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Abstract
This paper discusses the existence of mild solutions for a class of fractional impulsive
evolution equation with periodic boundary condition and noncompact semigroup.
By using some fixed point theorems, the existence theorems of mild solutions are
obtained, our results are also more general than some well-known results.
Furthermore, as applications that illustrate the abstract results, two examples are
given.
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1 Introduction
Fractional differential equations arise in many engineering and scientific disciplines as
the mathematical modeling of systems and processes in the fields of physics, chemistry,
aerodynamics, electrodynamics of complex medium, polymer rheology, and they have
emerged as an important area of investigation in the last few decades; see [–].

The theory of impulsive differential equations is a new and important branch of dif-
ferential equation theory, which has an extensive physical, population dynamics, ecology,
chemical, biological systems, and engineering background. Therefore, it has been an ob-
ject of intensive investigation in recent years, some basic results on fractional impulsive
differential equations have been obtained and applications to different areas have been
considered by many authors, we refer to [–] and the references therein.

At present, the concept of solutions for impulsive fractional differential equations [–
] has been argued extensively. There are some ways to consider the notion of solution
of the form

⎧
⎪⎪⎨

⎪⎪⎩

cDα
t u(t) = f (t, u(t)), t ∈ J ′ := J \ {t, . . . , tm}, J := [, T],

�u|t=tk = Ik(u(tk)), k = , , . . . , m,

u() = u.

(.)

One way is to change the lower limit to tk on each impulsive and consider (.) on [tk , tk+].
This approach is used in several papers [–, ]. In this way, the problem (.) is rewritten
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as to the following integral equation:

u(t) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

u +
∫ t


(t–s)α–

�(α) f (s, u(s)) ds, t ∈ [, t),
...

u +
∫ t

tk
(t–s)α–

�(α) f (s, u(s)) ds +
∑

<tk <t
∫ tk

tk–
(tk –s)α–

�(α) f (s, u(s)) ds

+
∑

<tk <t Ik(u(t–
k )), t ∈ (tk , tk+], k = , , . . . , m.

(.)

Taking another way, the work in [–, , , –, –] is based on the result that
problem (.) is equivalent to the following integral equation:

u(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u +
∫ t


(t–s)α–

�(α) f (s, u(s)) ds, t ∈ [, t),

u + I(u(t)) +
∫ t


(t–s)α–

�(α) f (s, u(s)) ds, t ∈ [t, t),

u + I(u(t)) + I(u(t)) +
∫ t


(t–s)α–

�(α) f (s, u(s)) ds, t ∈ [t, t),
...

u +
∑m

k= Ik(u(tk)) +
∫ t


(t–s)α–

�(α) f (s, u(s)) ds, t ∈ [tm, T].

(.)

Finally, we agree with the second approach, which the concept of solutions for impul-
sive fractional differential equations has been given by (.). Furthermore, we point out an
interesting recently published paper written by Liu and Ahmad [], where the formula of
solutions for semilinear impulsive fractional Cauchy problems (see () in []) is coinci-
dent with ours (see Lemma .), if one imposes the requirement that the semilinear term
and impulsive term have the same expression in a given finite interval. This paper very
thoroughly and deeply explains the meaning of solutions for impulsive fractional differen-
tial equations from several points of view, and in this way it also supports our approach.
Particularly, Shu and Shi [] agree with the formula of the solution in [–, ], where
the formula of solutions for the semilinear impulsive fractional (see Theorem . in [])
is coincident with the formula of the solution in [–, , , –, –].

On the other hand, as far as we know there are few papers studied the fractional evolu-
tion equations with noncompact semigroup. Recently, Wang et al. [] discussed the local
existence of mild solutions for nonlocal problem of fractional evolution equations in the
situation that –A generates a noncompact analytic semigroup. Chen et al. [] investi-
gated the existence of saturated mild solutions for the initial value problem of fractional
evolution equations in the situation that –A generates an equicontinuous C-semigroup.
However, periodic boundary value problem for impulsive fractional evolution equations
have not been studied extensively. In [], Yu et al. studied periodic boundary value prob-
lem for impulsive fractional evolution equations:

⎧
⎪⎪⎨

⎪⎪⎩

cDα
+ u(t) = Au(t) + f (t, u(t)), α ∈ (, ), t ∈ [, T], t �= tk ,

u(t+
k ) = u(t–

k ) + yk , k = , , . . . , m,

u() = u(T),

in Banach space E, A : D(A) ⊂ E → E is generator of a C-semigroup T(t) (t ≥ ) in E and
–A generates a compact C-semigroup.
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Shu et al. [] investigated S-asymptotically ω-positive periodic solutions to the follow-
ing fractional partial neutral differential equations:

⎧
⎨

⎩

cDα
t (u(t) + F(t, ut)) + A(u(t)) = G(t, ut), t ≥ ,

u() = ϕ ∈ B,

where cDα
t is the Caputo fractional derivative with  < α <  and –A is the infinitesimal

generator of an analytic semigroup {T(t)}t≥.
Wang et al. [, ] discussed Ulam-Hyers stability for fractional equations and studied

several types of such equations with various boundary value conditions as well, concept
of solutions, existence results and examples are presented in [].

