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1 Introduction
The oscillation and distributions of zeros of solutions of first order delay differential and
difference equations are studied widely in the literature; see [–] and the references
therein. However, there are only a few papers considering the distribution of zeros of so-
lutions of first order delay and advanced dynamic equations on time scales (see [, ]).
In [], Zhou considered the first order delay differential equation

x′(t) + p(t)x(t – τ ) = , for t ∈ [t,∞), (.)

where

∫ t

t–τ

p(s) ds ≥ ρ >

e

, and ρ < , (.)

and established lower and upper bounds for the quotient x(t – τ )/x(t). In particular the
author proved that x(t – τ )/x(t) ≥ fn(ρ) and x(t – τ )/x(t) < gm(ρ), where the sequences
fn(ρ) and gn(ρ) are defined by

⎧⎨
⎩

f(ρ) = eρ , fn+(ρ) = eρfn(ρ), n = , , . . . ,

g(ρ) = (–ρ)
ρ , gm+(ρ) = (–ρ)g

m(ρ)
g

m(ρ)ρ+ , m = , , . . . ,

and using these sequences the author studied the distribution of zeros of solutions of (.).
In [], Zhang and Zhou considered the first order delay differential equation

x′(t) + p(t)x
(
τ (t)

)
= , for t ∈ [t,∞), (.)
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and studied the distribution of zeros of solutions using the two sequences fn(ρ) and gm(ρ)
where

⎧⎨
⎩

f(ρ) = , fn+(ρ) = eρfn(ρ), n = , , , . . . ,

g(ρ) = (–ρ)
ρ , gm+(ρ) = (–ρ)g

m(ρ)
g

m(ρ)ρ+ , m = , , . . . ,

and

∫ t

τ (t)
p(s) ds ≥ ρ > , and  < ρ < . (.)

Zhang and Lian in [] initiated the study of the distribution of zeros of dynamic equations
on time scales and in particular, they considered the first order delay dynamic equation

x�(t) + p(t)x
(
τ (t)

)
= , for t ∈ [t,∞)T, (.)

on a time scale T, where p ∈ Crd(T,R+) is a non-negative rd-continuous function, τ ∈
Crd(T,T) is strictly increasing, τ (t) < t for t ∈ T and limt→∞ τ (t) = ∞. In [] the authors
established lower and the upper bounds for the quotient x(τ (t))/x(t) using the sequences
fn and gm where

f(ρ) = , fn(ρ) = e(–ρ)fn–(ρ), n = , , . . . , (.)

and
⎧⎪⎨
⎪⎩

g(ρ) = ρ

(–ρ)–M(–ρ) ,

gm(ρ) = ρ

(–ρ)–M(–ρ)+ 
g
m–(ρ)

, m = , , . . . , (.)

and where M < ( – ρ)/ and  ≤ ρ <  satisfies the condition

sup
λ∈E

{
λ exp

{∫ t

τ (t)
ζμ(s)

(
–λp(s)

)
�s

}}
≤ ρ,

where E = {λ : λ > ,  – λp(t)μ(t) > }; ζμ(s) and μ(s) will be defined later.
Motivated by these papers, we study the distribution of zeros of oscillatory solutions of

the delay dynamic equation (.) on a time scaleT by considering new sequences fn and gm.
In the next section, we present some basic ideas on time scales. In Section , we establish
lower and upper bounds for x(τ (t))/x(t) and in Section , we study the distribution of zeros
of solutions of (.).

2 Some preliminaries and lemmas
In this section, we present some preliminaries; see [, ]. A time scale T is an arbitrary
nonempty closed subset of the real numbersR. The forward and backward jump operators
are defined by

σ (t) := inf{s ∈ T : s > t}, and ρ(t) := sup{s ∈ T : s < t},
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with inf∅ = supT and sup∅ = infT. The graininess function μ on a time scale T is defined
by μ(t) := σ (t) – t. For a function f : T →R the (delta) derivative is defined by

f �(t) =
f (σ (t)) – f (t)

σ (t) – t
,

if f is continuous at t and t is right-scattered. If t is not right-scattered then the derivative
is defined by

f �(t) = lim
s→t

f (t) – f (s)
t – s

,

provided this limit exists. A function f is said to be �-differentiable if its �-derivative
exists. A useful formula is f σ = f (σ (t)) = f (t) +μ(t)f �(t). We will make use of the following
product and quotient rules for the derivative of the product fg and the quotient f /g (where
ggσ 	= , and here gσ = g ◦ σ ) of two �-differentiable functions f and g :

(fg)� = f �g + f σ g� = fg� + f �gσ ,
(

f
g

)�

=
f �g – fg�

ggσ
.

