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Abstract
In this paper, a generalized nonautonomous stochastic competitive system with
impulsive perturbations is studied. By the theories of impulsive differential equations
and stochastic differential equations, we have established some asymptotic
properties of the system, such as the extinction, nonpersistence and persistence in
the mean, weak persistence and stochastic permanence and so on. In order to show
the correctness and feasibility of the theoretical results, several numerical examples
are presented. Finally, the effects of different white noise perturbations and different
impulsive perturbations are discussed and illustrated.
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1 Introduction
It is well known that there are four kinds of relationships between the species in the pop-
ulation ecological systems, that is, competition, predation, mutualism and parasitism.
Among these relationships, competition can always ensure the survival of species and
make effective use of resources, maintain the permanence of a ecological system and keep
the healthy development of the population. Thus, a competitive system has received great
interest by many mathematical and ecological researchers in the last decades (see [–]).
As far as the competition is concerned, there are usually two kinds of competitive relation-
ship, i.e. one is the interspecific competition and the other is the intraspecific competition.

The basic two-species competitive system is governed by the following coupled differ-
ential equations:

{ dN(t)
dt = N(t)[r – aN(t) – aN(t)],

dN(t)
dt = N(t)[r – aN(t) – aN(t)],

()

where aii is the intraspecific competition coefficient, while aij (i �= j, i, j = , ) is the inter-
specific competition coefficient.

Based on the classic competitive system, Gopalsamy proposed a series of generalized
competitive systems in the monograph [], and one of the generalized competitive sys-
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tems is as follows (see p. , []):

{ dN(t)
dt = N(t)[r – aN(t – τ ) – aN(t–τ )

+N(t–τ ) ],
dN(t)

dt = N(t)[r – aN(t – τ ) – aN(t–τ )
+N(t–τ ) ],

()

which means two species are allowed to cohabit in a common community, and each
species inhibits the average growth rate of the other.

Recently, Wang and Liu (see []) studied the following nonautonomous competitive
system:

{ dx(t)
dt = x(t)[r(t) – a(t)x(t) – b(t)x(t)

+x(t) ],
dx(t)

dt = x(t)[r(t) – a(t)x(t) – b(t)x(t)
+x(t) ],

()

in which the existence and global asymptotic stability of positive almost periodic solutions
is obtained. More references related to these generalized competitive systems can be also
seen in [, , ].

However, most of the above mentioned references focused on the deterministic models,
while the growth of the species is often affected by the interferences of the environmen-
tal noises in the real world. Thus, it is more reasonable to study ecological models. The
dynamical behavior of the ecological system, and whether it will make a change to the
existing results, has received wide attention in the recent several years (see references [,
–] etc.).

Enlightened by the above mentioned references, we suppose that the random fluctua-
tions of the environment will mainly affect the intrinsic growth rate ri(t) of the species,
and they are estimated by the following form:

ri(t) → ri(t) + σi(t) dBi(t),

where Bi(t) is Brownian motion, σi(t) is a continuous and bounded function on t ≥  and
σ 

i (t) represents the intensity of the white noise, i = , .
On the other hand, many natural or man-made factors, such as crop-dusting, plant-

ing, hunting, harvesting, drought, flooding and so on, will lead to sudden changes to the
system. From the viewpoint of mathematical modeling, these sudden changes could be
described by impulsive effects or perturbations to the models (see [, ]). Thus, if we
introduce both impulsive perturbations and stochastic perturbations of white noises on
the previous system (), we can obtain the following system:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

dx(t) = x(t)[r(t) – a(t)x(t) – c(t)x(t)
+x(t) ] dt + σ(t)x(t) dB(t)

dx(t) = x(t)[r(t) – a(t)x(t) – c(t)x(t)
+x(t) ] dt + σ(t)x(t) dB(t)

}
, t �= tk , k ∈ N ,

x(t+
k ) = ( + hk)x(tk)

x(t+
k ) = ( + hk)x(tk)

}
, t = tk , k ∈ N ,

()

where xi(t) is the population density of the ith population, ri(t) and ai(t) are the in-
trinsic growth rate and the intraspecific competing rate, respectively, and ci(t) repre-
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sents the interspecific competing rate. ri(t), ai(t), ci(t), t ∈ R+ = [,∞) are positive,
continuous and bounded.  < t < t < · · · , limk→+∞ tk = +∞. hik > –, i = , , k ∈ N ,
when hik > , the impulsive effects represent planting, while hik <  denote harvest-
ing.

