusion is presented in Section .

2 Existence and boundedness of solution of system (1)
In this section, we discuss the existence of solution of system (), and an a priori bound of
the solution is also established.
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Theorem . For system (), we have:
(a) If u(x) ≥ , v(x) ≥ , then system () has a unique solution (u(t, x), v(t, x)) such that

u(t, x) > , v(t, x) >  for t ∈ (, +∞) and x ∈ �̄.
(b) If u(x, t) ≤ m and (u, v) �≡ (m, ), then (u(x, t), v(x, t)) tends to (, ) uniformly as

t → ∞.
(c) If K (e–bd)–ad

cd < , then (u(x, t), v(x, t)) tends to (us(x), ) uniformly as t → ∞, where
us(x) is a non-negative solution of

d�u + ru
(

 –
u
K

)

(u – m) = , x ∈ �,
∂u
∂ν

= , x ∈ ∂�. ()

(d) If K (e–bd)–ad
cd > , then any solution (u(x, t), v(x, t)) of () satisfies

lim sup
t→+∞

u(x, t) ≤ K , lim sup
t→+∞

v(x, t) ≤ K(e – bd) – ad
cd

.

Proof
(a) Define

f (u, v) = ru
(

 –
u
K

)

(u – m) –
quv(t – τ )

a + bu + cv(t – τ )
,

g(u, v) = v
(

–d +
eu

a + bu + cv

)

.

Then fv = – qu(a+bu)
(a+bu+cv) ≤  and gu = ev(a+cv)

(a+bu+cv) ≥  in R
+ = {u ≥ , v ≥ }. Hence, system () is

a mixed quasi-monotone system. Consider the following system:

⎧
⎪⎪⎨

⎪⎪⎩

du
dt = ru( – u

K )(u – m),
dv
dt = v(–d + eu

a+bu+cv ),

u() = u, v() = v.

()

Assume u(t; u, v), v(t; u, v) is the unique solution to system (). Let

max
�̄×[–τ ,]

u(x, t) = uM,

max
�̄×[–τ ,]

v(x, t) = vM.

Obviously, (u(t, x), v(t, x)) = (, ) and (ū(t), v̄(t)) = (u(t; uM, vM), v(t; uM, vM)) are a pair of
lower-solution and upper-solution to system (). Therefore, according to Theorem ..
in [] or Theorem .. in [], system () has a unique globally defined solution
(u(x, t), v(x, t)) which satisfies

 ≤ u(x, t) ≤ u(t; uM, vM),

 ≤ v(x, t) ≤ v(t; uM, vM).

The strong maximum principle implies that u(x, t), v(x, t) >  when t >  for all x ∈ �̄.
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(b) From the above discussions, we obtain u(x, t) ≤ u(t; uM , vM) for all t > . From
the ODE satisfied by u(t; uM , vM), one can see that u(t; uM, vM) →  if uM < m and
u(t; uM, vM) → K if uM > m. Thus for any ε > , there exists T >  such that u(x, t) ≤ K + ε

in [T, +∞) × �̄.
(c) If K (e–bd)–ad

cd < , then there exists a ε > , such that (K+ε)(e–bd)–ad
cd < . Therefore, ac-

cording to the equation of v(t; uM, vM), we obtain  ≤ v(x, t) ≤ v(t; uM, vM) →  as t → ∞
uniformly for x ∈ �̄. The limit behavior of u(x, t) is determined by the semiflow generated
by the scalar parabolic equation

⎧
⎨

⎩

∂u
∂t = d�u + ru( – u

K )(u – m), (x, t) ∈ � × (, +∞),
∂u
∂ν

= , x ∈ �̄.
()

According to the discussions in [] and [], every orbit of () converges to a steady
state us. Therefore, (u(x, t), v(x, t)) tends to (us(x), ) uniformly as t → ∞.

(d) By the second equation of (), we easily find that there exists T ∈ (, +∞) such that
v(t, x) ≤ (K+ε)(e–bd)–ad

cd in [T, +∞) × � for an arbitrary constant ε > . Therefore,

lim sup
t→+∞

u(x, t) ≤ K , lim sup
t→+∞

v(x, t) ≤ K(e – bd) – ad
cd

. �

3 The existence of equilibria
In this section, we will find all possible non-negative equilibria.

Clearly, system () has four feasible non-negative equilibria, namely:
() the trivial point E = (, );
() the boundary equilibrium E = (m, ), representing the state corresponding to the

extinction of predator;
() the boundary equilibrium E = (K , ), representing the state corresponding to the

extinction of predator;
() the coexisting equilibrium point(s) E∗ = (u∗, v∗).
At the coexisting equilibrium, we must have

v =
(e – bd)u – ad

cd
,

and u satisfies

Au + Au + Au + A = , ()

where

A = cer;

A = –cer(m + K);

A = K(qe – bdq + cemr);

A = –Kadq.

