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Abstract
We have analyzed the stability of interactional genetic regulatory networks with
reaction-diffusion terms under Dirichlet boundary conditions in this article.
Corresponding to interaction between unstable genetic regulatory networks and
stable genetic regulatory networks, the model is given, and a stability criterion is
proposed through construction of appropriate Lyapunov-Krasovskii functions and
linear matrix inequalities (LMI). By means of a numerical simulation, we have proved
the effectiveness and correctness of the theorem, and we analyzed the factors that
influence the stability for interactional genetic regulatory networks.
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1 Introduction
Since , the Alon research group has proposed the network module [–], network
modules with several nodes become a hot research topic. Modeling and dynamic analy-
sis of these genetic regulatory networks (GRNs), which are considered as important sub-
module of complex biology network, because a GRN can clarify the mechanism of biologi-
cal network. At present, the models of genetic regulatory network include directed graphs
[–], the Boolean model [–], the Bayesian model [–] and the differential equa-
tions model [–]. In these models, the differential equations model has obvious ad-
vantages, for example, the differential equations model is more accurate than the Boolean
model in describing GRNs, and it has less computational complexity than the Bayesian
model. The differential equations model is an open model, because a great deal about dy-
namic systems can be directly applied to this model, which has attracted a large number
of other field experts to join the relevant research, and reaped rich fruits. A real biological
network contains tens of thousands of nodes, while the simulations of these studies are
based on a few nodes as the research object, the theoretical basis of its simplification is
that the number of molecules involved in the chemical reaction is usually very low at a
given moment.

Although there are many outstanding achievements in the study of differential equations
as a model of the GRN, there are still some problems that needed further research.
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On the one hand, the spatial diffusion phenomenon exists widely in the fields of physics,
chemistry, biology, and so on, but most of the current studies on GRNs in terms of the
spatial homogeneity of concentrations are for cell components. This proposition can lead
to missing a lot of space information, but there are only five articles [, , , , ]
about the study of GRNs with reaction-diffusion terms, and the five articles have only
discussed the influence of reaction-diffusion terms on the time-delay conservatism,but
they did not explore the essence of reaction-diffusion terms.

On the other hand, corresponding to the different biological signals, the change of the
expression of a protein will affect the expression of gene, which makes the network achieve
stability ultimately. Lest life activity is only the result of a local GRN, it also has extensive
connections with the surrounding GRN, and the dynamical properties of these GRNs also
directly affect the survival of the living body. For example, a virus cannot survive indepen-
dently, and its replication and transmission must be completed by the synthesis system,
the replication system and the protein transport system of the host cell. A large number
of studies showed that, after the host is infected by the virus, when the virus is active,
enzymes and mRNA concentrations for viral replication will be unstable; when the virus
is repressed or dormant, the virus replication related enzymes and mRNA concentrations
will tend to stability [–]. In recent years, it was found that there is a wide and complex
relation between the virus and the host at the molecular level based on the proteins atlas
of interaction between viral and host [–].

In this article we have proposed a model of interactional genetic regulatory networks
(GRNs), and we analyzed the stability of interactional GRNs, the theoretical support for
the above method is given from the aspect of dynamics. By numerical simulation, three
significant conclusions are obtained.

2 Problem formulation
Two different nonlinear delayed GRNs are described by equations () and (), respectively:

⎧
⎨

⎩

dui(t)
dt = –aiui(t) +

∑n
j= ωijfj(vj(t – σ (t))),

dvi(t)
dt = –civi(t) + biui(t – τ (t)), i = , , . . . , n,

()

⎧
⎨

⎩

dup(t)
dt = –apup(t) +

∑n
q= �pqgq(vq(t – σ ′(t))),

dvp(t)
dt = –cpvp(t) + bpup(t – τ ′(t)), p = , , . . . , n,

()

where GRN () is stable, and GRN () is unstable, ui(t), vi(t) ∈ Rn and up(t), vp(t) ∈ Rn

are the concentrations of mRNA and protein of the ith and the pth nodes at the time t
respectively; the parameters ai and ap are the degradation rates of the mRNA, ci and
cp are the degradation rates of the protein, bi and bp are the translation rate; fi(x) and
gp(y) are the Hill form regulatory functions, which represent the feedback regulation of
the protein on the transcription, their forms are described by equation ()

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

fj(x) =
( x

mj
)Hj

+( x
mj

)Hj ,

gq(y) =
( y

nq )Hq

+( y
nq )Hq ,

()
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where Hj and Hq are the Hill coefficients, mj and nq are positive constants, τ (t), τ ′(t), σ (t)
and σ ′(t) are time-varying delays satisfying

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

 ≤ τ ≤ τ (t) ≤ τ,  ≤ σ ≤ σ (t) ≤ σ,

λ ≤ τ̇ ≤ λ, λ ≤ σ̇ ≤ λ,

 ≤ τ ′
 ≤ τ ′(t) ≤ τ ′

,  ≤ σ ′
 ≤ σ ′(t) ≤ σ ′

,

η ≤ τ̇ ′ ≤ η, η ≤ σ̇ ′ ≤ η,

()

where W = (ωij) ∈ Rn×n and W = (�pq) ∈ Rn×n are described as equations () and (),
αij and βpq are the dimensionless transcriptional rates of transcriptional factor j to gene i
and transcriptional factor q to gene p respectively.