Throughout the present paper, we denote

f l = inf
t∈R+

f (t), f u = sup
t∈R+

f (t)

for any positive, bounded function f (t) defined on R+ = [, +∞).
The rest of this paper is organized as follows. In Section  we demonstrate and prove

the main results of the paper, such as the existence of a unique positive solution of the
system, sufficient conditions for the extinction, nonpersistence in the mean, weak per-
sistence, persistence in the mean and stochastic permanence of the system. In Section ,
several numerical examples are presented to support the theoretical results. Moreover,
effects on the impulsive and stochastic perturbations are also analyzed and discussed at
the end of the paper.

2 Preliminaries
In this section, based on the methods proposed by Yan and Zhao (see []), the corre-
sponding stochastic differential equations without impulses are studied, and we will dis-
cuss the existence of a positive solution of above system () firstly. Further, by the def-
initions proposed by Liu and Wang (see []), we will derive some asymptotic behavior
of this system, such as the extinction, nonpersistence and persistence in the mean, weak
persistence and stochastic permanence and so on.

Theorem . For any initial conditions (x, x)T ∈ R
+ = {(x, y)T ∈ R|x > , y > }, system

() has a unique positive solution x(t) = (x(t), x(t))T on [, +∞), and the solution will
remain in R

+ almost surely.

Proof Consider the following stochastic differential equations (SDEs) without impulses:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

dy(t) = y(t)[r(t) – a(t)y(t)
∏

<tk <t( + hk)y(t) –
c(t)

∏
<tk <t (+hk )y(t)

+
∏

<tk <t (+hk )y(t) ] dt

+ σ(t)y(t) dB(t),

dy(t) = y(t)[r(t) – a(t)y(t)
∏

<tk <t( + hk)y(t) –
c(t)

∏
<tk <t (+hk )y(t)

+
∏

<tk <t (+hk )y(t) ] dt

+ σ(t)y(t) dB(t)

()

with the initial value (y, y)T = (x, x)T .
It is easy to prove that there is a unique global positive solution y(t) = (y(t), y(t))T of

system () by the theory of non-impulsive stochastic differential equations (see []).
Denote xi(t) =

∏
<tk <t( + hk)yi(t) (i = , ), then we claim that x(t) = (x(t), x(t))T is the

solution of system () with the initial data (x, x)T .
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In fact, since x(t) is continuous on (, t) and each interval (tk , tk+) ⊂ [, +∞) and for
t �= tk , k ∈ N ,

dx(t) =
∏

<tk <t

( + hk) dy(t)

=
∏

<tk <t

( + hk)y(t)

×
[

r(t) – a(t)
∏

<tk <t

( + hk)y(t) –
c(t)

∏
<tk <t( + hk)y(t)

 +
∏

<tk <t( + hk)y(t)

]
dt

+ σ(t)
∏

<tk<t

( + hk)y(t) dB(t)

= x(t)
[

r(t) – a(t)x(t) –
c(t)x(t)
 + x(t)

]
dt + σ(t)x(t) dB(t).

Similarly, we can check that

dx(t) = x(t)
[

r(t) – a(t)x(t) –
c(t)x(t)
 + x(t)

]
dt + σ(t)x(t) dB(t). ()

And for every tk ∈ R+, k ∈ N ,

xi
(
t+
k
)

= lim
t→t+

k

xi(t) =
∏

<tj≤tk

( + hij)yi(tk)

= ( + hik)
∏

<tj<tk

( + hij)yi(tk) = ( + hik)xi(tk). ()

xi
(
t–
k
)

= lim
t→t–

k
xi(t) = lim

t→t–
k

∏
<tj<tk

( + hij)yi
(
t–
k
)

=
∏

<tj<tk

( + hij)yi(tk) = xi(tk). ()

These mean that x(t) = (x(t), x(t))T is the unique global positive solution of system (),
so we complete the proof of this theorem. �

In Theorem ., we can see that solutions of system () will remain in the first quadrant,
but how do they vary in this quadrant? In the following part, we will discuss the sufficient
conditions for several cases, such as extinction and weak persistence, nonpersistence and
persistence in the mean and so on.