Let f : R →R be continuously differentiable and suppose g : T→R is delta differentiable.
Then f ◦ g : T →R is delta differentiable and the chain rule,

(f ◦ g)�(t) =
{∫ 


f ′(g(t) + hμ(t)g�(t)

)
dh

}
g�(t), (.)

holds. A special case of (.) is

[
xλ(t)

]� = λ

∫ 



[
hxσ + ( – h)x

]λ–x�(t) dh.

For s, t ∈ T, a function F : T →R is called an antiderivative of f : T →R provided F� =
f (t) holds for all t ∈ T. In this case we define the integral of f by

∫ t
s f (τ )�τ = F(t) – F(s).

For a, b ∈ T, and a �-differentiable function f , the Cauchy integral of f � is defined by∫ b
a f �(τ )�τ = f (b) – f (a). The integration by parts formula reads

∫ b

a
f (t)g�(t)�t =

[
f (t)g(t)

]b
a –

∫ b

a
f �(t)gσ (t)�t,

and infinite integrals are defined as

∫ ∞

a
f (t)�t = lim

b→∞

∫ b

a
f (t)�t.

A function p: T →R is called regressive if +μ(t)p(t) 	=  for t ∈ T. A function p : T→R is
called positively regressive (we write p ∈R+) if it is rd-continuous function and satisfies +
μ(t)p(t) >  for all t ∈ T. Hilger in [] showed that for p(t) rd-continuous and regressive,
the solution of the initial value problem

y�(t) = p(t)y(t), y(t) = ,



O’Regan et al. Advances in Difference Equations  (2017) 2017:205 Page 4 of 16

is given by the generalized exponential function ep(t, t), which is defined by

ep(t, t) = exp

{∫ t

t

ζμ(s)
(
p(s)

)
�s

}
,

where t, t ∈ T, and the cylinder transformation ζh(z) is defined by

ζh(z) =

⎧⎨
⎩

log(+hz)
h , if h 	= ,

z, if h = ,

where z ∈ R and h ∈R
+.

The next lemma can be found in [].

Lemma . Assume t, t ∈ T.
(i) For a non-negative ϕ with –ϕ ∈R+, we have the following inequality:

 –
∫ t

t

ϕ(s)�s ≤ e–ϕ(t, t) ≤ exp

{
–

∫ t

t

ϕ(s)�s
}

. (.)

(ii) If ϕ is rd-continuous and non-negative, then

 +
∫ t

t

ϕ(s)�s ≤ eϕ(t, t) ≤ exp

{∫ t

t

ϕ(s)�s
}

. (.)

Lemma . Assume that T is a time scale with t ∈ T. If f (t) >  on [t,∞)T, then

[
ln f (t)

]� ≤ f �(t)
f (t)

, for t ∈ [t,∞)T.

Proof Fix t. We consider two cases: (i) f �(t) ≤  and (ii) f �(t) ≥ .
In the first case, we see that

hμ(t)f �(t) + f (t) ≤ f (t).

Now recall f (σ (t)) = f (t) + μ(t)f �(t) so hμ(t)f �(t) + f (t) = hf (σ (t)) + ( – h)f (t) >  and as
a result


hμ(t)f �(t) + f (t)

≥ 
f (t)

.

Apply the chain rule (.), and we get (note f �(t) ≤ )

[
ln f (t)

]� =
{∫ 




hμ(t)f �(t) + f (t)

dh
}

f �(t) ≤ f �(t)
f (t)

.

In the second case, we see that

hμ(t)f �(t) + f (t) ≥ f (t).
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Applying the chain rule (.), we get

[
ln f (t)

]� =
{∫ 




hμ(t)f �(t) + f (t)

dh
}

f �(t) ≤ f �(t)
f (t)

.

Thus, we deduce in both cases that

[
ln f (t)

]� ≤ f �(t)
f (t)

.

The proof is complete. �

Lemma . Assume that T is a time scale with t ∈ T. If f (t) >  and f �(t) ≥  for t ∈
[t,∞)T, then for α > 

[
e–αf (t)]� ≥ –αe–αf (t)f �(t).

Proof Since f (t) >  and f �(t) ≥  for t ∈ [t,∞)T, we have for h ∈ (, )

f (t) ≤ hμ(t)f �(t) + f (t). (.)