()

A < , so equation () has at least a positive root u∗. If u∗ > ad
e–bd , then system () has a

coexisting equilibrium E∗ = (u∗, v∗).
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Figure 1 The blue curves are the prey-nullclines and the red lines are the predator-isoclines. The four
figures are the possible plots of predator-nullcline for four different values of c. (a) For c = 0.2, two
nullclines do not intersect at any point in the interior of the feasible domain (the prey nullcline is below the
predator nullcline), suggesting there is no equilibrium point; (b) as we increase the slope of
predator-nullcline, the two equilibria approach each other and collide for c = 0.28 and consequently, there is
one equilibrium point; (c) for c = 0.3, both the nullclines cross twice, suggesting there are two equilibrium
points; (d) for c = 2, the prey nullcline is unbounded and has two vertical asymptotes x = x± shown by black
lines. The other parameter values are r = 0.8, K = 5, q = 0.2, a = 2, b = 0.4, d = 0.1, e = 0.2,m = 2.

The possible number of equilibria can be better analysed by studying the intersections of
the nullclines which is one of great feature of planar systems. Let f (u, v) =  and g(u, v) = ,
we show the existence of non-negative equilibria in Figure .

4 Local stability and bifurcation
In this section, we discuss the local stability of non-negative equilibria. Before developing
our argument, let us set up the following notations.

Notation . Let  = μ < μ < μ < · · · < μn < · · · → ∞ are the eigenvalues of –� on �

under homogeneous Neumann boundary condition. We define the following space de-
composition:

(i) S(μn) is the space of eigenfunctions corresponding to μi for n = , , , . . . ;
(ii) Xij := {c · φij : c ∈R

}, where {φij} are orthonormal basis of S(μn) for
j = , , . . . , dim[S(μn)];

(iii) X := {u = (u, v) ∈ [C(�̄)] : ∂u
∂ν

= ∂v
∂ν

= }, and so X =
⊕∞

i= Xi, where
Xi =

⊕dim[S(μj)]
j= Xij.

The linearization of system () at a constant solution E∗ = (u∗, v∗) can be expressed by

ut = (D� + J)u + Juτ , ()
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where D = diag(d, d), u = (u(x, t), v(x, t))T , and uτ = (u(x, t – τ ), v(x, t – τ )),

J =

(
a 
a a

)

, J =

(
 –a

 

)

,

where

a = 
(

r +
rm
K

)

u∗ –
r
K

u∗ – mr –
qv∗(a + cv∗)

(a + bu∗ + cv∗) ;

a =
qu∗(a + bu∗)

(a + bu∗ + cv∗) ; a =
ev∗(a + cv∗)

(a + bu∗ + cv∗) ;

a = –d +
eu∗(a + bu∗)

(a + bu∗ + cv∗) .

()

In view of Notation ., we can induce the eigenvalues of system () confined on the
subspace Xi. If λ is an eigenvalue of () on Xi, it must be an eigenvalue of the matrix
–μnD + J∗ for ∀ n ∈ {, , , . . .} := N, where

J∗ =

(
a –ae–λτ

a a

)

.

It is easy to see that λ satisfies the following characteristic equation:

λ + Anλ + Bn + Ce–λτ = , ()

where

An = dμn + dμn – a – a,

Bn = (dμn – a)(dμn – a),

C = aa.

()

4.1 Stability of constant steady state as τ = 0
() For E = (, ), the corresponding characteristic equation is

(λ + dμn + mr)(λ + dμn + d) = .

Clearly, we obtain

λ = –mr – dμn,λ = –d – dμn.

Hence, E is always stable.
() For E = (m, ), the corresponding characteristic equation is

(

λ + dμn – mr
(

 –
m
K

))(

λ + dμn + d –
em

a + bm

)

= .
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Obviously,

λ = mr
(

 –
m
K

)

– dμn, λ = –d +
em

a + bm
– dμn.

Consequently, if m < K or d < em
a+bm , then E = (m, ) is unstable. On the contrary, if m > K

and d > em
a+bm , then E = (m, ) is stable.

() For E = (K , ), the corresponding characteristic equation is

(λ + dμn + Kr – mr)
(

λ + dμn + d –
eK

a + bK

)

= .

Obviously,

λ = –Kr + mr – dμn, λ = –d +
eK

a + bK
– dμn.

Therefore, if m < K and d > eK
a+bK , then E is stable.

() For E∗ = (u∗, v∗), when τ = , the corresponding characteristic equation is

λ + (dμn + dμn – a – a)λ + (dμn – a)(dμn – a) + aa = .

Obviously,

λ + λ = a + a – dμn – dμn,λλ = (dμn – a)(dμn – a) + aa. ()

All roots of () have negative real parts if

(H) a < , a <  and aa + aa > . ()

Therefore, the coexisting equilibrium E∗ = (u∗, v∗) of system () is locally asymptotically
stable for τ =  when condition () holds.