Theorem . Denote by x(t) = (x(t), x(t))T a solution of system (), then

lim sup
t→+∞

ln xi(t)
t

≤ lim sup
t→+∞


t

[ ∑
<tk <t

ln( + hik) +
∫ t


bi(s) ds

]
:= b∗

i , a.s.,

where bi(t) = ri(t) – .σ 
i (t), i = , .
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Proof For the non-impulsive system (), by Itô’s formula, we obtain

d ln yi(t) =
dyi(t)
yi(t)

–
(dyi(t))

y
i (t)

=
[

ri(t) – .σ 
i (t) – ai(t)

∏
<tk <t

( + hik)yi(t) –
ci(t)

∏
<tk <t( + hjk)yj(t)

 +
∏

<tk <t( + hjk)yj(t)

]
dt

+ σi(t) dBi(t), ()

where j = , , j �= i, and this leads to

d ln yi(t) ≤ [
bi(t) – ai(t)xi(t)

]
dt + σi(t) dBi(t). ()

Integrating both sides of inequality () on the interval [, t] yields

ln yi(t) – ln yi() ≤
∫ t


bi(s) ds –

∫ t


ai(s)xi(s) ds + Mi(t), ()

where Mi(t) =
∫ t

 σi(s) dBi(s).
Thus,

∑
<tk <t

ln( + hik) + ln yi(t) – ln yi()

≤
∑

<tk <t

ln( + hik) +
∫ t


bi(s) ds –

∫ t


ai(s)xi(s) ds + Mi(t), ()

which yields

ln xi(t) ≤ ln yi +
∑

<tk <t

ln( + hik) +
∫ t


bi(s) ds + Mi(t) –

∫ t


ai(s)xi(s) ds. ()

Note that Mi(t) is a local martingale whose quadratic variation is

〈
Mi(t), Mi(t)

〉
=

∫ t


σ 

i (s) ds ≤ (
σ u

i
)t.

By the strong law of large numbers for local martingale (see []), we have

lim
t→+∞

Mi(t)
t

= , a.s.

If we multiply 
t on each side of inequality () and take superior limit on both sides of

it, we can obtain

lim sup
t→+∞

ln xi(t)
t

≤ lim sup
t→+∞


t

[ ∑
<tk <t

ln( + hik) +
∫ t


bi(s) ds

]
:= b∗

i , a.s.
�

Corollary . If b∗
i = lim supt→+∞


t [

∑
<tk <t ln( + hik) +

∫ t
 bi(s) ds] < , then the ith species

of system () is extinct.
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Theorem . Suppose that x(t) = (x(t), x(t))T is a solution of system (), then

lim sup
t→+∞

∫ t
 xi(s) ds

t
≤ b∗

i

al
i
, a.s.

Proof By the definition of the limit, for ∀εi > , there exists T >  such that

ln yi()
t

=
ln yi

t
≤ εi/,

Mi(t)
t

≤ εi/,


t

[ ∑
<tk <t

ln( + hik) +
∫ t


bi(s) ds

]
≤ b∗

i + εi/

for t > T.
Combining inequality () and the above inequality, we have

ln xi(t) ≤ (
b∗

i + εi
)
t –

∫ t


ai(s)xi(s) ds ≤ λit – al

i

∫ t


xi(s) ds ()

for ∀t > T a.s., where λi = b∗
i + εi.