Applying the chain rule (.) and using (.), we see that

[
e–αf (t)]� =

{
–α

∫ 


e–α(f (t)+hμ(t)f �(t)) dh

}
f �(t) ≥ –αe–αf (t)f �(t).

The proof is complete. �

3 Lower and upper bounds for x(τ (t))/x(t)
In this section, we establish lower and upper bounds for x(τ (t))/x(t) where x(t) is a solution
of equation (.). We use the notation τ (t) = t and inductively define the iterates of τ–i(t)
by

τ–i(t) =
(
τ– ◦ τ–(i–))(t), for i = , , . . . ,

where τ–(t) is the inverse function of τ (t). From the definition it is clear that

τ (t) < t < τ–(t) < · · · < τ–(n–)(t) < τ–n(t) < · · · .

To find the lower bound for x(τ (t))/x(t) we define for  < ρ <  a sequence fn(ρ) by

⎧⎨
⎩

f(ρ) = , f(ρ) = /ρ,

fn+(ρ) = fn(ρ)
fn(ρ)+–e(–ρ)fn(ρ) , n = , , , , . . . .

(.)

We note some properties of fn(ρ) for the reader’s interest (see [] or use an elementary
argument using x

x+–e(–ρ)x ). For  <  – ρ ≤ /e, we have

 ≤ fn(ρ) ≤ fn+(ρ) ≤ e, n = , , , . . . ,
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so there exists a function f (ρ) such

lim
n→∞ fn(ρ) = f (ρ),  ≤ f (ρ) ≤ e,

where f (ρ) satisfies

f (ρ) = e(–ρ)f (ρ). (.)

If ( – ρ) > /e, then either fn(ρ) is nondecreasing and limn→∞ fn(ρ) = +∞ or fn(ρ) is nega-
tive or fn(ρ) is ∞ after a finite numbers of terms.

Theorem . Assume that T is a time scale and t′, t, t ∈ T, t ≥ t′, t ≥ τ–(t), x(t)
is a solution of (.) on [t′,∞)T, x(t) is positive on [t, t]T and there exists ρ ∈ (, ) with
∞ > fn(ρ) >  for n ∈ {, , . . .} and

sup
λ∈E

{
λ exp

{∫ t

τ (t)
ζμ(s)

(
–λp(s)

)
�s

}}
≤ ρ for t ∈ [

τ–(t), t
]
T

; (.)

here E = {λ : λ > ,  – λp(t)μ(t) >  for t ∈ [τ–(t), t]T}. Then for n ≥  when τ–(+n)(t) ≤
t we have

x(τ (t))
x(t)

≥ fn(ρ), for t ∈ [
τ–(+n)(t), t

]
T

,

where fn(ρ) is defined in (.).

Proof From (.), we see that

x�(t) = –p(t)x
(
τ (t)

) ≤ , for t ∈ [
τ–(t), t

]
T

, (.)

so since x(t) is nonincreasing on [τ–(t), t]T we have

x(τ (t))
x(t)

≥ , for t ∈ [
τ–(t), t

]
T

. (.)

Note (.) and the fact that x is positive on [t, t]T, so for t ∈ [τ–(t), t]T we have (note
x(σ (t)) >  since σ (t) ≥ t ≥ τ–(t) > t)

 = –μ(t)
[
x�(t) + p(t)x

(
τ (t)

)]

= x(t) – x
(
σ (t)

)
– μ(t)p(t)x

(
τ (t)

)

< x(t) – μ(t)p(t)x(t)

=
[
 – μ(t)p(t)

]
x(t).

Hence  – μ(t)p(t) >  for t ∈ [τ–(t), t]T so –p ∈ R+ on the interval [τ–(t), t]T. Using
Lemma . (with the time scale [τ–(t), t]T) and (.), we have for t ∈ [τ–(t), t]T (note
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τ (t) ∈ [τ–(t), t]T)

∫ t

τ (t)
p(s)�s ≥  – exp

{∫ t

τ (t)
ζμ(s)

(
–p(s)

)
�s

}

≥  – sup
λ∈E

{
λ exp

{∫ t

τ (t)
ζμ(s)

(
–λp(s)

)
�s

}}

≥  – ρ. (.)