4.2 Hopf bifurcation
In this section, we are going to analyze the conditions about the parameters under which
the Hopf bifurcation occurs at the coexisting equilibrium.

Assume that iω (ω > ) is a root of equation (). Then ω should satisfy the following
equation for some n ≥ :

–ω + iAnω + Bn + C
(
cos(ωτ ) – i sin(ωτ )

)
= , ()

which implies that

⎧
⎨

⎩

–ω + Bn = –C cos(ωτ ),

Anω = C sin(ωτ ).
()

From (), adding the squared terms for both equations yields

ω +
(
A

n – Bn
)
ω + B

n – C = . ()
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Let z = ω, equation () becomes

z +
(
A

n – Bn
)
z + B

n – C = , ()

where

A
n – Bn =

(
d

 + d

)
μ

n – (ad + ad) + a
 + a

,

B
n – C = (Bn + C)(Bn – C)

=
(
ddμ


n – (ad + ad)μn + aa + aa

)

× (
ddμ


n – (ad + ad)μn + aa – aa

)
.

()

For further discussions, we make the following assumptions:

(H) aa – aa > ;

(H) aa – aa < .

Theorem . If (H) and (H) hold, then all roots of equation () have negative real parts
for all τ ≥ . Furthermore, the coexisting equilibrium E∗ of system () is asymptotically
stable for all τ ≥ .

Proof From equation (), we know that

A
n – Bn > .

By (H), we get Bn + C > . Obviously, if (H) and (H) hold, then

Bn – C = ddμ

n – (ad + ad)μn + aa – aa > 

for any n ≥ .
These imply that equation () has no positive roots, and hence the characteristic equa-

tion () has no purely imaginary roots. Therefore, all roots of equation () have negative
real parts as τ ≥ . �

Denote

μ∗ =
ad + ad +

√
(ad + ad) – dd(aa – aa)

dd
.

Thus, there must exist some N∗ ∈ N, such that μ∗ = μN∗ or μN∗ < μ∗ < μN∗+. Hence, we
have the following lemma.

Lemma . If (H) and (H) hold, then equation () has a pair of purely imaginary roots
±iωn ( ≤ n ≤ N∗) at

τ = τ j
n = τ 

n +
jπ
ωn

, j ∈ N, ()
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where

τ 
n =


ωn

arccos
ω

n – Bn

C
,

ωn =

√

Bn – A
n +

√
(A

n – Bn) – (B
n – C)


.

Proof From hypothesis (H), we know that Bn + C > . We have

Bn – C = ddμ

n – (ad + ad)μn + aa – aa.

Hence, equation () has no positive roots for n > N∗, and  ≤ n ≤ N∗ is the necessary
condition of equation () having positive roots. For  ≤ n ≤ N∗ a unique positive root zn

of equation () is

zn =
Bn – A

n +
√

(A
n – Bn) – (B

n – C)


and

ωn =

√

Bn – A
n +

√
(A

n – Bn) – (B
n – C)



is the imaginary part of the purely imaginary root, at

τ = τ j
n = τ 

n +
jπ
ωn

=

ωn

arccos
ω

n – Bn

C
+

jπ
ωn

, j ∈ N, ()

equation () has a pair of purely imaginary roots ±iωn ( ≤ n ≤ N∗). �

It is clear from equation () that τ
j+
n > τ

j
n. The following lemma shows that

τ
j
N∗ ≥ τ

j
N∗– ≥ · · · ≥ τ

j
 > τ

j


and hence we have a complete ordering of the bifurcation values τ
j
n.

Lemma . If (H) and (H) hold, then

τ
j
N∗ ≥ τ

j
N∗– ≥ · · · ≥ τ

j
 > τ

j


for j ∈ N.

Proof From the above analysis, we know

ω
n =

Bn – A
n +

√
(A

n – Bn) – (B
n – C)


=


√

(A
n–Bn)

(C–B
n) + 

C–B
n

+ A
n–Bn

C–B
n

,
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where A
n – Bn and C – B

n are given in (). Obviously, C – B
n is decreasing in n and

A
n – Bn is increasing in n. We obtain

ωN∗ ≤ ωN∗– ≤ · · · ≤ ω < ω.

Notice that Bn is strictly increasing in n for  ≤ n ≤ N∗. Then we find that ω
n–Bn
C is strictly

decreasing in n for  ≤ N ≤ N∗. Thus τ
j
n = 

ωn
arccos ω

n–Bn
C + jπ

ωn
is strictly increasing in n.

Namely,

τ
j
N∗ ≥ τ

j
N∗– ≥ · · · ≥ τ

j
 > τ

j
, j ∈ N. �

From Lemma ., we know that τ 
 = min{τ j

n :  ≤ n ≤ N∗, j ∈ N}.