However, in [, ], Mu et al. use the monotone iterative technique to investigate the
existence and uniqueness of mild solutions of the impulsive fractional evolution equations
in an order Banach space E:

⎧
⎪⎪⎨

⎪⎪⎩

cDα
t u(t) + Au(t) = f (t, u(t)), t ∈ J , t �= tk ,

�u|t=tk = Ik(u(tk)), k = , , . . . , m,

u() = x ∈ E,

and

⎧
⎪⎪⎨

⎪⎪⎩

cDα
t u(t) + Au(t) = f (t, u(t)), t ∈ J , t �= tk ,

�u|t=tk = Ik(u(tk)), k = , , . . . , m,

u() + g(u) = x ∈ E,

where cDα
t is the Caputo fractional derivative of order α ∈ (, ), A : D(A) ⊂ E → E be a

closed linear operator and –A generates a C-semigroup T(t) (t ≥ ).
Unfortunately, these papers have some essential flaw (see Lemma . in [] and

Lemma . in [] are not correct). Thus their main results are not correct too. For-
tunately, in [–, , , –, –], Wang et al. gave a new concept of solution for
some impulsive differential equations with fractional derivative, which is a correction of
that of piecewise continuous solutions used in [, , , , ].

Furthermore, to the best of our knowledge, the theory of periodic boundary value prob-
lems for nonlinear impulsive fractional evolution equations is still in the initial stages and
many aspects of this theory need to be explored; motivated by the above discussion, in this
paper, we use some fixed point theorems and a measure of noncompactness to discuss the
existence of mild solutions for the periodic boundary value problem (PBVP) of impulsive
fractional evolution equations of Volterra type in an ordered Banach space E,

⎧
⎪⎪⎨

⎪⎪⎩

cDα
+ u(t) + Au(t) = f (t, u(t), Fu(t), Gu(t)), t ∈ J , t �= tk ,

�u|t=tk = Ik(u(tk)), k = , , . . . , m,

u() = u(ω),

(.)

where cDα
+ is the Caputo fractional derivative of order α ∈ (, ) with the lower limit

zero, A : D(A) ⊂ E → E be a closed linear operator and –A generates a C-semigroup
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T(t) (t ≥ ) in E; f ∈ C(J ×E×E×E, E), Ik ∈ C(E, E) is an impulsive function, k = , , . . . , m;
J = [,ω], J ′ = J \ {t, t, . . . , tm}, J = [, t], Jk = (tk , tk+], the {tk} satisfy  = t < t < t < · · · <
tm < tm+ = ω, m ∈ N ; �u(tk) = u(t+

k ) – u(t–
k ), �u′(tk) = u′(t+

k ) – u′(t–
k ), u(t+

k ) and u(t–
k ) rep-

resent the right and left limits of u(t) at t = tk , respectively, and

Fu(t) =
∫ t


K(t, s)u(s) ds, K ∈ C

(
D, R+)

,

Gu(t) =
∫ ω


H(t, s)u(s) ds, H ∈ C

(
D, R+)

,
(.)

with D = {(t, s) ∈ R :  ≤ s ≤ t ≤ ω}, D = {(t, s) ∈ R :  ≤ t, s ≤ ω}, K = max(t,s)∈D K(t, s),
H = max(t,s)∈D H(t, s).

The rest of this paper is organized as follows: In Section  we recall some basic well-
known results and introduce some notations. In Section  we discuss the existence the-
orems of solutions for periodic boundary value problem (.). Two examples will be pre-
sented in Section  illustrating our results.

2 Preliminaries
In this section, we briefly recall some basic well=known results which will be used in the
sequel.

Let E be a Banach space with the norm ‖ · ‖ and C(J , E) denote the Banach space of all
continuous E-value functions on interval J with the norm ‖u‖ = maxt∈J ‖u(t)‖.

Let PC(J , E) = {u : J → E, u(t) is continuous at t �= tk , and left continuous at t = tk , and
u(t+

k ) exists, k = , , . . . , m}. Evidently, PC(J , E) is a Banach space with the norm ‖u‖ =
supt∈J ‖u(t)‖. Set Cα(J , E) = {u ∈ C(J , E)|cDα

+ u exists andcDα
+ u ∈ C(J , E)}. Let A : D(A) ⊂

E → E be a closed linear operator and –A generate a C-semigroup T(t) (t ≥ ) in E.
Then there exist constants N >  and δ ∈R such that

∥
∥T(t)

∥
∥ ≤ Neδt , t ≥ 

and δ can also be expressed by δ = limt→+∞ sup ln‖T(t)‖
t , then δ is called a growth index of

the C-semigroup T(t) (t ≥ ). If δ < , then T(t) (t ≥ ) is called an exponentially stable
C-semigroup.