Integrating (.) from τ (t) to t, we get

x
(
τ (t)

)
= x(t) +

∫ t

τ (t)
p(s)x

(
τ (s)

)
�s, (.)

and hence, for t ∈ [τ–(t), t]T, we get

x
(
τ (t)

)
= x(t) +

∫ t

τ (t)
p(s)x

(
τ (s)

)
�s ≥ x(t) + x

(
τ (t)

)∫ t

τ (t)
p(s)�s ≥ x(t) + x

(
τ (t)

)
( – ρ),

so

x(τ (t))
x(t)

≥ 
ρ

= f(ρ) > , for t ∈ [
τ–(t), t

]
.

When τ–(t) ≤ t, note, for t ∈ [τ–(t), t]T and τ (t) ≤ s ≤ t, that

∫ τ (t)

τ (s)

x�(ξ )
x(ξ )

�ξ +
∫ τ (t)

τ (s)
p(ξ )

x(τ (ξ ))
x(ξ )

�ξ = , (.)

so from Lemma . we have

∫ τ (t)

τ (s)

[
ln x(ξ )

]�
�ξ +

∫ τ (t)

τ (s)
p(ξ )

x(τ (ξ ))
x(ξ )

�ξ ≤ , (.)

which implies that

x(τ (s))
x(τ (t))

≥ exp

{∫ τ (t)

τ (s)
p(ξ )

x(τ (ξ ))
x(ξ )

�ξ

}
,

and so using (.), we have (note ξ ∈ [τ–(t), t]T since τ (t) ≤ s ≤ t and t ∈ [τ–(t), t]T)

x(τ (s))
x(τ (t))

≥ exp

{
f(ρ)

∫ τ (t)

τ (s)
p(ξ )�ξ

}
; (.)

we write f(ρ) (which is of course  here) to indicate the general procedure. Now applying
Lemma . and using (.), (.) and (.), we get (here t ∈ [τ–(t), t]T)

x
(
τ (t)

)
= x(t) +

∫ t

τ (t)
p(s)x

(
τ (s)

)
�s

≥ x(t) + x
(
τ (t)

)∫ t

τ (t)
p(s) exp

{
f(ρ)

∫ τ (t)

τ (s)
p(ξ )�ξ

}
�s
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= x(t) + x
(
τ (t)

)∫ t

τ (t)
p(s) exp

{
f(ρ)

(∫ s

τ (s)
p(ξ )�ξ –

∫ s

τ (t)
p(ξ )�ξ

)}
�s

≥ x(t) + x
(
τ (t)

)
e(–ρ)f(ρ)

∫ t

τ (t)
p(s) exp

{
–f(ρ)

∫ s

τ (t)
p(ξ )�ξ

}
�s

≥ x(t) + x
(
τ (t)

)
e(–ρ)f(ρ)

∫ t

τ (t)

–[exp{–f(ρ)
∫ s
τ (t) p(ξ )�ξ}]�

f(ρ)
�s

= x(t) + x
(
τ (t)

)
e(–ρ)f(ρ)

[ – exp{–f(ρ)
∫ t
τ (t) p(ξ )�ξ}

f(ρ)

]
�s

≥ x(t) + x
(
τ (t)

)(e(–ρ)f(ρ) – 
f(ρ)

)
.

Thus, for t ∈ [τ–(t), t]T, we get

x(τ (t))
x(t)

≥ f(ρ)
f(ρ) +  – e(–ρ)f(ρ) = f(ρ) > .

Repeating the above procedure, when τ–(+n)(t) ≤ t we get for t ∈ [τ–(+n)(t), t]T

x(τ (t))
x(t)

≥ fn–(ρ)
fn–(ρ) +  – e(–ρ)fn–(ρ) = fn(ρ) > .

The proof is complete. �

Remark . From the proof of Theorem . notice in the statement of Theorem . we
could replace ∞ > fn(ρ) >  for n ∈ {, , . . .} with ∞ > fn(ρ) >  for n ∈ {, , . . . , N – }
if τ–(+N)(t) < t < τ–(+N)(t) or ∞ > fn(ρ) >  for n ∈ {, , . . . , N – } if τ–(+N)(t) = t <
τ–(+N)(t).

To establish the upper bound for x(τ (t))/x(t), we define a sequence gm(ρ) by

⎧⎪⎨
⎪⎩

g(ρ) := ρ

(–ρ)–M(–ρ) ,

gm+(ρ) :=
(ρ– 

gm(ρ) )
[(–ρ)–M(–ρ)] ,

(.)

where  ≤ ρ < , m = , , , . . . , and  ≤ M < ( – ρ)/.
We note some properties of gm(ρ) for the reader’s interest. Note gm+(ρ) < gm(ρ), for

m = , , , . . . , and trivially

g(ρ) >
ρ

( – ρ) – M( – ρ)
.