ωij =

⎧
⎪⎪⎨

⎪⎪⎩

αij if transcription factor j is an activator of gene i,

 if there is no link from node j to i,

–αij if transcription factor j is a repressor of gene i,

()

�pq =

⎧
⎪⎪⎨

⎪⎪⎩

βpq if transcription factor q is an activator of gene p,

 if there is no link from node q to p,

–βpq if transcription factor q is a repressor of gene p.

()

Considering the diffusion term, equations () and () can be rewrite as

⎧
⎨

⎩

∂ui(t,l)
∂t =

∑L
k=

∂
∂lk

(Dik
∂ui(t,l)

∂lk
) – aiui(t, l) +

∑n
j= ωijfj(vj(t – σ (t), l)),

∂vi(t,l)
∂t =

∑L
k=

∂
∂lk

(D∗
ik

∂vi(t,l)
∂lk

) – cipi(t) + biui(t – τ (t)), i = , , . . . , n
()

⎧
⎪⎪⎨

⎪⎪⎩

∂up(t,l)
∂t =

∑L
k=

∂
∂lk

(dpk
∂up(t,l)

∂lk
) – apup(t, l) +

∑n
q= �pqgq(vq(t – σ ′(t), l)),

∂vp(t,l)
∂t =

∑L
k=

∂
∂lk

(d∗
pk

∂vp(t,l)
∂lk

) – cpvp(t, l) + bpup(t – τ ′(t), l),

p = , , . . . , n

()

where l = (l, l, . . . , lL)T ∈ � ⊂ Rc, � = {l||lk| ≤ Lk}, Lk is constant, k = , , . . . L, Dik =
Dik(t, l) > , D∗

ik = D∗
ik(t, l) > , denote the transmission diffusion operator along the ith

gene of mRNA and protein, respectively, dpk = dpk(t, l) > , d∗
pk = d∗

pk(t, l) > , denote the
transmission diffusion operator along the pth gene of mRNA and protein, respectively.

The initial conditions are given by

⎧
⎨

⎩

ui(s, l) = ψi(s, l), s ∈ (–∞, ], i = , , . . . , n

vi(s, l) = ψ∗
i(s, l), s ∈ (–∞, ], i = , , . . . , n

()

⎧
⎨

⎩

up(s, l) = ψp(s, l), s ∈ (–∞, ], p = , , . . . , n

vp(s, l) = ψ∗
p(s, l), s ∈ (–∞, ], p = , , . . . , n

()

Here ψi(s, l), ψ∗
i(s, l), ψp(s, l) and ψ∗

p(s, l) are bounded and continuous on (–∞, ]×�.
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Dirichlet boundary condition is considered:
⎧
⎨

⎩

ui(t, l) = , l ∈ ∂�, t ∈ [–κ , +∞),

vi(t, l) = , l ∈ ∂�, t ∈ [–κ , +∞),
()

⎧
⎨

⎩

up(t, l) = , l ∈ ∂�, t ∈ [–κ , +∞),

vp(t, l) = , l ∈ ∂�, t ∈ [–κ , +∞).
()

The system () and system () can be rewritten in vector-matrix form:
⎧
⎨

⎩

∂u(t,l)
∂t =

∑l
k=

∂
∂lk

(Dk
∂u(t,l)

∂xk
) – Au(t, l) + WF(v(t – σ (t), l)),

∂v(t,l)
∂t =

∑l
k=

∂
∂lk

(D∗
k

∂v(t,l)
∂lk

) – Cv(t, l) + Bu(t – τ (t), l), i = , , . . . , n
()

⎧
⎨

⎩

∂u(t,l)
∂t =

∑l
k=

∂
∂lk

(dk
∂u(t,l)

∂xk
) – Au(t, l) + WG(v(t – σ ′(t), l)),

∂v(t,l)
∂t =

∑l
k=

∂
∂lk

(d∗
k

∂v(t,l)
∂lk

) – Cv(t) + Bu(t – τ ′(t), l), p = , , . . . , n
()

A = diag(a, a, . . . , an ),

B = diag(b, b, . . . , bn ),

C = diag(c, c, . . . , cn ),

A = diag(a, a, . . . , an ),

B = diag(b, b, . . . , bn ),

C = diag(c, c, . . . , cn ),

Dk = diag(Dk , Dk , . . . , Dnk),

D∗
k = diag

(
D∗

k , D∗
k , . . . , D∗

nk
)
,

dk = diag(dk , dk , . . . , dnk),

d∗
k = diag

(
d∗

k , d∗
k , . . . , d∗

nk
)
,

u(t, l) =
(
u(t, l), u(t, l), . . . , un (t, l)

)T,

v(t, l) =
(
v(t, l), v(t, l), . . . , vn (t, l)

)T,

u(t, l) =
(
u(t, l), u(t, l), . . . , un (t, l)

)T,

v(t, l) =
(
v(t, l), v(t, l), . . . , vn (t, l)