Definition . A C-semigroup T(t) (t ≥ ) is said to be exponentially stable in E if there
exist constants N ≥  and δ >  such that

∥
∥T(t)

∥
∥ ≤ Ne–δt , t ≥ .

For completeness we recall the definition of the Caputo derivative of fractional order.

Definition . The fractional integral of order α of a function f : [,∞) → R is defined
as

Iα
+ =


�(α)

∫ t


(t – s)α–f (s) ds, t > ,α > ,

provided the right side is point-wise defined on (,∞), where �(·) is the gamma function.
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Definition . The Riemann-Liouville derivative of order α with the lower limit zero for
a function f : [,∞) → R can be written as

Dα
+ f (t) =


�(n – α)

dn

dtn

∫ t



f (s)
(t – s)α+–n ds, t > , n –  < α < n.

Definition . The Caputo fractional derivative of order α for a function f : [,∞) → R
can be written as

cDα
+ f (t) = Dα

+

[

f (t) –
n–∑

k=

tk

k!
f (k)()

]

, t > , n –  < α < n,

where n = [α] +  and [α] denotes the integer part of α.

Remark . In the case f (t) ∈ Cn[,∞), then

cDα
+ f (t) =


�(n – α)

∫ t


(t – s)n–α–f (n)(s) ds = In–α

+ f n(t), t > , n –  < α < n.

That is to say that Definition . is just the usual Caputo’s fractional derivative. In this
paper, we consider an impulsive problem, so Definition . is appropriate.

Remark . If u is an abstract function with values in E, then the integrals which appear
in Definitions . and . are taken in Bochner’s sense.

In this paper we adopt the following definition of mild solutions, which comes from [,
, , , ].

Definition . By a mild solution of the initial value problem

⎧
⎪⎪⎨

⎪⎪⎩

cDα
+ u(t) + Au(t) = f (t, u(t), Fu(t), Gu(t)), t ∈ J ′,

�u|t=tk = Ik(u(tk)), k = , , . . . , m,

u() = u,

(.)

on J , we mean a function u ∈ PC(J , E) satisfying

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Tα(t)u +
∫ t

 (t – s)α–Sα(t – s)f (s, u(s), Fu(s), Gu(s)) ds, t ∈ [, t],

Tα(t)u + Tα(t – t)I(u(t))

+
∫ t

 (t – s)α–Sα(t – s)f (s, u(s), Fu(s), Gu(s)) ds, t ∈ (t, t],
...

Tα(t)u +
∑m

i= Tα(t – ti)Ii(u(ti))

+
∫ t

 (t – s)α–Sα(t – s)f (s, u(s), Fu(s), Gu(s)) ds, t ∈ (tm,ω],

(.)
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where

Tα(t) =
∫ ∞


θα(s)T

(
tαs

)
ds, Sα(t) = α

∫ ∞


sθα(s)T

(
tαs

)
ds,

θα(s) =


πα

∞∑

n=

(–s)n– �(nα + )
n!

sin(nπα), s ∈ (,∞),
(.)

are the functions of Wright type defined on (,∞) satisfying

θα(s) ≥ , s ∈ (,∞),
∫ ∞


θα(s) ds = ,

and
∫ ∞


svθα(s) ds =

�( + v)
�( + αv)

, v ∈ [, ].

We first give the following lemmas to be used in proving our main results, which can be
found in [].

Lemma . The operators Tα(t) and Sα(t) (t ≥ ) have the following properties:
(i) For any fixed t ≥ ,Tα(t) and Sα(t) are linear and bounded operators, i.e., for any

u ∈ E,

∥
∥Tα(t)u

∥
∥ ≤ M‖u‖,

∥
∥Sα(t)u

∥
∥ ≤ M

�(α)
‖u‖.

(ii) For every u ∈ E, t → Tα(t)u and t → Sα(t)u are continuous functions from [,∞)
into E.

(iii) The operators Tα(t) and Sα(t) are strongly continuous for all t ≥ .
(iv) If T(t) (t ≥ ) is an equicontinuous semigroup, Tα(t) and Sα(t) are equicontinuous

in E for t > .
(v) For every t > , Tα(t) and Sα(t) are compact operators if T(t) is compact.

Suppose that here the bounded operator B : E → E exists given by

B =
[
I – Tα(ω)

]–. (.)

We present sufficient conditions for the existence and boundedness of the operator B.