More generally when  <  – ρ ≤ /e using an induction argument (i.e. assuming gm(ρ) >
ρ

(–ρ)–M(–ρ) ) then

gm+(ρ) =
(ρgm(ρ) – )

gm(ρ)[( – ρ) – M( – ρ)]

>
ρ

( – ρ) – M( – ρ)
–


ρ

>
ρ

( – ρ) – M( – ρ)
;



O’Regan et al. Advances in Difference Equations  (2017) 2017:205 Page 9 of 16

thus gk(ρ) > ρ

(–ρ)–M(–ρ) where k = , , . . . . Then there exists a function g(ρ) with

lim
m→∞ gm(ρ) = g(ρ) =


ρ –

√
(M – ) – (M – )ρ – ρ

.

for  <  – ρ ≤ /e (note (M – ) – (M – )ρ – ρ >  if  <  – ρ ≤ /e).

Theorem . Assume that T is a time scale and t′, t ∈ T, t ≥ t′, x(t) is a solution of (.)
on [t′,∞)T, there exists a positive integer N ≥  such that x(t) is positive on [t, τ–N (t)]T
and there exists ρ ∈ (, ) with gm(ρ) >  for m ∈ {, , . . . , N – } and

sup
λ∈E

{
λ exp

{∫ t

τ (t)
ζμ(s)

(
–λp(s)

)
�s

}}
≤ ρ for t ∈ [

τ–(t), τ–N (t)
]
T

, (.)

where E = {λ : λ > ,  – λp(t)μ(t) >  for t ∈ [τ–(t), τ–N (t)]T} and

M = sup
s∈[τ–(t),τ–N (t)]T

p(s)μ(s) <
 – ρ


.

Then for m ∈ {, . . . , N – } we have

x(τ (t))
x(t)

< gm(ρ), for t ∈ [
τ–(t), τ–(N–m)(t)

]
T

,

where gm(ρ) is defined in (.).

Proof From (.), we see that

x�(t) ≤ , for t ∈ [
τ–(t), τ–N (t)

]
T

, (.)

and as in Theorem . notice  – μ(t)p(t) >  for t ∈ [τ–(t), τ–N (t)]T so –p ∈ R+ on the
interval [τ–(t), τ–N (t)]T. From Lemma . (with the time scale [τ–(t), τ–N (t)]T) and
(.), we have for t ∈ [τ–(t), τ–(N–)(t)]T (note τ–(t) ≤ τ–N (t))

∫ t

τ (t)
p(s)�s ≥  – ρ and

∫ τ–(t)

t
p(s)�s ≥  – ρ. (.)

Let t ∈ [τ–(t), τ–(N–)(t)]T and consider

G(r) :=
∫ r

t
p(s)�s –  + ρ, for r ∈ [

t, τ–(t)
]
T

.

Note G : [t, τ–(t)] →R is nondecreasing, G(t) = – + ρ < , and

G
(
τ–(t)

)
=

∫ τ–(t)

t
p(s)�s –  + ρ ≥  – ρ –  + ρ = .

If G(τ–(t)) = , then

∫ τ–(t)

t
p(s)�s = G

(
τ–(t)

)
+  – ρ =  – ρ,
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whereas if G(τ–(t)) >  then G(t) <  < G(τ–(t)).
In either case (from the intermediate value theorem []) there exists t∗ ∈ [t, τ–(t)]T

with σ (t∗) ∈ [t, τ–(t)]T such that G(t∗)G(σ (t∗)) ≤  and so

∫ t∗

t
p(s)�s ≤  – ρ and

∫ σ (t∗)

t
p(s)�s ≥  – ρ. (.)

Integrating both sides of (.) from t to σ (t∗), for t ∈ [τ–(t), τ–(N–)(t)]T, we have

x(t) = x
(
σ
(
t∗)) +

∫ σ (t∗)

t
p(s)x

(
τ (s)

)
�s. (.)