If we denote hi(t) =
∫ t

 xi(s) ds, then h′
i(t) = xi(t). Then it follows from inequality () that

eal
ihi(t) dhi(t)

dt
≤ eλit . ()

Integrating inequality () from T to t, we have

eal
ihi(t) ≤ al

i
λi

eλit + eal
ihi(T) –

al
i

λi
eλiT . ()

Thus,

∫ t


xi(s) ds ≤ 

al
i

ln

[
al

i
λi

eλit + eal
ihi(T) –

al
i

λi
eλiT

]
. ()

If we multiply 
t on each side of inequality () and take superior limit on both sides of

it, we can obtain

lim sup
t→+∞

∫ t
 xi(s) ds

t
≤ lim sup

t→+∞


al
it

ln

[
al

i
λi

eλit + eal
ihi(T) –

al
i

λi
eλiT

]
. ()

By L’Hospital’s rule we have

lim sup
t→+∞

∫ t
 xi(s) ds

t
≤ lim sup

t→+∞
λi

al
i

=
b∗

i

al
i
. ()

This means that we have completed the proof. �
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If b∗
i = , it is easy to obtain limt→+∞

∫ t
 xi(s) ds

t = , and we can obtain the following Corol-
lary ..

Corollary . If b∗
i = lim supt→+∞


t [

∑
<tk <t ln( + hik) +

∫ t
 bi(s) ds] = , then system () is

nonpersistent in the mean.

Theorem . If b∗
i = lim supt→+∞


t [

∑
<tk <t ln( + hik) +

∫ t
 bi(s) ds] > , then at least one of

the species in system () is weakly persistent.

Proof It follows from () that

d ln yi(t) =
[

bi(t) – ai(t)xi(t) –
ci(t)xj(t)
 + xj(t)

]
dt + σi(t) dBi(t), i = , , j �= i.

If we integrate on each side of the above equation, we have

ln xi(t) – ln xi =
∑

<tk <t

ln( + hik) +
∫ t


bi(s) ds –

∫ t


ai(s)xi(s) ds –

∫ t



ci(s)xj(s)
 + xj(s)

ds + Mi(t).

Set S = {limt→+∞ sup xi(t) = }, if the assertion of this theorem is not true, then P (S) > ,
and for ω ∈ S, limt→+∞ xi(t,ω) = .

Note that lim supt→+∞
Mi(t)

t = . Further, it follows from the boundedness of ai(t) and
ci(t) that

lim sup
t→+∞


t

∫ t


ai(s)xi(s) ds = ,

lim sup
t→+∞


t

∫ t



ci(s)xj(s)
 + xj(s)

ds = ,

lim sup
t→+∞


t
[
ln xi(t, w) – ln xi

] ≤ .

Thus,

 ≥ lim sup
t→+∞


t
[
ln xi(t, w) – ln xi

]
= b∗

i > ,

which is a contradiction, and this completes the proof of this theorem. �

Theorem . Denote bi∗ = lim inft→+∞ 
t [

∑
<tk <t ln( + hik) +

∫ t
 b̄i(s) ds], then the solution

of system () satisfies

lim inf
t→+∞


t

∫ t


xi(s) ds ≥ bi∗

au
i

, a.s.,

where b̄i(t) = ri(t) – ci(t) – .σ 
i (t), i = , .

Proof It follows from () again that

d ln yi(t) ≥ [
ri(t) – ci(t) – .σ 

i (t) – ai(t)xi(t)
]

dt + σi(t) dBi(t). ()
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Integrating both sides of inequality () from  to t yields

ln yi(t) – ln yi() ≥
∫ t


b̄i(s) ds –

∫ t


ai(s)xi(s) ds + Mi(t). ()

Then

ln xi(t) ≥ ln xi +
∑

<tk <t

ln( + hik) +
∫ t


b̄i(s) ds + Mi(t) – au

i

∫ t


xi(s) ds. ()

Note the definition of Mi(t) and bi∗, according to the property of the limit again, for any
εi > , i = , , there exists T >  such that, for t > T,

ln xi

t
≥ –εi/,

Mi(t)
t

≥ –εi/,


t

[ ∑
<tk <t

ln( + hik) +
∫ t


b̄i(s) ds

]
≥ b̄i – εi/.