Lemma . Let λn(τ ) = αn(τ ) ± iωn(τ ) be the root of () near τ = τ
j
n satisfying αn(τ j

n) = 
for ωn(τ j

n) = ωn. Then the following transversality condition holds:

(
α′

n(τ )
)– >  ()

for j = , , , . . . , and  ≤ n ≤ N∗.

Proof Differentiating the two sides of equation () with respect to τ yields

dλ

dτ

(
λ + An – Cτe–λτ

)
= Cλe–λτ .

Hence,

(
dλ

dτ

)–

=
λ + An – Cτe–λτ

Cλe–λτ
=


C

eλτ +
An

Cλ
eλτ –

τ

λ
.

Substituting τ
j
n into the above equation, we obtain

(
α′

n(τ )
)– = Re

(
dλ

dτ

)–

τ=τ
j
n

=
 cos(ωnτ

j
n)

C
+

An sin(ωnτ
j
n)

Cωn
.

Since C cos(ωnτ
j
n) = ω

n – Bn and C sin(ωnτ
j
n) = Anωn we have

(
α′

n(τ )
)– = Re

(
dλ

dτ

)–

τ=τ
j
n

=
√

(A
n – Bn) – (B

n – C)
C > . �

From the above analysis, we have the following conclusion.

Theorem . If (H) and (H) hold, then the following statements are true:
(i) When τ ∈ [, τ 

 ), the coexisting equilibrium of system () is locally asymptotically
stable.

(ii) Hopf bifurcation occurs at τ = τ 
 . That is, system () has a branch of periodic

solutions bifurcating from the coexisting equilibrium near τ = τ 
 .
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5 Direction and stability of Hopf bifurcation
In the previous section, we have shown that system () admits a series of periodic solu-
tions bifurcating from the coexisting equilibrium at the critical value τ

j
n (n, j ∈ N). In this

section, we derive explicit formulas to determine the properties of the Hopf bifurcation
at the critical value τ

j
n (n, j ∈ N). By using the normal form theory and center manifold

reduction for PFDEs developed by [].
For fixed n, j ∈ N, denote τ

j
n by τ ∗ and introduce the new parameter μ = τ – τ ∗. Nor-

malizing the delay τ by the time-scaling t → t/τ . Then () can be rewritten as

dU(t)
dt

= τ ∗D�U(t) + L
(
τ ∗)(Ut) + F(Ut ,μ), ()

where L(μ)(ϕ) : C → X and F(·,μ) : C → X are given by

L(μ)(ϕ) = μ

(
aϕ() – aϕ(–)
aϕ() + aϕ()

)

, ()

F(ϕ,μ) = μD�ϕ() + L(μ)ϕ + f (ϕ,μ), ()

and

f (ϕ,μ) =
(
τ ∗ + μ

)
(

bϕ

 () + bϕ()ϕ(–) + bϕ


 (–)

cϕ

 () + cϕ()ϕ() + cϕ


 ()

)

+ h.o.t., ()

where

b = 
(

r +
rm
K

)

–
br
K

u∗ +
bqv∗(a + cv∗)

(a + bu∗ + cv∗) ,

b = –
aq(a + bu∗ + cv∗) + qcbu∗v∗

(a + bu∗ + cv∗) , b =
qcu∗(a + bu∗)
(a + bu∗ + cv∗) ,

c =
–ebv∗(a + cv∗)
(a + bu∗ + cv∗) , c = –

ea(a + bu∗ + cv∗) + ecbu∗v∗

(a + bu∗ + cv∗) ,

c = –
ecu(a + bu∗)

(a + bu∗ + cv∗) ,

and ϕ = (ϕ,ϕ,ϕ)T ∈ C .
Then the linearized system of () at (, ) is

dU(t)
dt

= τ ∗D�U(t) + L
(
τ ∗)(Ut). ()

Based on the discussion in Section , we can easily see that, for τ = τ ∗, the characteristic
equation of () has a pair of simple purely imaginary eigenvalues � = {iωτ

∗, –iωτ
∗}.