)T,

F(vj
(
t – σ (t), l

)
= (f(v

(
t – σ (t), l

)
, f(v

(
t – σ (t), l

)
, . . . , fn

(
vn

(
t – σ (t), l

))T,

G(vq
(
t – σ ′(t), l

)
= (g(v

(
t – σ ′(t), l

)
, g(v

(
t – σ ′(t), l

)
, . . . , gn

(
vn

(
t – σ ′(t), l

))T.

fi(·) and gp(·) satisfy inequality () and inequality (), respectively, because fi(·) and
gp(·) are monotonically increase functions with saturation

 ≤ fi(xi)
xi

≤ ςi, ∀xi 	= , i = , , . . . , n ()

 ≤ gp(yp)
yp

≤ χp, ∀yp 	= , p = , , . . . , n ()



Zou et al. Advances in Difference Equations  (2017) 2017:250 Page 5 of 20

i.e.

f T(x)
(
f (x) – Kx

) ≤ , ()

gT(y)
(
g(y) – Ky

) ≤ , ()

where K = diag(ς,ς, . . . ,ςn ) > , K = diag(χ,χ, . . . , ,χn )T > , x = [x, x, . . . , xn ]T and
y = [y, y, . . . , yn ]T.

Lemma  Let f (v) be a real-valued function defined on [a, b] ⊂ R, with f (a) = f (b) = . If
f (v) ∈ C[a, b], then

∫ b

a
f (v) dv ≤ (b – a)

π

∫ b

a

[
f ′(v)

] dv. ()

Lemma  If � is a bounded C open set in Rn and η,ϕ ∈ C(�), then

∫

�

η�ϕ dx =
∫

�

η�ϕ dx +
∫

∂�

(

η
∂ϕ

∂n
– ϕ

∂η

∂n

)

dS, ()

where ∂η

∂n and ∂ϕ

∂n are the directional derivatives of η and ϕ in the direction of the outward
pointing normal n to the surface element dS, respectively.

∑l
k=

∂
∂xk

(Dk
∂

∂xk
) can be regarded

as a Laplacian operator which is formally self-adjoint and a differential; in Lemma  we
have an inner product for a function with Dirichlet boundary.

Lemma  ([]) From the Green formula, under Dirichlet boundary conditions, and by
using Lemma  and Lemma , we can obtain


∫

�

μT
l∑

k=

∂

∂xk

(
∂μ

∂xk

)

dx ≤ –
π



∫

�

μTμdx. ()

Lemma  Let M >  ∈ Rn×n, a positive scalar ϑ > , vector function x : [,ϑ] → Rn such
that the integrations concerned are well defined, and they exist:

(∫ ϑ


x(s) ds

)T

M
(∫ ϑ


x(s) ds

)

≤ ϑ

(∫ ϑ


x(s)Mx(s) ds

)

. ()

Lemma  For vectors X, Y ∈ Rn are any positive definite matrix, and any scalar ε, there
exists the following inequality:

XT Y ≤ εXT X + ε–Y T Y . ()

Lemma  For any vectors X, Y ∈ Rn, and any scalar ε >  are positive, there exists the
following inequality:

XT HY ≤ εXT HX + ε–Y T HY . ()
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3 Model of interactional GRNs
According to GRN () and (), W or W express the interaction of genes in single GRN,
we assumed that interaction of the different GRNs is like a single GRN. We have con-
structed a bidirectional coupling model for the type of interactional GRNs as equations
() and (), and we investigate a stability criterion under Dirichlet boundary condi-
tion.

⎧
⎪⎪⎨

⎪⎪⎩

du(t,l)
dt =

∑l
k=

∂
∂lk

(Dk
∂u(t,l)

∂xk
) – Au(t, l) + WF(v(t – σ (t), l))

+ W ∗
 G(v(t – σ ′(t), l)),

dv(t,l)
dt =

∑l
k=

∂
∂lk

(D∗
k

∂v(t,l)
∂lk

) – Cv(t, l) + Bu(t – τ (t), l), i = , , . . . , n

()

⎧
⎪⎪⎨

⎪⎪⎩

du(t,l)
dt =

∑l
k=

∂
∂lk

(dk
∂u(t,l)

∂xk
) – Au(t, l)

+ WG(v(t – σ ′(t), l)) + W ∗
 F(v(t – σ (t), l)),

dv(t,l)
dt =

∑l
k=

∂
∂lk

(d∗
k

∂v(t,l)
∂lk

) – Cv(t, l) + bpu(t – τ ′(t), l), p = , , . . . , n

()

where W ∗
 = (ωiq) ∈ Rn×n , W ∗

 = (� ∗
pj) ∈ Rn×n are described by equations () and (),

α∗
iq and β∗

pj are the dimensionless transcriptional rates of transcriptional factor q of GRN
() to gene i of GRN () and transcriptional factor j of GRN () to gene p of GRN (),
respectively.

ωiq =

⎧
⎪⎪⎨

⎪⎪⎩

α∗
iq if transcription factor q is an activator of gene i,

 if there is no link from node q to i,

–α∗
iq if transcription factor q is a repressor of gene i,

()

� ∗
pj =

⎧
⎪⎪⎨

⎪⎪⎩

β∗
pj if transcription factor j is an activator of gene p,

 if there is no link from node q to p,

–β∗
pj if transcription factor j is a repressor of gene p.