Lemma . (see Theorem . and Remark . []) The operator B defined in (.) exists
and is bounded, if one of the following three conditions holds:

(i) T(t) is compact for each t >  and the homogeneous linear nonlocal problem

⎧
⎨

⎩

cDα
+ u(t) = Au(t), t ∈ J ,

u() = u(ω),

has no non-trivial mild solutions.
(ii) If ‖Tα(ω)‖ < , then the operator I – Tα(ω) is invertible and [I – Tα(ω)]– ∈ Lb(E).
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(iii) If ‖T(t)‖ <  for t ∈ (,ω], then Tα(nω) →  as n → ∞ and the operator I – Tα(ω)
is invertible and [I – Tα(ω)]– ∈ Lb(E), where Lb(E) denotes the space of bounded
linear operators from E to E.

Now, we recall some properties of the measure of noncompactness will be used later.
Let α(·) denote the Kuratowski measure of noncompactness of the bounded set. For any
B ⊂ C(J , E) and t ∈ J , set B(t) = {u(t) : u ∈ B} ⊂ E. If B is bounded in C(J , E), then B(t) is
bounded in E, and α(B(t)) ≤ α(B).

Lemma . ([]) Let E be a Banach space, and let B ⊂ E be bounded. Then there exists a
countable set B ⊂ B, such that α(B) ≤ α(B).

Lemma . ([]) Let E be a Banach space, and let B ⊂ C(J , E) is equicontinuous and
bounded, then α(B(t)) is continuous on J , and α(B) = maxt∈J α(B(t)).

Lemma . ([]) Let B = {un} ⊂ PC(J , E) be a bounded and countable set. Then α(B(t))
is Lebesgue integral on J , and

α

({∫

J
un(t) dt : n ∈N

})

≤ 
∫

J
α
(
B(t)

)
dt.

Lemma . (Sadovskii’s fixed point theorem) Let E be a Banach space and 
 be a
nonempty bounded convex closed set in E. If Q : 
 → 
 is a condensing mapping, then
Q has a fixed point in 
.

3 Main results
In this section, we will present some main results. Before stating and proving these results,
we introduce some notations and lemmas which are used in this sequel. For B ⊂ C(J , E),
let B(t) = {u(t) : u ∈ B} and denote Br(J) = {u ∈ PC(J , E) : ‖u‖ ≤ r}.

Definition . An abstract function u ∈ PC(J , E) ∩ Cα(J ′, E) ∩ C(J ′, E) is called a solution
of the PBVP (.) if u(t) satisfies all the equalities of (.).

Lemma . Let T(t) (t ≥ ) be an exponentially stable C-semigroup in E generated by
–A, then the PBVP (.) has a unique mild solution u ∈ PC(J , E) given by

u(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Tα(t)R(u) +
∫ t

 (t – s)α–Sα(t – s)f (s, u(s), Fu(s), Gu(s)) ds,

t ∈ [, t],

Tα(t)R(u) + Tα(t – t)I(u(t))

+
∫ t

 (t – s)α–Sα(t – s)f (s, u(s), Fu(s), Gu(s)) ds, t ∈ (t, t],
...

Tα(t)R(u) +
∑m

i= Tα(t – ti)Ii(u(ti))

+
∫ t

 (t – s)α–Sα(t – s)f (s, u(s), Fu(s), Gu(s)) ds, t ∈ (tm,ω],

(.)
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where

R(u) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

B[
∫ ω

 (ω – s)α–Sα(ω – s)f (s, u(s), Fu(s), Gu(s)) ds], t ∈ [, t],

B[
∫ ω

 (ω – s)α–Sα(ω – s)f (s, u(s), Fu(s), Gu(s)) ds

+ Tα(ω – t)I(u(t))], t ∈ (t, t],

B[
∫ ω

 (ω – s)α–Sα(ω – s)f (s, u(s), Fu(s), Gu(s)) ds

+
∑m

i= Tα(ω – ti)Ii(u(ti))], t ∈ (tm,ω],

(.)

and Tα ,Sα are given by (.).

Proof For any u ∈ PC(J , E), by Definition . and the proof of [], we know easily that the
initial value problem of the impulsive fractional evolution equation

⎧
⎪⎪⎨

⎪⎪⎩

cDα
+ u(t) + Au(t) = f (t, u(t), Fu(t), Gu(t)), t ∈ J ′,

�u|t=tk = Ik(u(tk)), k = , , . . . , m,

u() = u,

has a unique mild solution u ∈ PC(J , E) given by

u(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Tα(t)u +
∫ t

 (t – s)α–Sα(t – s)f (s, u(s), Fu(s), Gu(s)) ds, t ∈ [, t],

Tα(t)u + Tα(t – t)I(u(t))

+
∫ t

 (t – s)α–Sα(t – s)f (s, u(s), Fu(s), Gu(s)) ds, t ∈ (t, t],
...