Substituting above inequalities into () yields

ln xi(t) ≥ μit – au
i

∫ t


xi(s) ds ()

for all t > T almost surely, where μi = bi∗ – εi.
Note that hi(t) =

∫ t
 xi(s) ds and dhi(t)

dt = xi(t), then from () we have

eau
i hi(t) dhi(t)

dt
≥ eμit . ()

If we integrate the above inequality on the interval [T, t], then we have

eau
i hi(t) ≥ au

i
μi

eμit + eau
i hi(T) –

au
i

μi
eμiT . ()

Thus,

∫ t


xi(s) ds ≥ 

au
i

ln

[
au

i
μi

eμit + eau
i hi(T) –

au
i

μi
eμiT

]
. ()

Taking inferior limit on () yields

lim inf
t→+∞

∫ t
 xi(s) ds

t
≥ lim inf

t→+∞


au
i t

ln

[
au

i
μi

eμit + eau
i hi(T) –

au
i

μi
eμiT

]
. ()

By L’Hospital’s rule again, we have

lim inf
t→+∞

∫ t
 xi(s) ds

t
≥ lim inf

t→+∞
μi

au
i

=
bi∗
au

i
. ()

Thus, we complete the proof of the above theorem. �

Further, if bi∗ > , we have the following Corollary ..
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Corollary . If bi∗ = lim inft→+∞ 
t [

∑
<tk <t ln( + hik) +

∫ t
 b̄i(s) ds] > , then system () is

persistent in the mean a.s.

Theorem . If system () satisfies the following two conditions:
(H) there exist positive constants mi and Mi such that mi <

∏
<tk <t( + hik) < Mi;

(H) (σ u
i ) < b̄l

i ;
then system () is stochastically permanent, where b̄i(t) = ri(t) – ci(t) – .σ 

i (t), i = , .

Proof Applying Itô’s integration by parts formula, we can derive that

d
(
ety

i (t)
)

= ety
i (t) dt + etyi(t)dyi(t) + et(dyi(t)

)

= ety
i (t)

[
 + 

(
ri(t) – ai(t)

∏
<tk <t

( + hik)yi(t) –
ci(t)

∏
<tk <t( + hjk)yj(t)

 +
∏

<tk <t( + hjk)yj(t)

)

+ σ 
i (t)

]
dt

+ ety
i (t)σi(t) dBi(t)

≤ ety
i (t)

[
 + ri(t) + σ 

i (t) – ai(t)
∏

<tk <t

( + hik)yi(t)
]

dt

+ ety
i (t)σi(t) dBi(t).

Integrating the above inequality on the interval [, t], we have

ety
i (t) – y

i () ≤
∫ t


esy

i (s)
[
 + ri(s) + σ 

i (s) – miai(s)yi(s)
]

dt

+ 
∫ t


esy

i (s)σi(s) dBi(s). ()

Taking expectations on both sides of () and making some estimations lead to

E
[
ety

i (t)
] ≤ y

i + E
[∫ t


esy

i (s)
[
 + ri(s) + σ 

i (s) – miai(s)yi(s)
]

ds
]

≤ y
i + E

[∫ t


esy

i (s)
[
 + ru

i +
(
σ u

i
) – mial

iyi(s)
]

ds
]

.

Thus, by the maximum principle, we have

E
[
ety

i (t)
] ≤ y

i + LiE
[∫ t


esds

]
= y

i + Li
(
et – 

)
, ()

where Li = (+ru
i +(σu

i ))

(mial
i)

 , i = , .
Thus,

lim sup
t→+∞

E
[
y

i (t)
] ≤ lim sup

t→+∞
y

i + Li(et – )
t

= Li, ()
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which yields

lim sup
t→+∞

E
[
x

i (t)
]

= lim sup
t→+∞

E
[ ∏

<tk <t

( + hik)y
i (t)

]
≤ LiM

i . ()