Fix t ∈ [τ–(t), τ–(N–)(t)]T. Let s ∈ T be such that t ≤ s ≤ σ (t∗) ≤ τ–(t) (here t∗ is as
described above, and note τ (t) ≤ τ (s) ≤ t) and integrating (.) from τ (s) to t yields

x
(
τ (s)

)
= x(t) +

∫ t

τ (s)
p(u)x

(
τ (u)

)
�u,

and this together with x being nonincreasing on [τ–(t), τ–N (t)]T and (.) will give

x
(
τ (s)

) ≥ x(t) + x
(
τ (t)

)∫ t

τ (s)
p(u)�u

= x(t) + x
(
τ (t)

){∫ s

τ (s)
p(u)�u –

∫ s

t
p(u)�u

}

≥ x(t) + x
(
τ (t)

){
 – ρ –

∫ s

t
p(u)�u

}
, (.)

so from (.), (.) and (.), we obtain

x(t) = x
(
σ
(
t∗)) +

∫ σ (t∗)

t
p(s)x

(
τ (s)

)
�s

≥ x
(
σ
(
t∗)) +

∫ σ (t∗)

t
p(s)

{
x(t) + x

(
τ (t)

){
 – ρ –

∫ s

t
p(u)�u

}}
�s

≥ x
(
σ
(
t∗)) + ( – ρ)x(t) + ( – ρ)x

(
τ (t)

)

– x
(
τ (t)

){∫ t∗

t
p(s)

{∫ s

t
p(u)�u

}
�s

+
∫ σ (t∗)

t∗
p(s)

{∫ s

t
p(u)�u

}
�s

}
. (.)

Let F(s) =
∫ s

t p(u)�u, and note

[
F(s)

]� = 
∫ 



[
hFσ (s) + ( – h)F(s)

]
F�(s) dh

= 
∫ 



[
hFσ (s) + ( – h)F(s)

]
p(s) dh

≥ F(s)p(s).
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Hence,

∫ t∗

t
p(s)

{∫ s

t
p(u)�u

}
�s =

∫ t∗

t
p(s)F(s)�s ≤ 


F(t∗)

=



(∫ t∗

t
p(u)�u

)

≤ ( – ρ)


, (.)

and so we obtain
∫ t∗

t
p(s)�s

∫ s

t
p(u)�u +

∫ σ (t∗)

t∗
p(s)�s

∫ s

t
p(u)�u

≤ ( – ρ)


+ μ

(
t∗)p

(
t∗)∫ t∗

t
p(u)�u

≤ ( – ρ)


+ ( – ρ)M. (.)

Note σ (t∗) ∈ [t, τ–(t)]T, t ∈ [τ–(t), τ–(N–)(t)]T, and x is positive on [t, τ–N (t)]T (so
x(σ (t∗)) > ). Thus from (.) and (.), we obtain

x(t) ≥ x
(
σ
(
t∗)) + ( – ρ)x(t)

+ ( – ρ)x
(
τ (t)

)
–

[
( – ρ)


+ ( – ρ)M

]
x
(
τ (t)

)

= x
(
σ
(
t∗)) + ( – ρ)x(t)

+
[

( – ρ)


– ( – ρ)M

]
x
(
τ (t)

)
, (.)

and so we have

x(τ (t))
x(t)

<
ρ

( – ρ) – M( – ρ)
= g(ρ), for t ∈ [

τ–(t), τ–(N–)(t)
]
T

. (.)

Fix t ∈ [τ–(t), τ–(N–)(t)]T and with t∗ as described above we have t ≤ σ (t∗) ≤ τ–(t) ≤
τ–(N–)(t), so from (.) we have

x
(
σ
(
t∗)) >


g(ρ)

x
(
τ
(
σ
(
t∗))),

and since x is nonincreasing on [τ–(t), τ–N (t)]T and τ (σ (t∗)) ≤ t ≤ τ–(N–)(t) we have

x
(
σ
(
t∗)) >


g(ρ)

x
(
τ
(
σ
(
t∗))) ≥ 

g(ρ)
x(t). (.)

Substituting (.) into (.), we obtain for t ∈ [τ–(t), τ–(N–)(t)]T that

x(t) >


g(ρ)
x(t) + ( – ρ)x(t) +

[
( – ρ)


– ( – ρ)M

]
x
(
τ (t)

)
,

and so we have

x(τ (t))
x(t)

<
(ρ – 

g(ρ) )
( – ρ) – M( – ρ)

:= g(ρ).
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Repeating the above procedure, we obtain for t ∈ [τ–(t), τ–(N–m)(t)]T

x(τ (t))
x(t)

<
(ρ – 

gm–(ρ) )
( – ρ) – M( – ρ)

:= gm(ρ).

The proof is complete. �

4 Distributions of zeros of solutions
In this section, we study the distribution of zeros of solutions of (.) using the lower and
upper bounds for x(τ (t))/x(t) in Section .