Let C := C([–, ],R), consider the following FDE on C :

ż = L
(
τ ∗)(zt). ()

Obviously, L(τ ∗) is a continuous linear function mapping C([–, ],R) into R
. By the

Riesz representation theorem, there exists a  ×  matrix function η(θ , τ ) (– ≤ θ ≤ ),



Liu and Zhang Advances in Difference Equations  (2017) 2017:200 Page 12 of 22

whose elements are of bounded variation such that

L
(
τ ∗)(ϕ) =

∫ 

–

[
dη

(
θ , τ ∗)]ϕ(θ ), for ϕ ∈ C. ()

In fact, we can choose

η
(
θ , τ ∗) = τ ∗

(
a 
a a

)

δ(θ ) – τ ∗
(

 –a

 

)

δ(θ + ), ()

where δ is the Dirac delta function.
Let A(τ ∗) denote the infinitesimal generator of the semigroup induced by the solutions

of () and A∗ be the formal adjoint of A(τ ∗) under the bilinear pairing

(ψ ,φ) =
(
ψ(),φ()

)
–
∫ 

–

∫ θ

ξ=
ψ(ξ – θ ) dη(θ )φ(ξ ) dξ

=
(
ψ(),φ()

)
+ τ ∗

∫ 

–
ψ(θ + )

(
 –a

 

)

φ(θ ) dθ , ()

for φ ∈ C, ψ ∈ C∗ = C([, ], R). Then A(τ ∗) and A∗ are a pair of adjoint operators. From
the discussion in Section , we know that A(τ ∗) has a pair of simple purely imaginary
eigenvalues ±iωτ

∗, and they are also eigenvalues of A∗ since A(τ ∗) and A∗ are a pair of
adjoint operators. Let P and P∗ be the center spaces, that is, the generalized eigenspaces
of A(τ ∗) and A∗ associated with �, respectively. Then P∗ is the adjoint space of P and
dim P = dim P∗ = . Direct computations give the following results.

Lemma . Let

α =
a

iω – a
, α∗ =

iω – a

a
. ()

Then

p(θ ) = eiωτ∗θ (,α)T , p(θ ) = p̄(θ ), – ≤ θ ≤ , ()

is a basis of P associated with � and

q(s) =
(
,α∗)T e–iωτ∗s, q(s) = q̄(s),  ≤ s ≤ , ()

is a basis of Q associated with �.

Let � = (�,�) and �∗ = (�∗
 ,�∗

 )T with

�(θ ) =
p(θ ) + p(θ )


=

(
Re{eiωτ∗θ }

Re{αeiωτ∗θ }

)

=

(
cosωτ

∗θ
– a(a cos(ωτ∗θ )–ω sin(ωτ∗θ ))

(ω+a
)

)

,

�(θ ) =
p(θ ) – p(θ )

i
=

(
Im{eiωτ∗θ }

Im{αeiωτ∗θ }

)

=

(
sinωτ

∗θ
– a(aω cos(ωτ∗θ )+a sin(ωτ∗θ ))

(ω+a
)

)

,
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for θ ∈ [–, ], and

�∗
 (s) =

q(s) + q(s)


=

(
Re{e–iωτ∗s}

Re{α∗e–iωτ∗s}

)

=

(
cosωτ

∗s
ω sin(sτω)–a cos(ωτ∗s)

a

)

,

�∗
 (s) =

q(s) – q(s)
i

=

(
Im{e–iωτ∗s}

Im{αe–iωτ∗s}

)

=

(
– sinωτ

∗s
ω cos(sτω)+a sin(ωτ∗s)

a

)

,

for s ∈ [, ]. From (), we can obtain (�∗
 ,�) and (�∗

 ,�). Note that

(q, p) =
(
�∗

 ,�
)

–
(
�∗

 ,�
)

+ i
[(

�∗
 ,�

)
+
(
�∗

 ,�
)]

and

(q, p) =  + αα∗ – aατ ∗e–iωτ∗
:= D∗.

Therefore, we have

(
�∗

 ,�
)

–
(
�∗

 ,�
)

= Re
{

D∗},
(
�∗

 ,�
)

+
(
�∗

 ,�
)

= Im
{

D∗}.

Now, we define (�∗,�) = (�∗
j ,�k) (j, k = , ) and construct a new basis ψ for Q by

� = (�,�)T =
(
�∗,�

)–
�∗.

Obviously, (� ,�) = I×, the second order identity matrix. In addition, define f =
(ξ 

, ξ 
 ), where

ξ 
 =

(



)

, ξ 
 =

(



)

.

Let c · f be defined by

c · f = cξ

 + cξ




for c = (c, c)T , cj ∈ R (j = , ).
Then the center space of linear equation () is given by PCNC , where

PCNϕ = �
(
� , 〈ϕ, f〉

) · f, ϕ ∈ c, ()

and C = PCNC ⊕ PSC , here PSC denotes the complementary subspace of PCNC .
Let Aτ∗ be defined by

Aτ∗ϕ(θ ) = ϕ̇(θ ) + X(θ )
[
τ ∗D�ϕ() + L

(
τ ∗)(ϕ(θ )

)
– ϕ̇()

]
, ϕ ∈ BC,
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where X : [–, ] → B(X, X) is given by

X(θ ) =

⎧
⎨

⎩

, – ≤ θ < ,

I, θ = .
()

Then Aτ∗ is the infinitesimal generator induced by the solution of () and () can be
rewritten as the following operator differential equation:

U̇t = Aτ∗Ut + XF(Ut ,μ). ()

Using the decomposition C = PCNC ⊕ PSC and (), the solution of () can be rewritten
as

Ut = �

(
x(t)
x(t)

)

· f + h(x, x,μ), ()

where
(

x(t)
x(t)

)

=
(
� , 〈Ut , f〉

)
, ()

and h(x, x,μ) ∈ Psc with h(, , ) = Dh(, , ) = . In particular, the solution of () on
the center manifold is given by

U∗
t = �

(
x(t)
x(t)

)

· f + h(x, x, ). ()

Setting z = x – ix and noticing that p = � + i�, then () can be rewritten as

U∗
t =



�

(
z + z̄

i(z – z̄)

)

· f + w(z, z̄) =



(pz + p̄z̄) · f + W (z, z̄), ()

where W (z, z̄) = h( z+z̄
 , – z–z̄

i , ). Moreover, by [], z satisfies

ż = iωτ
∗z + g(z, z̄), ()

where

g(z, z̄) =
(
�() – i�()

)〈
F
(
U∗

t , 
)
, f
〉
. ()

Let

W (z, z̄) = W
z


+ Wzz̄ + W

z̄


+ · · · ()

and

g(z, z̄) = g
z


+ gzz̄ + g

z̄


+ · · · . ()
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From (), we have

〈
F
(
U∗

t , 
)
, f
〉

=
τ ∗z



(
b + bαe–iωτ∗ + bα

e–iωτ∗

c + cα + cα


)

+
τ ∗zz̄



(
b + b(ᾱeiωτ∗ + αe–iωτ∗ ) + bαᾱ

c + c(ᾱ + α) + cαᾱ

)

+
τ ∗z̄



(
b + bᾱeiωτ∗ + bᾱ

eiωτ∗

c + cᾱ + cᾱ


)

+
τ ∗



⎛

⎜
⎜
⎜
⎝

〈b(w()
 () + w()

()) + b(w()
 (–) + w()

 (–) + αeiωτ∗w()
 ()

+ ᾱeiωτ∗w()
()) + b(ᾱeiωτ∗w()

 (–) + αe–iωτ∗w()
 (–)), 〉

〈c(w()
 () + w()

()) + c(w()
 () + w()

 () + αw()
 () + ᾱw()

())
+ c(ᾱw()

 () + αw()
 ()), 〉

⎞

⎟
⎟
⎟
⎠

× zz̄ + · · · ,

where

〈
W n

ij (θ ), 
〉

=

π

∫ π


W n

ij (θ )(x) dx, i + j = , n ∈N.

Let (ψ,ψ,ψ) = �()– i�(). Then by (), () and (), we can obtain the following
quantities:

g =
τ ∗


[(

b + bαe–iωτ∗
+ bα

e–iωτ∗)
ψ +

(
c + cα + cα

)ψ
]
,

g =
τ ∗


[(

b + b
(
ᾱeiωτ∗

+ αe–iωτ∗)
+ bαᾱ

)
ψ

+
(
c + c(ᾱ + α) + cαᾱ

)
ψ

]
,

g =
τ ∗


[(

b + bᾱeiωτ∗
+ bᾱ

eiωτ∗)
ψ̄ +

(
c + cᾱ + cᾱ

)ψ̄
]
,

g =
τ ∗


[〈

b
(
w()

 () + w()
()

)
+ b

(
w()

 (–) + w()
 (–) + αeiωτ∗

w()
 ()

+ ᾱeiωτ∗
w()

()
)

+ b
(
ᾱeiωτ∗

w()
 (–) + αe–iωτ∗

w()
 (–)

)
, 
〉
ψ +

〈
c
(
w()

 ()

+ w()
()

)
+ c

(
w()

 () + w()
 () + αw()

 () + ᾱw()
()

)
+ c

(
ᾱw()

 ()

+ αw()
 ()

)
, 
〉
ψ

]
.

Since W(θ ), W(θ ) for θ ∈ [–, ] appear in g, we still need to compute them. It
follows easily from () that

Ẇ (z, z̄) = Wzż + W(żz + zż) + Wz̄ż + · · · ()

and

Aτ∗W = Aτ∗W
z


+ Aτ∗Wzz̄ + Aτ∗W

z̄


+ · · · . ()
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In addition, by [], W (z(t), z̄(t)) satisfy

Ẇ = Aτ∗W + H(z, z̄), ()

where

H(z, z̄) = H
z


+ Hzz̄ + H

z̄


+ · · ·

= XF
(
U∗

t , 
)

– �
(
� ,

〈
XF

(
U∗

t , 
)
, f
〉) · f, ()

with Hij ∈ PSC , i + j = .
Thus, from () and ()-(), we obtain

⎧
⎨

⎩

(iωτ
∗ – Aτ∗ )W = H,

–Aτ∗W = H.
()

Notice that Aτ∗ has only two eigenvalues ±iωτ
∗ with zero real parts, therefore, ()

has the unique solution Wij (i + j = ) in PSC given by

⎧
⎨

⎩

W = (iωτ
∗ – Aτ∗ )–H,

W = –A–
τ∗H.