()

Theorem For given scalars τ, σ, τ ′
, σ ′

, λ, λ, η and η satisfying equation (),
GRN () and GRN () under a Dirichlet boundary condition are robust stable if there
exist matrices PT

i = Pi >  and �T
i = �i >  (i = , . . . , ); RT

i = Ri >  (i = , . . . );
QT

i = Qi >  (i = , . . . , ), such that the following linear matrices inequalities (LMIs)
hold:

� = –PA –
π


PDL + R + σ 

 Q,

� = –R + R,

� = (λ – )R + ( – λ)R + BT
 PB,

� = –� + K�K + (λ – )Q,

� = –PA –
π


PdL + εPW + R + σ ′

 Q,

� = –R + R,

� = (η – )R + ( – η)R + BT
 PB,
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� = (η – )Q – � + K�K +
PW

ε
,

� = –PC –
π


PD∗

L + P + R + τ 
 Q,

� = –R + R,

� = (λ – )R + ( – λ)R + K�K, � = Q – �,

� = –PC –
π


Pd∗

L + P + R + τ ′
 Q,

� = –R + R,

� = (η – )R + ( – η)R + K�K,

� = Q – �,

� =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

�     PW      PW ∗


∗ �          
∗ ∗ –R         
∗ ∗ ∗ �        
∗ ∗ ∗ ∗ –Q       
∗ ∗ ∗ ∗ ∗ � W ∗

 P     
∗ ∗ ∗ ∗ ∗ ∗ �     
∗ ∗ ∗ ∗ ∗ ∗ ∗ �    
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ –R   
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ �  
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ –Q 
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ �

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

< , ()

� =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

�     K�      
∗ �          
∗ ∗ –R         
∗ ∗ ∗ �        
∗ ∗ ∗ ∗ –Q       
∗ ∗ ∗ ∗ ∗ �      
∗ ∗ ∗ ∗ ∗ ∗ �     K�

∗ ∗ ∗ ∗ ∗ ∗ ∗ �    
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ –R   
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ �  
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ –Q 
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ �

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

< . ()

Proof Define a Lyapunov-Krasovskii functional candidate for GRN () as

V (t, l) =
∑

i=

Vi(t, l) ()
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where

V(t, l) =
∫

�

uT
 (t, l)Pu(t, l) dl +

∫

�

vT
 (t, l)Pv(t, l) dl, ()

V(t, l) =
∫

�

∫ t

t–τ

uT
 (s, l)Ru(s, l) ds dl +

∫

�

∫ t–τ

t–τ (t)
uT

 (s, l)Ru(s, l) ds dl

+
∫

�

∫ t–τ (t)

t–τ

uT
 (s, l)Ru(s, l) ds dl

+
∫

�

∫ t

t–σ

vT
 (s, l)Rv(s, l) ds dl +

∫

�

∫ t–σ

t–σ (t)
vT

 (s, l)Rv(s, l) ds dl

+
∫

�

∫ t–σ (t)

t–σ

vT
 (s, l)Rv(s, l) ds dl, ()

V(t, l) = τ

∫

�

∫ 

–τ (t)

∫ t

t+s
uT

 (s, l)Qu(s, l) dθ ds dl

+ σ

∫

�

∫ 

–σ (t)

∫ t

t+s
vT

 (s, l)Qv(s, l) dθ ds dl, ()

V(t, m, p) =
∫

�

∫ t

t–σ (t)
FT(

v(s, l)
)
QF

(
v(s, l)

)
ds dl, ()

V(t, l) =
∫

�

uT
 (t, l)Pu(t, l) dl +

∫

�

vT
 (t, l)Pv(t, l) dl, ()

V(t, l) =
∫

�

∫ t

t–τ ′


uT
 (s, l)Ru(s, l) ds dl +

∫

�

∫ t–τ ′


t–τ ′(t)
uT

 (s, l)Ru(s, l) ds dl

+
∫

�

∫ t–τ ′(t)

t–τ ′


uT
 (s, l)Ru(s, l) ds dl

+
∫

�

∫ t

t–σ ′


vT
 (s, l)Rv(s, l) ds dl +

∫

�

∫ t–σ ′


t–σ ′(t)
vT

 (s, l)Rv(s, l) ds dl

+
∫

�

∫ t–σ ′

t–σ ′


vT
 (s, l)Rv(s, l) ds dl ()

V(t, l) = τ ′
∫

�

∫ 

–τ ′(t)

∫ t

t+s
uT

 (s, l)Qu(s, l) dθ ds dl

+ σ ′
∫

�

∫ 

–σ ′(t)

∫ t

t+s
vT

 (s, l)Qv(s, l) dθ ds dl, ()

V(t, l) =
∫

�

∫ t

t–σ ′(t)
GT(

v(s, l)
)
QG

(
v(s, l)

)
ds dl, ()

then, computing the derivatives of Vi(t, m, p) (i = , , ), we can get

∂V(t, l)
∂t

= 
∫

�

uT
 (t, l)P

∂u(t, l)
∂t

dl + 
∫

�

vT
 (t, l)P

∂v(t, l)
∂t

dl

= 
∫

�

uT
 (t, l)P

[ l∑

k=

∂

∂lk

(

Dk
∂u(t, l)

∂lk

)

– Au(t, l)WF
(
v

(
t – σ (t), l

))
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+ W ∗
 G

(
v

(
t – σ ′(t), l

))
]