Tα(t)u +
∑m

i= Tα(t – ti)Ii(u(ti))

+
∫ t

 (t – s)α–Sα(t – s)f (s, u(s), Fu(s), Gu(s)) ds, t ∈ (tm,ω],

where Tα and Sα are given by (.).
We show that the PBVP (.) has a unique mild solution u ∈ PC(J , E) given by (.). If a

function u ∈ PC(J , E) defined by (.) is a solution of the PBVP (.) and u = u(ω), then

[
I – Tα(ω)

]
u

=
∫ ω


(ω – s)α–Sα(ω – s)f

(
s, u(s), Fu(s), Gu(s)

)
ds

+
m∑

i=

Tα(ω – ti)Ii
(
u(ti)

)
, t ∈ Jk , k = , , , . . . , m.

Since T(t) (t ≥ ) is exponentially stable, we define an equivalent norm in E by

|x| = sup
t≥

∥
∥eδtT(t)x

∥
∥.

Then ‖x‖ ≤ |x| ≤ N‖x‖ and |T(t)| < e–δt (t ≥ ), and especially, T(ω) < e–δω < . It follows
that I – T(ω) has a bounded inverse operator [I – T(ω)]– by virtue of Lemma .(iii).
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Hence we choose

u = B

[∫ ω


(ω – s)α–Sα(ω – s)f

(
s, u(s), Fu(s), Gu(s)

)
ds

+
m∑

i=

Tα(ω – ti)Ii
(
u(ti)

)
]

� R(u).

Then u is the unique initial value of the problem (.) in E, which satisfies u() = u =
u(ω). It follows that the mild solution u of the problem (.) corresponding to initial value
u() = u = R(h) is just the mild solution of the PBVP (.). Therefore, the conclusion of
Lemma . holds. �

To prove our main results, the following lemma is needed.

Lemma . Assume that α > , m ∈ C(J , R+) satisfies

m(t) ≤ M

∫ t


(t – s)α–m(s) ds + M

∫ t


(t – s)α–m(s) ds

+ M

∫ ω


(t – s)α–m(s) ds, t ∈ J , (.)

where Mi ≥  (i = , , ) are constants. Then m(t) ≡  for t ∈ J provided the following
condition holds: (i) (M+M+M)ωα

α
< .

Proof Let us suppose that (i) holds. Then, from (.),

m(t) ≤ (M + M + M)
∫ ω


(t – s)α–m(s) ds, t ∈ J .

If follows by integrating the above inequality that

∫ ω


m(s) ds ≤ (M + M + M)ωα

α

∫ ω


m(s) ds,

and by assumption (i), implies

∫ ω


m(s) ds = ,

and so m(t) ≡ , t ∈ J . The proof of this lemma is complete. �

Throughout this paper, we introduce the following hypotheses:
(H) f : J × E × E × E → E is a continuous function and there exist a

Lebesgue-integrable function Mr : J → R+ and nondecreasing continuous
function 
 : [,∞) → (,∞) such that

∥
∥f (t, x, y, z)

∥
∥ ≤ Mr(t)
(r) (.)

for all t ∈ J , (x, y, z) ∈ Br × Br × Br .
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(H) The functions Ik : E → E are continuous and there exists a constant ρ >  such that

∥
∥Ik(u)

∥
∥ ≤ ρ‖u‖ for all u, v ∈ Br and k = , , . . . , m.

(H) There exists a positive solution r of the inequality

M
(
MM∗ + 

)
(‖Mr‖
(r)ωα

�(α + )
+ mρ

)

≤ r,

where M∗ = ‖B‖.
(H) There exists a constant  < L < �(α+)[–M(MM∗+)

∑m
k= Mk ]

M(MM∗+)(+ωK+ωH)ωα such that, for any
bounded and equicontinuous sets Vi ⊂ C(J , E) (i = , , ) and t ∈ J

β
(
f (t, V, V, V)

) ≤ L

∑

i=

β(Vi).

(H) There exists Mk > , k = , , . . . , m with
∑m

k= Mk < 
M(MM∗+) such that

α
({

Ik
(
xn(tk)

)}) ≤ Mkα
(
xn(tk)

)
,

for any countable subsets {xn} ⊂ PC(J , E).

Theorem . Let E be a Banach space, A : D(A) ⊂ E → E be a closed linear operator and
–A generate an equicontinuous C-semigroup T(t) (t ≥ ) in E. Assume that the conditions
(H)-(H) are satisfied. Then the PBVP (.) has at least one mild solution on J .

Proof Choosing

r ≥ M
(
MM∗ + 

)
(‖Mr‖
(R)ωα

�(α + )
+ mρ

)

.

Consider Br (J) = {u ∈ PC(J , E) : ‖u(t)‖ ≤ r, t ∈ J}, then Br (J) is a closed, bounded and
convex subset of PC(J , E).

From Lemma ., we define the mapping Q : PC(J , E) → PC(J , E) by

Qu(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Tα(t)R(u) +
∫ t

 (t – s)α–Sα(t – s)f (s, u(s), Fu(s), Gu(s)) ds,

t ∈ [, t],

Tα(t)R(u) + Tα(t – t)I(u(t))

+
∫ t

 (t – s)α–Sα(t – s)f (s, u(s), Fu(s), Gu(s)) ds, t ∈ (t, t],
...