Theorem . Assume that T is a time scale and t′, t ∈ T, t ≥ t′, x(t) is a solution of (.)
on [t′,∞)T, and there exist ρ ∈ (, ) and n, m ∈ {, , . . .} with fn (ρ) ≥ gm (ρ), and with

N =  + min
n≥,m≥

{
n + m : fn(ρ) ≥ gm(ρ)

}
=  + n� + m�

assume ∞ > fk(ρ) > , gk(ρ) >  for n ∈ {, , . . . , N – } and

sup
λ∈E

{
λ exp

{∫ t

τ (t)
ζμ(s)

(
–λp(s)

)
�s

}}
≤ ρ for t ∈ [

τ–(t), τ–N (t)
]
T

,

where E = {λ : λ > ,  – λp(t)μ(t) >  for t ∈ [τ–(t), τ–N (t)]T} and

M = sup
s∈[τ–(t),τ–N (t)]T

p(s)μ(s) <
 – ρ


.

Then every solution of (.) cannot be totally positive or totally negative on [t, τ–N (t)]T.

Proof Note

fn� (ρ) ≥ gm� (ρ). (.)

Without loss of generality assume x is positive on [t, τ–N (t)]T. From Theorem . we
have

x(τ (t))
x(t)

≥ fn� (ρ), for t ∈ [
τ–(+n�)(t), τ–N (t)

]
T

and from Theorem . we have (note m� = N – ( + n�) ≤ N – )

x(τ (t))
x(t)

< gm� (ρ), for t ∈ [
τ–(t), τ–(N–m�)(t)

]
T

.

Note since N =  + n� + m� we have (take t = τ–(N–m�)(t))

fn� (ρ) ≤ x(τ–(+n�)(t))
x(τ–(+n�)(t))

< gm� (ρ),

which contradicts (.). The proof is complete. �
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Theorem . Assume that T is a time scale and t′, t ∈ T, t ≥ t′, x(t) is a solution of (.)
on [t′,∞)T, and there exist ρ ∈ (, ) and a positive integer N ≥  and m ∈ {, , . . . , N – }
with

∫ tm

τ (tm )
p(s)�s >  –


gm (ρ)

where tm = τ–(N–m)(t),

and with

m� = min
m∈{,...,N–}

{
m :

∫ tm

τ (tm)
p(s)�s >  –


gm(ρ)

}
where tm = τ–(N–m)(t)

assume ∞ > fk(ρ) > , gk(ρ) >  for n ∈ {, , . . . , N – } and

sup
λ∈E

{
λ exp

{∫ t

τ (t)
ζμ(s)

(
–λp(s)

)
�s

}}
≤ ρ for t ∈ [

τ–(t), τ–N (t)
]
T

,

where E = {λ : λ > ,  – λp(t)μ(t) >  for t ∈ [τ–(t), τ–N (t)]T} and

M = sup
s∈[τ–(t),τ–N (t)]T

p(s)μ(s) <
 – ρ


.

Then every solution of (.) cannot be totally positive or totally negative on [t, τ–N (t)]T.

Proof Note

∫ tm�

τ (tm� )
p(s)�s >  –


gm� (ρ)

where tm� = τ–(N–m�)(t). (.)

Without loss of generality assume x is positive on [t, τ–N (t)]T. From Theorem ., we
have

x(τ (t))
x(t)

< gm� (ρ), for t ∈ [
τ–(t), τ–(N–m�)(t)

]
T

,

so in particular

x(τ (tm� ))
x(tm� )

< gm� (ρ). (.)

Integrating (.) from τ (tm� ) to tm� , we obtain

x
(
τ (tm� )

)
– x(tm� ) =

∫ tm�

τ (tm� )
p(s)x

(
τ (s)

)
�s ≥ x

(
τ (tm� )

)∫ tm�

τ (tm� )
p(s)�s,

and this together with (.) gives

∫ tm�

τ (tm� )
p(s)�s ≤  –

x(tm� )
x(τ (tm� ))

≤  –


gm� (ρ)
,

which contradicts (.). The proof is complete. �
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Theorem . Assume that T is a time scale and t′, t ∈ T, t ≥ t′, x(t) is a solution of (.)
on [t′,∞)T, and there exist ρ ∈ (, ), a constant L and n, m ∈ {, , . . .} with

 + ln fn–(ρ)
fn–(ρ)

–


gm (ρ)
< L

and with

N =  + min
n≥,m≥

{
n + m : L >

(
 + ln fn–(ρ)

fn–(ρ)
–


gm(ρ)

)}
=  + n� + m�,

assume ∞ > fk(ρ) > , gk(ρ) >  for n ∈ {, , . . . , N – } and

sup
λ∈E

{
λ exp

{∫ t

τ (t)
ζμ(s)

(
–λp(s)

)
�s

}}
≤ ρ for t ∈ [

τ–(t), τ–N (t)
]
T

,

where E = {λ : λ > ,  – λp(t)μ(t) >  for t ∈ [τ–(t), τ–N (t)]T} and

M = sup
s∈[τ–(t),τ–N (t)]T

p(s)μ(s) <
 – ρ


.