+ 
∫

�

vT
 (t, l)P

[ l∑

k=

∂

∂lk

(

D∗
k
∂u(t, l)

∂lk

)

– Cv(t, l) + Bu
(
t – τ (t), l

)
]

, ()

∂V(t, l)
∂t

=
∫

�

uT
 (t, l)Ru(t, l) dl –

∫

�

(
uT

 (t – τ, l)Ru(t – τ, l) dl
)

+
∫

�

uT
 (t – τ, l)Ru(t – τ, l) dl

–
(
 – τ̇ (t)

)
∫

�

uT

(
t – τ (t), l

)
Ru

(
t – τ (t), l

)
dl

+
(
 – τ̇ (t)

)
∫

�

uT

(
t – τ (t), l

)
Ru

(
t – τ (t), l

)
dl

–
∫

�

uT
 (t – τ, l)Ru(t – τ, l) dl

+
∫

�

vT
 (t, l)Rv(t, l) dl –

∫

�

vT
 (t – σ, l)Rv(t – σ, l) dl

+
∫

�

vT
 (t – σ, l)Rv(t – σ, l) dl

–
(
 – σ̇ (t)

)
∫

�

vT

(
t – σ (t), l

)
Rv

(
t – σ (t), l

)
dl

+
(
 – σ̇ (t)

)
∫

�

vT

(
t – σ (t), l

)
Rv

(
t – σ (t), l

)
dl

–
∫

�

vT
 (t – σ, l)Rv(t – σ, l) dl

≤
∫

�

uT
 (t, l)Ru(t, l) dl –

∫

�

uT
 (t – τ, l)Ru(t – τ, l) dl

+
∫

�

uT
 (t – τ, l)Ru(t – τ, l) dl

– ( – λ)
∫

�

uT

(
t – τ (t), l

)
Ru

(
t – τ (t), l

)
dl

+ ( – λ)
∫

�

uT

(
t – τ (t), l

)
Ru

(
t – τ (t), l

)
dl

–
∫

�

uT
 (t – τ, l)Ru(t – τ, l) dl

+
∫

�

vT
 (t, l)Rv(t, l) dl –

∫

�

vT
 (t – σ, l)Rv(t – σ, l) dl

+
∫

�

vT
 (t – σ, l)Rv(t – σ, l) dl

– ( – λ)
∫

�

vT

(
t – σ (t), l

)
Rv

(
t – σ (t), l

)
dl

+ ( – λ)
∫

�

vT

(
t – σ (t), l

)
Rv

(
t – σ (t), l

)
dl
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–
∫

�

vT
 (t – σ, l)Rv(t – σ, l) dl, ()

∂V(t, l)
∂t

= τ (t)
∫

�

uT
 (t, l)Qu(t, l) dl – τ (t)

∫

�

∫ t

t–τ (t)
uT

 (s, l)Qu(s, l) ds dl

+ σ (t)
∫

�

vT
 (t, l)Qv(t, l) dl – σ (t)

∫

�

∫ t

t–σ (t)
vT

 (s, l)Qv(s, l) ds dl

≤ τ 


∫

�

uT
 (t, l)Qu(t, l) dl –

∫

�

[∫ t

t–τ (t)
u(s, l) ds

]T

Q

[∫ t

t–τ (t)
u(s, l) ds

]

dl

+ σ 


∫

�

vT
 (t, l)Qv(t, l) dl

–
∫

�

[∫ t

t–σ (t)
v(s, l) ds

]T

Q

[∫ t

t–σ (t)
v(s, l) ds

]

dl, ()

∂V(t, l)
∂t

=
∫

�

FT(
v(t, l)

)
QF

(
v(t, l)

)
dl

–
(
 – σ̇ (t)

)
∫

�

FT(
v

(
t – σ (t), l

))
QF

(
v

(
t – σ (t), l

))
dl

≤
∫

�

FT(
v(t, l)

)
QF

(
v(t, l)

)
dl

+ (λ – )
∫

�

FT(
v

(
t – τ (t), l

))
QF

(
v

(
t – τ (t), l

))
dl, ()

∂V(t, l)
∂t

= 
∫

�

uT
 (t, l)P

∂u(t, l)
∂t

dl + 
∫

�

vT
 (t, l)P

∂v(t, l)
∂t

dl

= 
∫

�

uT
 (t, l)P

[ l∑

k=

∂

∂lk

(

Dk
∂u(t, l)

∂lk

)

– Au(t, l)

+ WG
(
v

(
t – σ ′(t), l

))
+ W ∗

 F
(
v

(
t – σ (t), l

))
]

+ 
∫

�

vT
 (t, l)P

[ l∑

k=

∂

∂lk

(

D∗
k
∂u(t, l)

∂lk

)

– Cv(t, l) + Bu
(
t – τ ′(t), l

)
]

, ()

∂V(t, l)
∂t

=
∫

�

uT
 (t, l)Ru(t, l) dl –

∫

�

uT

(
t – τ ′

, l
)
Ru

(
t – τ ′

, l
)

dl

+
∫

�

uT

(
t – τ ′

, l
)
Ru

(
t – τ ′

, l
)

dl

–
(
 – τ̇ ′(t)