Then, for any ξi > , set βi = Mi

√
Li
ξi

, and by Chebyshev’s inequality, we have

lim sup
t→+∞

P
{

xi(t) > βi
}

= lim sup
t→+∞

P
{

x
i (t) > β

i
} ≤ lim sup

t→+∞
E[x

i (t)]
β

i
≤ LiM

i
β

i
= ξi. ()

In other words,

lim inf
t→+∞ P

{
xi(t) ≤ βi

} ≥  – ξi. ()

Now we will prove that for ∀ξi > , ∃ηi > , s.t. lim inft→+∞ P {xi(t) ≥ ηi} ≥  – ξi.
In fact, it follows from condition (H) that bl

i > (σ u
i ). If we define

V(yi) = y–
i , V(yi) = ekt( + V(yi)

), i = , ,

where  < k < [bl
i – (σ u

i )].
Then it follows from Itô’s formula again that

dV(yi) = –y–
i dyi(t) + y–

i
(
dyi(t)

)

= –V(yi)
[

ri(t) – ai(t)
∏

<tk <t

( + hik)yi(t) –
ci(t)

∏
<tk <t( + hjk)yj(t)

 +
∏

<tk <t( + hjk)yj(t)

]
dt

– σi(t)V(yi) dBi(t) + σ 
i (t)V(yi) dt,

which yields

dV(yi) ≤ –V(yi)
[
ri(t) – ci(t) – σ 

i (t) – Miai(t)yi(t)
]

dt – σi(t)V(yi) dBi(t). ()

Similarity, if we apply Itô’s integration by parts formula on V(t), then

d
(
V(yi)

)
= kekt( + V(yi)

) dt + ekt( + V(yi)
)
dV(yi) + ekt(dV(yi)

)

≤ kekt( + V(yi)
) dt

– ektV(yi)
(
 + V(yi)

)[
ri(t) – ci(t) – σ 

i (t) – Miai(t)yi(t)
]

dt

– ektσi(t)
(
 + V(yi)

)
V(yi) dBi(t) + ektσ 

i (t)V 
 (yi) dt

≤ ekt[–
(
bi(t) – σ 

i (t) – .k
)
V 

 (yi) + 
(
Miai(t) – bi(t) + .σ 

i (t) + k
)
V(yi)

+
(
Mu

i au
i + k

)]
dt – ektσi(t)

(
 + V(yi)

)
V(yi) dBi(t),

which yields

d
(
V(yi)

) ≤ ektJ(yi) dt – ektσi(t)V(yi)
(
 + V(yi)

)
dBi(t), ()
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where

J(yi) = –
(
bl

i –
(
σ u

i
) – .k

)
V 

 (yi) + 
(
Miau

i – bl
i + .

(
σ u

i
) + k

)
V(yi) +

(
Mu

i au
i + k

)
.

Since  < k < [bl
i –(σ u

i )], then J(yi) is upper bounded, and we denote Ji := supyi∈R+ J(yi) <
+∞, then

d
(
V(yi)

) ≤ Jiekt dt – ektσi(t)V(yi)
(
 + V(yi)

)
dBi(t). ()

Integrating () from  to t, then multiplying e–kt and taking expectations on each side
of it, we can obtain

E
[(

 + V(yi)
)] ≤ V(yi)e–kt +

Ji

k
(
 – e–kt), ()

which yields

lim sup
t→∞

E
[
y–

i (t)
] ≤ lim sup

t→∞
E
[(

 + V(yi)
)] ≤ lim sup

t→∞

[
V(yi)

ekt +
Ji( – e–kt)

k

]
=

Ji

k
. ()

Thus,

lim sup
t→+∞

E
[
x–

i (t)
]

= lim sup
t→+∞

E
[ ∏

<tk <t

( + hik)–y–
i (t)

]
≤ Ji

km
i

. ()

Then, for any ξi > , set ηi = mi

√
kξi
Ji

, applying Chebyshev’s inequality again, we have

lim sup
t→+∞

P
{

xi(t) < ηi
}

= lim sup
t→+∞

P
{

x–
i (t) > η–

i
} ≤ lim

t→+∞
E[x–

i (t)]
η–

i
≤ ξi. ()

In other words,

lim inf
t→+∞ P

{
xi(t) ≥ ηi

} ≥  – ξi. ()

From () and (), the stochastic permanence of system () is obtained. This completes
the proof of this theorem. �

Remark In fact, ‘persistence in the mean’ in this section is not a good definition of persis-
tence for stochastic population models. Some authors have introduced some more appro-
priate definitions of permanence for stochastic population models. For example, stochas-
tic persistence in probability (see [, ]) or a new definition of stochastic permanence
(see []).