Tα(t)R(u) +
∑m

i= Tα(t – ti)Ii(u(ti))

+
∫ t

 (t – s)α–Sα(t – s)f (s, u(s), Fu(s), Gu(s)) ds, t ∈ (tm,ω],

(.)

where R(u) is given by (.). Obviously, u is a mild solution of the PBVP (.) if and only if u
is a solution of the operator equation u = Qu. We will use Sadovskii’s fixed point theorem
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to prove that the operator equation u = Qu has a solution on Br (J). Our proof will be
divided into four steps.

Step . We show that QBr (J) ⊂ Br (J).
Let  < r < min(r, r

Kω
), for any u ∈ Br (J) and t ∈ J , we have

∥
∥(Fu)(s)

∥
∥ =

∥
∥
∥
∥

∫ t


K(t, s)u(s) ds

∥
∥
∥
∥ ≤ K

∫ ω



∥
∥u(s)

∥
∥ds ≤ Kωr ≤ r.

So Fu ∈ Br (J). Similarly, we prove Gu ∈ Br (J).
For each t ∈ J = [, t], by Lemma .(i) and (.), we have

∥
∥(Qu)(t)

∥
∥ ≤

∥
∥
∥
∥Tα(t)R(u) +

∫ t


(t – s)α–Sα(t – s)f

(
s, u(s), Fu(s), Gu(s)

)
ds

∥
∥
∥
∥

≤ M
∥
∥R(u)

∥
∥ +

M
(r)
�(α)

∫ t


(t – s)α–Mr (s) ds

≤ MM∗ M‖Mr‖
(r)ωα

�(α + )
+

M‖Mr‖
(r)ωα

�(α + )

= M
(
MM∗ + 

)‖Mr‖
(r)ωα

�(α + )

≤ r.

By the same method, for each t ∈ Jk = (tk , tk+], k = , , . . . , m, we have

∥
∥(Qu)(t)

∥
∥ ≤

∥
∥
∥
∥
∥
Tα(t)R(u) +

m∑

i=

Tα(t – ti)Ii
(
u(ti)

)

+
∫ t


(t – s)α–Sα(t – s)f

(
s, u(s), Fu(s), Gu(s)

)
ds

∥
∥
∥
∥
∥

≤ M
∥
∥R(u)

∥
∥ + M sup

u∈Br (J)

m∑

i=

∥
∥Ii

(
u(ti)

)∥
∥ +

M
(r)
�(α)

∫ t


(t – s)α–Mr (s) ds

≤ MM∗
(

M‖Mr‖
(r)ωα

�(α + )
+ Mmρ

)

+ M sup
u∈Br (J)

m∑

i=

∥
∥Ii

(
u(ti)

)∥
∥ +

M‖Mr‖
(r)ωα

�(α + )

≤ MM∗
(

M‖Mr‖
(r)ωα

�(α + )
+ Mmρ

)

+
M‖Mr‖
(r)ωα

�(α + )
+ Mmρ

= M
(
MM∗ + 

)
(‖Mr‖
(r)ωα

�(α + )
+ mρ

)

≤ r.

Hence, ‖Qu‖ ≤ r, for any u ∈ Br (J), i.e., Qu ∈ Br (J).
Step . Now we show that Q is continuous from Br (J) into Br (J). To show this, for any

un, u ∈ Br (J), n = , , . . . , with limn→∞ ‖un – u‖ = , we get

lim
n→∞ un(t) = u(t),
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for all t ∈ J . Hence, by (H), (H), we have

lim
n→∞ f

(
t, un(t), (Fun)(t), (Gun)(t)

)
= f

(
t, u(t), (Fu)(t), (Gu)(t)

)
, t ∈ J ,

lim
n→∞ Ik

(
un(tk)

)
= Ik

(
u(tk)

)
, k = , , . . . , m.

On the one hand, using (H), we get, for each t ∈ J ,

(t – s)α–∥∥f
(
s, un(s), (Fun)(s), (Gun)(s)

)
– f

(
s, u(s), (Fu)(s), (Gu)(s)

)∥
∥

≤ (t – s)α–
(r)Mr (s), a.e. in [, t).

On the other hand, the function s → (t – s)α–MR(s) is integrable for s ∈ [, t) and t ∈ J .
By Lebesgue dominated convergence theorem, we have

∫ t


(t – s)α–∥∥f

(
s, un(s), (Fun)(s), (Gun)(s)

)
– f

(
s, u(s), (Fu)(s), (Gu)(s)

)∥
∥ds → ,

as n → ∞.

For t ∈ J = [, t], we have

∥
∥(Run)(t) – (Ru)(t)

∥
∥

≤ MM∗ωα

�(α + )
∥
∥f

(
t, un(t), (Fun)(t), (Gun)(t)

)
– f

(
t, u(t), (Fu)(t), (Gu)(t)

)∥
∥

→ , as n → ∞.