)
∫

�

uT

(
t – τ ′(t), l

)
Ru

(
t – τ ′(t), l

)
dl

+
(
 – τ̇ ′(t)

)
∫

�

uT

(
t – τ ′(t), l

)
Ru

(
t – τ ′(t), l

)
dl

–
∫

�

uT

(
t – τ ′

, l
)
Ru

(
t – τ ′

, l
)

dl

+
∫

�

vT
 (t, l)Rv(t, l) dl
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–
∫

�

uT

(
t – τ ′

, l
)
Ru

(
t – τ ′

, l
)

dl

+
∫

�

vT
 (t, l)Rv(t, l) dl

–
∫

�

vT

(
t – σ ′

, l
)
Rv

(
t – σ ′

, l
)

dl +
∫

�

vT

(
t – σ ′

, l
)
Rv

(
t – σ ′

, l
)

dl

–
(
 – σ̇ ′(t)

)
∫

�

vT

(
t – σ ′(t), l

)
Rv

(
t – σ ′(t), l

)
dl

+
(
 – σ̇ ′(t)

)
∫

�

vT

(
t – σ ′(t), l

)
Rv

(
t – σ ′(t), l

)
dl

–
∫

�

vT

(
t – σ ′

, l
)
Rv

(
t – σ ′

, l
)

dl

≤
∫

�

uT
 (t, l)Ru(t, l) dl –

∫

�

uT

(
t – τ ′

, l
)
Ru

(
t – τ ′

, l
)

dl

+
∫

�

uT

(
t – τ ′

, l
)
Ru

(
t – τ ′

, l
)

dl

– ( – η)
∫

�

uT

(
t – τ ′(t), l

)
Ru

(
t – τ ′(t), l

)
dl

+ ( – η)
∫

�

uT

(
t – τ ′(t), l

)
Ru

(
t – τ ′(t), l

)
dl

–
∫

�

uT

(
t – τ ′

, l
)
Ru

(
t – τ ′

, l
)

dl +
∫

�

vT
 (t, l)Rv(t, l) dl

–
∫

�

vT

(
t – σ ′

, l
)
Rv

(
t – σ ′

, l
)

dl +
∫

�

vT

(
t – σ ′

, l
)
Rv

(
t – σ ′

, l
)

dl

– ( – η)
∫

�

vT

(
t – σ ′(t), l

)
Rv

(
t – σ ′(t), l

)
dl

+ ( – η)
∫

�

vT

(
t – σ ′(t), l

)
Rv

(
t – σ ′(t), l

)
dl

–
∫

�

vT

(
t – σ ′

, l
)
Rv

(
t – σ ′

, l
)

dl, ()

∂V(t, l)
∂t

= τ ′(t)
∫

�

uT
 (t, l)Qu(t, l) dl – τ ′(t)

∫

�

∫ t

t–τ ′
uT

 (s, l)Qu(s, l) ds dl

+ σ ′(t)
∫

�

vT
 (t, l)Qv(t, l) dl – σ ′(t)

∫

�

∫ t

t–σ ′
vT

 (s, l)Qv(s, l) ds dl

≤ τ ′


∫

�

uT
 (t, l)Qu(t, l) dl –

∫

�

[∫ t

t–τ ′
u(s, l) ds

]T

Q

[∫ t

t–τ ′
u(s, l) ds

]

dl

+ σ ′


∫

�

vT
 (t, l)Qv(t, l) dl

–
∫

�

[∫ t

t–σ ′
v(s, l) ds

]T

Q

[∫ t

t–σ ′
v(s, l) ds

]

dl, ()

∂V(t, l)
∂t

=
∫

�

GT(
v(t, l)

)
QF

(
v(t, l)

)
dl

–
(
 – σ̇ ′)

∫

�

GT(
v

(
t – σ ′, l

))
QG

(
v

(
t – σ ′, l

))
dl
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≤
∫

�

GT(
v(t, l)

)
QG

(
v(t, l)

)
dl

+ (η – )
∫

�

GT(
v(t – σ , l)

)
QG

(
v

(
t – σ ′, l

))
dl. ()

According to Lemma , we have


∫

�

uT
 (t, l)P

l∑

k=

∂

∂lk

(

Dk
∂u(t, l)

∂lk

)

dl ≤ –
π



∫

�

uT
 (t, l)PDLu(t, l) dl, ()


l∑

k=

∫

�

vT
 (t, l)P

∂

∂lk

(

D∗
k
∂v(t, l)

∂lk

)

dl ≤ –
π



∫

�

vT
 (t, l)PD∗

Lv(t, l) dl, ()


∫

�

uT
 (t, l)P

l∑

k=

∂

∂lk

(

dk
∂u(t, l)

∂lk

)

dl ≤ –
π



∫

�

uT
 (t, l)PdLu(t, l) dl, ()


l∑

k=

∫

�

vT
 (t, l)P

∂

∂lk

(

d∗
k
∂v(t, l)

∂lk

)

dl ≤ –
π



∫

�

vT
 (t, l)Pd∗

Lv(t, l) dl, ()

where

(

uT
 (t, l)PDk

∂u(t, l)
∂lk

)L

k=
=

(

uT
 (t, l)PD

∂uT
 (t, l)
∂l

, . . . , uT
 (t, l)PDL

∂uT
 (t, l)
∂lL

)