()

From (), we know that, for – ≤ θ < ,

H(z, z̄) = –�(θ )�()
〈
F
(
U∗

t , 
)
, f
〉 · f,

= –
(

p(θ ) + p(θ )


,
p(θ ) – p(θ )

i

)
(
�()�()

)× 〈
F
(
U∗

t , 
)
, f
〉 · f,

= –


[
p(θ )

(
�() – i�()

)
+ p(θ )

(
�() + i�()

)]× 〈
F
(
U∗

t , 
)
, f
〉 · f,

= –


[
gp(θ ) + ḡp(θ )

]
z · f –



[
gp(θ ) + ḡp(θ )

]
zz̄ · f + · · · .

Therefore, for – ≤ θ < ,

H(θ ) = –


[
gp(θ ) + ḡp(θ )

] · f, ()

H(θ ) = –


[
gp(θ ) + ḡp(θ )

] · f, ()

and

H(z, z̄)() = F
(
U∗

t , 
)

– �
(
� ,

〈
F
(
U∗

t , 
)
, f
〉) · f,

H() =
τ ∗



(
b + bαe–iωτ∗ + bα

e–iωτ∗

c + cα + cα


)

–


[
gp() + ḡp()

] · f,
()

H() =
τ ∗



(
b + b(ᾱeiωτ∗ + αe–iωτ∗ ) + bαᾱ

c + c(ᾱ + α) + cαᾱ

)

–


[
gp() + ḡp()

] · f.

()
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By the definition of Aτ∗ , we get from ()

Ẇ(θ ) = iωτ
∗W(θ ) +



[
gp(θ ) + ḡp(θ )

] · f, – ≤ θ < .

Noting that p(θ ) = p()eiωτ∗ , – ≤ θ ≤ . Hence

W(θ ) =
i


[
g

ωτ ∗ p(θ ) +
ḡ

ωτ ∗ p(θ )
]

· f + Eeiωτ∗θ ()

and

E = W() –
i


[
g

ωτ ∗ p() +
ḡ

ωτ ∗ p()
]

· f. ()

Using the definition of Aτ∗ , and combining () and (), we get

iωτ
∗
[

ig

ωτ ∗ p() · f +
iḡ

ωτ ∗ p() · f + E
]

– τ ∗D�

[
ig

ωτ ∗ p() · f +
iḡ

ωτ ∗ p() · f + E
]

– L
(
τ ∗)

[
ig

ωτ ∗ p(θ ) · f +
iḡ

ωτ ∗ p(θ ) · f + Eeiωτ∗θ

]

=
τ ∗



(
b + bαe–iωτ∗ + bα

e–iωτ∗

c + cα + cα


)

–


[
gp() + ḡp()

] · f.

Notice that
⎧
⎨

⎩

τ ∗D�[p() · f] + L(τ ∗)[p(θ ) · f] = iωτ
∗p() · f,

τ ∗D�[p() · f] + L(τ ∗)[p(θ ) · f] = –iωτ
∗p() · f.

Then we have

iωτ
∗E – τ ∗D�E – L

(
τ ∗)(Eeiωτ∗θ

)
=

τ ∗



(
b + bαe–iωτ∗ + bα

e–iωτ∗

c + cα + cα


)

.

From the above expression, we can see easily that

E =



(
iω – a ae–iωτ∗

–a iω – a

)–

×
(

b + bαe–iωτ∗ + bα
e–iωτ∗

c + cα + cα


)

.

In a similar way, we have

Ẇ(θ ) =


[
gp(θ ) + ḡp(θ )

] · f, – ≤ θ < ,

and

W(θ ) =
i

ωτ ∗
[
–gp(θ ) + ḡp(θ )

] · f + F .
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Similar to the above, we obtain

F =



(
–a a

–a –a

)–

×
(

b + b(ᾱeiωτ∗ + αe–iωτ∗ ) + bαᾱ

c + c(ᾱ + α) + cαᾱ

)

.

So far, W(θ ) and W(θ ) have been expressed by the parameters of system (). There-
fore, g can be expressed explicitly.