3 Numerical simulations and discussions
In this paper, a stochastic nonautonomous competitive system with impulsive perturba-
tions is proposed and studied. We establish sufficient conditions for the extinction, non-
persistence in the mean, weak persistence, persistence in the mean and stochastic perma-
nence of the system. Furthermore, the critical value between extinction, nonpersistence
and weak persistence of at least one species in the system is obtained.
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In order to verify the correctness and the feasibility of the derived conditions in the the-
oretical results, we will give a series of numerical examples to illustrate them by using the
extension of Milstein’s method (see []) in this section. Furthermore, we will show the
effects of different white noises or impulsive perturbations to the dynamics of the system,
and by the figures of corresponding simulations, one can observe the population fluctua-
tion of the species in the competitive system more intuitively.

In the following, we choose the same initial value (x, x) = (., .) and param-
eters a(t) = . + . sin(t), a(t) = . + . cos(t), c(t) = . + . sin(t), c(t) =
. + . cos(t), �t = ..

Example . For system (), we set the following choice of parameters:

r(t) = . + . sin(t), r(t) = . + . cos(t);

σ 
 (t) = . + . sin(t), σ 

 (t) = . + . cos(t);

hk = hk = e
(–)k

k – , tk = k, k = , , . . . .

By a simple computation, we have b̄(t) = –. – . sin(t), b̄(t) = –. – . cos(t), then
b∗

 = –. < , b∗
 = –. < , which satisfies the condition of Corollary ., then both of

the species are extinct (see Figure ).
If we decrease the white noises of the species x and let σ 

 (t) = . + . sin(t), while
the values of other parameters are the same as above, then b∗

 = . > , at the moment
the species x will still be extinct, while the species x can survive (see Figure ).

Example . For system (), if we set the following choice of parameters:

r(t) = . + . sin(t), r(t) = . + . cos(t);

σ 
 (t) = . + . sin(t), σ 

 (t) = . + . cos(t);

hk = hk = e
(–)k

k – , tk = k, k = , , . . . .

It is easy to calculate that b̄(t) = b̄(t) = , then b∗
 = b∗

 = , which satisfies the condition
of Corollary ., then the species of system () is nonpersistent in the mean (see Figure ).

Figure 1 The time series of system (4) with σ 2
1 (t) = 0.5 + 0.04 sin(t), σ 2

2 (t) = 0.4 + 0.04 cos(t),

h1k = h2k = –1 + e
(–1)k

k2 , �t = 0.01, k = 1, 2, . . . .
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Figure 2 The time series of system (4) with σ 2
1 (t) = 0.2 + 0.04 sin(t), σ 2

2 (t) = 0.4 + 0.04 cos(t),

h1k = h2k = –1 + e
(–1)k

k2 , �t = 0.01, k = 1, 2, . . . .

Figure 3 The time series of system (4) with σ 2
1 (t) = 0.32 + 0.04 sin(t), σ 2

2 (t) = 0.48 + 0.06 cos(t),

h1k = h2k = –1 + e
(–1)k

k2 , �t = 0.01, k = 1, 2, . . . .

If we increase the intrinsic growth rate of the species as r(t) = . + . sin(t), r(t) =
. + . cos(t), while the values of other parameters are the same as above, then one
can calculate b∗

 = . > , b∗
 = . >  at this time, which satisfies the condition of

Theorem .. According to the theorem, at least one of the two species will be weakly
persistent in the mean. On the other hand, from the stochastic simulation of this case (see
Figure ), we can observe that x is weakly persistent.