,

(

vT
 (t, l)PD∗

k
∂v(t, l)

∂lk

)L

k=
=

(

vT
 (t, l)PD∗

k
∂v(t, l)

∂l
, . . . , vT

 (t, l)PD∗
L
∂v(t, l)

∂lL

)

,

(

uT
 (t, l)Pdk

∂u(t, l)
∂lk

)L

k=
=

(

uT
 (t, l)Pd

∂uT
 (t, l)
∂l

, . . . , uT
 (t, l)PdL

∂uT
 (t, l)
∂lL

)

,

(

vT
 (t, l)Pd∗

k
∂v(t, l)

∂lk

)L

k=
=

(

vT
 (t, l)Pd∗

k
∂v(t, l)

∂l
, . . . , vT

 (t, l)Pd∗
L
∂v(t, l)

∂lL

)

.

Considering inequalities () and (), for diagonal matrices � > , � > , � >  and
� > , the following inequalities hold:

FT(
v(t, l)

)
�F

(
v(t, l)

)
– vT

 (t, l)K�F
(
v(t, l)

) ≤ , ()

FT(
v

(
t – σ (t), l

))
�F

(
v

(
t – σ (t), l

))

– vT

(
t – σ (t), l

)
K�F

(
v

(
t – σ (t), l

)) ≤ , ()

GT(
v(t, l)

)
�G

(
v(t, l)

)
– vT

 (t, l)K�G
(
v(t, l)

) ≤ , ()

GT(
v

(
t – σ ′(t), l

))
�G

(
v

(
t – σ ′(t), l

))

– vT

(
t – σ ′(t), l

)
K�G

(
v

(
t – σ ′(t), l

)) ≤ . ()

According to Lemma , we have inequalities as follows:

vT

(
t – σ (t), l

)
K�F

(
v

(
t – σ (t), l

))

≤ vT

(
t – σ (t), l

)
K�Kv

(
t – σ (t), l

)

+ FT(
v

(
t – σ (t), l

))
�F

(
v

(
t – σ (t), l

))
, ()
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vT

(
t – σ ′(t), l

)
K�G

(
v

(
t – σ ′(t), l

))

≤ vT

(
t – σ ′(t), l

)
K�Kv

(
t – σ ′(t), l

)

+ GT(
v

(
t – σ ′(t), l

))
�G

(
v

(
t – σ ′(t), l

))
, ()

vT
 (t, l)PBu

(
t – τ (t), l

)

≤ vT
 (t, l)Pv(t, l) + u

(
t – τ (t), l

)
BT

 PBu
(
t – τ (t), l

)
, ()

vT
 (t, l)PBu

(
t – τ ′(t), l

)

≤ vT
 (t, l)Pv(t, l) + u

(
t – τ ′(t), l

)
BT

 PBu
(
t – τ ′(t), l

)
. ()

According to Lemma , for a positive scalar ε, there exist

u(t, l)PWG
(
v

(
t – σ ′(t), l

))

≤ εuT
 (t, l)PWu(t, l) +


ε

GT(
v

(
t – σ ′(t), l

))
PWG

(
v

(
t – σ ′(t), l

))
. ()

Taking equations ()-() into consideration, derivatives of V (t, m, p) (i = , , ) can
be formed as follows:

∂V (t, l)
∂t

=
∑

i=

∂Vi(t, l)
∂t

. ()

Taking inequalities ()-() into consideration, equation () is rewritten as

∂V (t, l)
∂t

=
∑

i=

∂Vi(t, l)
∂t

≤
∫

�

[
ξT

 (t, l)�ξ(t, l) + ξT
 (t, l)�ξ(t, l)

]
dl < , ()

for ζ (t, x) 	= , where

ξ =
[

uT
 (t, l), uT

 (t – τ, l), uT
 (t – τ, l), uT

 (t – τ , l),
[∫ t

t–τ

u(s, l) ds
]T

,

FT(
v

(
t – σ (t), l

))
, uT

 (t, l), uT

(
t – τ ′

, l
)
, uT


(
t – τ ′

, l
)
, uT


(
t – τ ′, l

)
,

[∫ t

t–τ ′
u(s, l) ds

]T

, GT(
v

(
t – σ ′(t), l

))
]T

,

ξ =
[

vT
 (t, l), vT

 (t – σ, l), vT
 (t – σ, l), vT

 (t – σ , l),
[∫ t

t–σ

v(s, l) ds
]T

, FT(
v(t, l)

)
,

vT
 (t, l), vT


(
t – σ ′

, l
)
, vT


(
t – σ ′

, l
)
, vT


(
t – σ ′, l

)
,

[∫ t

t–σ ′
v(s, l) ds

]T

, GT(
v(t, l)

)
]T

. �

4 Numerical simulation
Consider the reaction-diffusion-delayed GRN (), () with the following parameters:

k = , L = , γ = , γ ′ = ., K = K = .I,
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A = diag(, , , , ), B = diag(., ., ., ., .),

C = diag(., ., ., ., .),

D = diag(., ., ., ., .), D∗
 = diag(., ., ., ., .),

W =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

    –
–    
 –   
 –   
    

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

, W ∗
 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

γ  
γ  
  –γ

  
  

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

A = diag(., ., .), B = diag(., ., .), C = diag(., ., .),

d = diag(., ., .), d∗
 = diag(., ., .),

W =

⎡

⎢
⎣

. –. 
. –. 
.  –.