Theorem . System () has the following Poincaré normal form:

ξ̇ = iωτ
∗ξ + c()ξ |ξ | + o

(|ξ |),

where

c() =
i

ωτ ∗

[

gg – |g| –
|g|



]

+
g


,

so we can compute the following results:

σ = –
Re(c())
Re(λ′(τ ∗))

,

β =  Re
(
c()

)
,

T = –
Im(c()) + σ Im(λ′(τ ∗))

ωτ ∗ ,

which determine the properties of bifurcating periodic solutions at the critical values τ ∗,
i.e., σ determines the directions of the Hopf bifurcation: if σ >  (σ < ), then the Hopf
bifurcation is supercritical (subcritical) and the bifurcating periodic solutions exist for
τ > τ ∗; β determines the stability of the bifurcating periodic solutions: the bifurcating pe-
riodic solutions on the center manifold are stable (unstable), if β <  (β > ); and T de-
termines the period of the bifurcating periodic solutions: the period increases (decreases), if
T >  (T < ).

6 Numerical results and discussions
In this section we present results of the numerical simulations to facilitate the interpreta-
tion of our mathematical findings in system () proved in the previous sections.

6.1 Stability of the interior equilibrium for all τ ≥ 0
Consider system () with the following parameters: r = ., K = , q = ., a = , b = .,
d = ., e = ., m =  and c = .. Choose � = (,π ) and the diffusion coefficients d = .,
d = .. According to the discussions in Section ., E = (, ) and E = (, ) are both
stable, and E = (, ) is unstable. In addition, by a direct calculation, we find that system
() has a coexisting equilibrium E∗ = (., .). Clearly, the conditions (H) and
(H) hold, according to Theorem ., system () is locally asymptotically stable at E∗ for
all τ ≥ . The corresponding phase portrait of system () with τ = , is shown in Figure .
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Figure 2 Phase portraits of the model system (1). E0 = (0, 0), E1 = (5, 0) and E∗ = (4.7296, 2.7926) are all
locally asymptotically stable for all τ ≥ 0.

Figure 3 The coexisting equilibrium E∗ is locally stable where τ = 3 < τ0.

6.2 Hopf bifurcation
Let the parameters be the same as above except d = . and m = .. Choose � = (,π )
and the diffusion coefficients d = ., d = .. According to the discussions in Section .,
E = (, ) is stable yet, but E = (, ) and E = (, ) become unstable. By a direct calcula-
tion, we find that system () has two the coexisting equilibria E∗

 = (., .) and
E∗

 = (., .). For E∗
 , condition (H) is not satisfied. Therefore, E∗

 is unstable. For
E∗

 = (., .), by simple calculation, we find that the critical value is τ 
 = ..

According to Theorem ., system () is locally asymptotically stable for τ =  ∈ [, τ 
 ), as

shown in Figure  and Figure . As τ increases through the critical value τ 
 , the coexisting

equilibrium E∗
 loses its stability permanently and a family of periodic solutions bifurcate

from the coexisting equilibrium E∗
 caused by the phenomenon of Hopf bifurcation, as

shown in Figure .
In addition, when τ = τ 

 = ., we get c() = –. + .i, σ = – Re(c())
Re(λ′(τ∗)) =

. > , β =  Re(c()) = –. < . According to Theorem . in Section , the
bifurcated periodic solutions of system () when τ 

 = . in the whole phase space are
both orbitally asymptotically stable, and the Hopf bifurcations are supercritical for σ > .

However, as τ increases further, with the same initial values, the solution converges to
E, as shown in Figure . All this suggests that the increasing delay may cause the prey and
predator to go extinct.
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Figure 4 The periodic solutions bifurcating from the coexisting equilibrium E∗ where τ = 4.2 > τ0.

Figure 5 The solution of system (1) converges to E0 with τ = 4.5 > τ0.

Figure 6 Stability region exploring the
dynamics of the system in the (m,τ ) parameter
space.

6.3 The effect of Allee effect
In order to investigate the effect of Allee effect, we let the parameters be the same as above
except for m varying in [., .]. The stability and instability regions of the solution
of the system () is shown by plotting the Allee threshold m versus the critical value of
the time delay τ in Figure . Figure  depicts also show the locus of the Hopf bifurcation
changes with the change of the two parameters m and τ . We see that as the Allee threshold
m increases from . to ., the Hopf bifurcation is achieved for lower critical values
of τ .
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7 Conclusion
In this paper, we considered a delayed diffusive predator-prey system with Beddington-
DeAngelis functional response and strong Allee effect. With delay τ as a bifurcation pa-
rameter, we showed that a Hopf bifurcation occurs at the critical value τ 

 . The bifurcating
periodic solutions were analyzed in light of the normal form and center manifold. Theo-
retical analysis shows that with the strong Allee effect in prey, extinction for both species
is always a locally stable equilibrium. If u(x, t) < m, then both prey and the predator are
destined to go extinct (Theorem .(b)) and if K (e–bd)–ad

cd < , then the predator is destined
to go extinct (Theorem .(c)). Theoretical analysis and numerical simulations also show
that that the increasing delay may cause the prey and predator to go extinct. However,
there are still many problems about model () that need to be studied, such as Turing sta-
bility, spatiotemporal patterns.
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