Then we have

∥
∥(Qun)(t) – (Qu)(t)

∥
∥

≤ ∥
∥Tα(t)

∥
∥ · ∥∥(

R(un)(t) – R(u)(t)
)∥
∥

+
∫ t


(t – s)α–∥∥Sα(t – s)

∥
∥

× ∥
∥f

(
s, un(s), (Fun)(s), (Gun)(s)

)
– f

(
s, u(s), (Fu)(s), (Gu)(s)

)∥
∥ds

≤ M
∥
∥
(
R(un)(t) – R(u)(t)

)∥
∥

+
M

�(α)

∫ t


(t – s)α–∥∥f

(
s, un(s), (Fun)(s), (Gun)(s)

)
– f

(
s, u(s), (Fu)(s), (Gu)(s)

)∥
∥ds

→ , as n → ∞.

For t ∈ Jk = (tk , tk+], we have

∥
∥(Run)(t) – (Ru)(t)

∥
∥

≤ MM∗ωα

�(α + )
∥
∥f

(
t, un(t), (Fun)(t), (Gun)(t)

)
– f

(
t, u(t), (Fu)(t), (Gu)(t)

)∥
∥

+ mM
∥
∥Ik

(
un(tk)

)
– Ik

(
u(tk)

)∥
∥ → , as n → ∞.
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Then we have

∥
∥(Qun)(t) – (Qu)(t)

∥
∥

≤ ∥
∥Tα(t)

∥
∥ · ∥∥(

R(un)(t) – R(u)(t)
)∥
∥

+
∫ t


(t – s)α–∥∥Sα(t – s)

∥
∥

× ∥
∥f

(
s, un(s), (Fun)(s), (Gun)(s)

)
– f

(
s, u(s), (Fu)(s), (Gu)(s)

)∥
∥ds

+
m∑

k=

∥
∥Tα(t – tk)

∥
∥ · ∥∥Ik

(
un

(
t–
k
))

– Ik
(
u
(
t–
k
))∥

∥

≤ M
∥
∥
(
R(un)(t) – R(u)(t)

)∥
∥ + mM

∥
∥Ik

(
un

(
t–
k
))

– Ik
(
u
(
t–
k
))∥

∥

+
M

�(α)

∫ t


(t – s)α–∥∥f

(
s, un(s), (Fun)(s), (Gun)(s)

)

– f
(
s, u(s), (Fu)(s), (Gu)(s)

)∥
∥ds

→ , as n → ∞,

which implies that Qun → Qu uniformly on J as n → ∞ and so Q : Br (J) → Br (J) is a
continuous operator.

Step . Now, we demonstrate that {Qu : u ∈ Br (J)} is equicontinuous. For any u ∈ Br (J)
and  ≤ t < t ≤ ω, we get

∥
∥(Qu)(t) – (Qu)(t)

∥
∥

=
(
Tα(t) – Tα(t)

)
R(u)

+
∫ t

t

(t – s)α–Sα(t – s)f
(
s, u(s), (Fu)(s), (Gu)(s)

)
ds

+
∫ t



(
(t – s)α– – (t – s)α–)Sα(t – s)f

(
s, u(s), (Fu)(s), (Gu)(s)

)
ds

+
∫ t


(t – s)α–(Sα(t – s) – Sα(t – s)

)
f
(
s, u(s), (Fu)(s), (Gu)(s)

)
ds

+
m∑

k=

(
Tα(t – tk) – Tα(t – tk)

) × Ik
(
u
(
t–
k
))

= I + I + I + I + I.

Here we calculate

∥
∥(Qu)(t) – (Qu)(t)

∥
∥ ≤

∑

i=

‖Ii‖. (.)

Therefore, we inspect that ‖Ii‖ tend to , when t – t → , i = , , . . . , .
For I, I, by Lemma .(iv), we have

‖I‖ →  as t – t → ,
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‖I‖ =
m∑

k=

(
Tα(t – tk) – Tα(t – tk)

) × Ik
(
u
(
t–
k
))

≤ mρ
∥
∥Tα(t – tk) – Tα(t – tk)

∥
∥

→ , t – t → .

For I, I by Lemma .(i) and (H), we have

‖I‖ ≤ M‖Mr‖
(r)
�(α)

∫ t

t

(t – s)α– ds ≤ M‖Mr‖
(r)
�(α + )

(t – t)α → , t – t → .

‖I‖ =
∫ t



(
(t – s)α– – (t – s)α–)Sα(t – s)f

(
s, u(s), (Fu)(s), (Gu)(s)

)
ds

≤ M‖Mr‖
(r)
�(α)

∫ t



(
(t – s)α– – (t – s)α–)ds

≤ M‖Mr‖
(r)
�(α + )

(t – t)α

→ , t – t → .