⎤

⎥
⎦ , W ∗

 =

⎡

⎢
⎣

–γ ′ –γ ′   
  γ ′ γ ′ 
 γ ′   –γ ′

⎤

⎥
⎦ .

τ = . + . sin(t), σ = . + . sin(t),

τ ′ = . + . sin(t), σ ′ = . + . sin(t),

where

fi(x) =
x

 + x , gi(y) =
y

 + y (i = , , . . . , n).

By using the Toolbox YALMIP in MATLAB to solve the LMI () and () we can ob-
tain feasible solutions, the processes of asymptotic stability of mRNA concentration and
protein concentration under Dirichlet boundary conditions are shown by Figures -. It
is obvious that the proposed theory is feasible. The topological structure of interactional
GRNs is shown by Figure .

We set up the rules to measure the stabilizing time of interactional GRNs as follows:

γ (t) =
∫

�

(
wi

∣
∣ui(t, l) – ui(t – δ, l)

∣
∣ + w′

i
∣
∣vi(t, l)vi(t – δ, l)

∣
∣ + wp

∣
∣up(t, l) – up(t – δ, l)

∣
∣

+ w′
p
∣
∣vp(t, l) – vp(t – δ, l)

∣
∣
)

dl, ()

Figure 1 The trajectory of u11(t, l) and v11(t, l).
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Figure 2 The trajectory of u12(t, l) and v12(t, l).

Figure 3 The trajectory of u13(t, l) and v13(t, l).

Figure 4 The trajectory of u14(t, l) and v14(t, l).

⎧
⎨

⎩

�(t) = , γ (t) > δ,

�(t) = , γ (t) ≤ δ,
()

where wi > , w′
i >  (i = , . . . , n); wp > , w′

p >  (p = , . . . , n) are weights of ui, vi, up

and vp, respectively, δ is a positive small quantity, �(t) is a quantity for stability identifica-
tion. When �(t) = , it indicates interactional GRNs are stable; when �(t) = , it indicates
interactional GRNs are unstable.

When γ ′ ∈ {., ., ., ., ., ., ., .}, γ = ., wi = w′
i = wp = w′

p = /, δ = .,
the evolutions of �(t) with γ ′ are shown by Figure , it is found that the increase of
coupling strength γ ′ will lengthen the stabilizing time of interactional GRNs. Further-
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Figure 5 The trajectory of u15(t, l) and v15(t, l).

Figure 6 The trajectory of u21(t, l) and v21(t, l).

Figure 7 The trajectory of u22(t, l) and v22(t, l).

more, we can find that the iterative number of solution of LMIs and the time of reaching
a steady state have the same change with different γ ′ as shown in Figure , therefore we
utilize the iterative number to characterize the time of reaching steady state, because of
the independence of the initial condition and the step size for the iterative number. When
γ ∈ {, , , ., ., ., .}, the performance of number of iterations with γ ′ and γ is
shown in Figure , where the color represents the time of reaching a steady state.

5 Discussion
Further numerical simulations show that:

(I) Interactional GRNs without reaction-diffusion terms cannot reach a steady state,
because of the defection of information from reaction-diffusion terms. In other
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Figure 8 The trajectory of u23(t, l) and v23(t, l).

Figure 9 The topological structure of interactional GRNs.

Figure 10 The evolution of �(t) with γ ′ .

words, reaction-diffusion terms are important and indispensable for interactional
GRNs.

(II) γ and γ ′ have an absolute effect on the time of reaching steady state as shown in
Figure , the increase of coupling strength γ ′ and γ will collectively lengthen the
stabilizing time of interactional GRNs.
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Figure 11 Iterative number and required time for stable with different γ ′ (γ = 0.0.4).

Figure 12 Performance of number of iterations with γ ′ and γ .

(III) The matrices W and W ∗
 qualitatively affect the stability of the interactional

GRNs, in other words, the topological structure of the unstable GRNs and W ∗
 are

very important for the stability of the interactional GRNs. The out-degree and
in-degree of stable GRNs as well as the coupling term of W ∗

 can change at will, but
the out-degree and in-degree of unstable GRNs and the coupling term of W ∗



cannot change freely.
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6 Conclusion
In this paper, we have constructed a model for interactional GRNs with reaction-diffusion
terms under a Dirichlet boundary condition, and we analyzed the robust stability of in-
teractional GRNs. Through constructing appropriate Lyapunov-Krasovskii functions and
linear matrix inequalities (LMIs), we have given stability criteria corresponding to inter-
actional GRNs. By numerical simulations, we found three important conclusions: interac-
tional GRNs without reaction-diffusion terms cannot reach a steady state, because of the
defection of information from reaction-diffusion terms, in other words, reaction-diffusion
terms are important and indispensable for interactional GRNs; due to the smaller cou-
pling strength γ ′ (in a certain range) and γ , interactional GRNs tend to become stable
more quickly; the topological structures of the unstable GRNs and coupling term of W ∗



determine the stability of interactional GRNs.
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