If we go on increasing the intrinsic growth rate of the species as r(t) = . + . sin(t),
r(t) = . + . cos(t), while the values of other parameters are the same as above, then
one can calculate that b∗ = b∗ = . >  at this time, which satisfies the condition of
Corollary ., then system () should be persistent in the mean almost surely by this corol-
lary. And this is also proved by our stochastic numerical simulation (see Figure ).

Example . For system (), we set another series of parameters as follows:

r(t) = . + . sin(t), r(t) = . + . cos(t);

σ 
 (t) = . + . sin(t), σ 

 (t) = . + . cos(t);

hk = hk = e
(–)k

k – , tk = k, k = , , . . . .
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Figure 4 The time series of system (4) with σ 2
1 (t) = 0.32 + 0.04 sin(t), σ 2

2 (t) = 0.48 + 0.06 cos(t),

h1k = h2k = –1 + e
(–1)k

k2 , �t = 0.01, k = 1, 2, . . . .

Figure 5 The time series of system (4) with σ 2
1 (t) = 0.32 + 0.04 sin(t), σ 2

2 (t) = 0.48 + 0.06 cos(t),

h1k = h2k = –1 + e
(–1)k

k2 , �t = 0.01, k = 1, 2, . . . .

Figure 6 The time series of system (4) with σ 2
1 (t) = 0.12 + 0.02 sin(t), σ 2

2 (t) = 0.1 + 0.02 cos(t),

h1k = h2k = –1 + e
(–1)k

k2 , �t = 0.01, k = 1, 2, . . . .

Further, by a simple computation, we can verify that e– <
∏

<tk <t( + hik) < e–. and
b(t) = r(t) – c(t) – .σ 

 (t) = . – . sin t, b(t) = r(t) – c(t) – .σ 
 (t) = . –

. cos t, which leads to (σ u
 ) = . < bl

 = ., (σ u
 ) = . < bl

 = .. That is to say,
conditions (H) and (H) in Theorem . hold, then the system is stochastic permanent,
and this is also proved by our stochastic numerical simulation (see Figure ).
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Figure 7 The time series of system (4) with σ 2
1 (t) = 2.12 + 0.02 sin(t), σ 2

2 (t) = 1.92 + 0.02 cos(t),

h1k = h2k = –1 + e
(–1)k

k2 , �t = 0.01, k = 1, 2, . . . .

Figure 8 The time series of system (4) with σ 2
1 (t) = 0.32 + 0.04 sin(t), σ 2

2 (t) = 0.48 + 0.06 cos(t),
h1k = h2k = e–0.2 – 1, �t = 0.01, k = 1, 2, . . . .

However, if we suppose that the white noises are increased as σ 
 (t) = . + . sin(t),

σ 
 (t) = . + . cos(t), then it is obvious that both species of system () will be extinct

rapidly by our stochastic simulation (see Figure ). This means that the species in the
ecological system might become extinct as the white noises increase.

On the other hand, in order to see how the impulsive perturbations will affect the system,
we choose the same parameters as those in Example ., but only change the intensity of
the impulses to hk = hk = e–. – , tk = k = , , . . . , then the condition b∗

i >  does not
hold any more. At the moment, we can see that both species become extinct instead of
being persistent in the mean by the stochastic simulation (see Figure ).

3.1 Conclusions
From the above numerical simulations and discussions, we can conclude that both heavy
intensity of environmental noises and large impulsive perturbations to the ecological sys-
tem will lead to the extinction of the species. And this shows that the departments of en-
vironment protection should control the environmental noises and impulsive disturbance
reasonably to protect the ecological balance.

In addition, as far as the study of population models is concerned, stability of the pos-
itive equilibrium state is one of the most interesting topics. For example, models with
noise, some of the stochastic models do not keep the positive equilibrium state of the
corresponding deterministic systems. And many authors have studied stability in distri-
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bution of several stochastic population models in recent years (see [, ] etc.). Thus, we
could try to consider these aspects and get much more interesting results in the future
investigation.
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