Suppose fn�–(ρ) ≥ , fn∗ (ρ) > fn∗–(ρ) and for t∗ ∈ [τ (t), t]T (here t = τ–(N–m�)(t)) that

∫ t∗

τ (t)
p(s)�s +

∫ t

σ (t∗)
p(s)�s ≥ L. (.)

Then every solution of (.) cannot be totally positive or totally negative on [t, τ–N (t)]T.

Proof Note

L >
(

 + ln fn∗–(ρ)
fn∗–(ρ)

–


gm∗ (ρ)

)
. (.)

Without loss of generality assume x is positive on [t, τ–N (t)]T. From Theorem ., we
have

x(τ (t))
x(t)

≥ fn∗ (ρ), t ∈ [
τ–(+n�)(t), τ–N (t)

]
T

, (.)

x(τ (t))
x(t)

≥ fn∗–(ρ), t ∈ [
τ–(+n�)(t), τ–N (t)

]
T

, (.)

and from Theorem ., we have

x(τ (t))
x(t)

< gm∗ (ρ), t ∈ [
τ–(t), τ–(N–m∗)(t)

]
T

,

so in particular (with t = τ–(N–m�)(t) = τ–(+n�)(t)) we have

x(τ (t))
x(t)

< gm∗ (ρ). (.)
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From (.) and fn∗ (ρ) > fn∗–(ρ) we have

x(τ (t))
x(t)

> fn∗–(ρ).

Now since x is nonincreasing on [τ–(t), τ–N (t)]T and fn�–(ρ) ≥  (and trivially note
x(τ (t))
x(τ (t)) = ) there exists a t∗ ∈ [τ (t), t]T with

x(τ (t))
x(t∗)

≤ fn∗–(ρ) and
x(τ (t))
x(σ (t∗))

≥ fn∗–(ρ). (.)

Integrating (.) from σ (t∗) to t, we obtain

x
(
σ
(
t∗)) – x(t) =

∫ t

σ (t∗)
p(s)x

(
τ (s)

)
�s ≥ x

(
τ (t)

)∫ t

σ (t∗)
p(s)�s,

which implies

∫ t

σ (t∗)
p(s)�s ≤

(
x(σ (t∗))
x(τ (t))

–
x(t)

x(τ (t))

)
. (.)

From (.), (.) and (.), we obtain

∫ t

σ (t∗)
p(s)�s ≤

(


fn∗–(ρ)
–


gm∗ (ρ)

)
. (.)

Divide (.) by x and integrate from τ (t) to t∗, and we get

∫ t∗

τ (t)

x�(s)
x(s)

�s = –
∫ t∗

τ (t)
p(s)

x(τ (s))
x(s)

�s ≤ –fn∗–(ρ)
∫ t∗

τ (t)
p(s)�s,

which implies

∫ t∗

τ (t)
p(s)�s ≤ –


fn∗–(ρ)

∫ t∗

τ (t)

x�(s)
x(s)

�s. (.)

From (.), (.) and Lemma ., we obtain

∫ t∗

τ (t)
p(s)�s ≤ –


fn∗–(ρ)

∫ t∗

τ (t)

[
ln x(s)

]�
�s =


fn∗–(ρ)

ln

(
x(τ (t))

x(t∗)

)

≤ ln fn∗–(ρ)
fn∗–(ρ)

, (.)

and from (.), (.) and (.) we have

∫ t∗

τ (t)
p(s)�s +

∫ t

σ (t∗)
p(s)�s ≤

(
 + ln fn∗–(ρ)

fn∗–(ρ)
–


gm∗ (ρ)

)
< L,

which contradicts (.). The proof is complete. �
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Remark . When T = R equation (.) is the delay differential equation

x′(t) + p(t)x
(
τ (t)

)
= , t ∈R.

Theorem . and Theorem . are related to the results in [], Lemma . and Lemma .,
and Theorem . is motivated from results in [], Theorem .
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