For I, by Lemma .(iv) and (H), we have

‖I‖ =
∫ t


(t – s)α–(Sα(t – s) – Sα(t – s)

)
f
(
s, u(s), (Fu)(s), (Gu)(s)

)
ds

≤ ‖Mr‖
(r)
∫ t


(t – s)α–∥∥Sα(t – s) – Sα(t – s)

∥
∥ds

→ , t – t → .

In conclusion, ‖(Qu)(t) – (Qu)(t)‖ →  as t – t → , which implies that Q(Br (J)) is
equicontinuous.

Let B = coQ(Br (J)). Then it is easy to verify that Q maps B into itself and B ⊂ PC(J , E)
is equicontinuous.

Step . Now, we prove that Q : B → B is a condensing operator. For any W ⊂ B, by
Lemma ., there exists a countable set W = {un} ⊂ W , such that

β
(
Q(W )

) ≤ β
(
Q(W)

)
. (.)

By the equicontinuity of B, we know that W ⊂ B is also equicontinuous.
By this fact that

∫ ω


u(s) ds ∈ ωco

{
u(s)|s ∈ J

}
, u ∈ C(J , E),

we have

β

({∫ t


K(t, s)u(s) ds

∣
∣
∣u ∈ B, t ∈ J

})

≤ ωKβ
({

u(t)|u ∈ B, t ∈ J
})

, (.)

β

({∫ ω


H(t, s)u(s) ds

∣
∣
∣u ∈ B, t ∈ J

})

≤ ωHβ
({

u(t)|u ∈ B, t ∈ J
})

. (.)
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For t ∈ J = [, t], by the definition of Q, (.), (.) and Lemma ., we have

α
(
Q

(
W(t)

))

= α

({

Tα(t)R(un) +
∫ t


(t – s)α–Sα(t – s)

(
f
(
s, un(s), Fun(s), Gun(s)

))
ds : n ∈ N

})

≤ Mα
({

R(un) : n ∈ N
})

+
M
�(α)

∫ t


(t – s)α–α

({
f
(
s, un(s), Fun(s), Gun(s)

)
: n ∈ N

})
ds

≤ MM∗
[

ML( + ωK + ωH)ωα

�(α + )

]

α(W )

+
M
�(α)

∫ t


(t – s)α–(L

[
α
(
W(s)

)
+ α

(
F(W)(s)

)
+ α

(
G(W)(s)

)])
ds

≤ MM∗
[

ML( + ωK + ωH)ωα

�(α + )

]

α(W ) +
ML

�(α)

∫ t


(t – s)α–α

(
W(s)

)
ds

+
M
�(α)

ωLK

∫ t


(t – s)α–α

(
W(s)

)
ds +

M
�(α)

ωLH

∫ ω


(t – s)α–α

(
W(s)

)
ds

< MM∗
[

ML( + ωK + ωH)ωα

�(α + )

]

α(W ) +
[

ML( + ωK + ωH)ωα

�(α + )

]

α(W )

=
(
MM∗ + 

)
[

ML( + ωK + ωH)ωα

�(α + )

]

α(W ).

For t ∈ Jk = (tk , tk+], k = , , . . . , m, by the definition of Q, (.), (.) and Lemma ., we
have

α
(
Q

(
W(t)

))

= α

({

Tα(t)R(un) +
∫ t


(t – s)α–Sα(t – s)

(

f
(
s, un(s), Fun(s), Gun(s)

)
ds

+
m∑

k=

Tα(t – tk)Ik
(
un(tk)

)
: n ∈ N

)})

≤ Mα
({

R(un) : n ∈ N
})

+
M
�(α)

∫ t


(t – s)α–α

({
f
(
s, un(s), Fun(s), Gun(s)

)
: n ∈ N

})
ds

+ M
m∑

k=

Mkα
(
Ik

(
un(tk)

))

≤ MM∗
[

ML( + ωK + ωH)ωα

�(α + )
+ M

m∑

k=

Mk

]

α(W )

+
M
�(α)

∫ t


(t – s)α–(L

[
α
(
W(s)

)
+ α

(
F(W)(s)

)

+ α
(
G(W)(s)

)])
ds + M

m∑

k=

Mkα
(
W(tk)

)
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≤ MM∗
[

ML( + ωK + ωH)ωα

�(α + )
+ M

m∑

k=

Mk

]

α(W )

+
ML

�(α)

∫ t


(t – s)α–α

(
W(s)

)
ds

+
M
�(α)

ωLK

∫ t


(t – s)α–α

(
W(s)

)
ds +

M
�(α)

ωLH

∫ ω


(t – s)α–α

(
W(s)

)
ds

+ M
m∑

k=

Mkα
(
W(tk)

)

≤ MM∗
[

ML( + ωK + ωH)ωα

�(α + )
+ M

m∑

k=

Mk

]

α(W )

+

[
ML( + ωK + ωH)ωα

�(α + )
+ M

m∑

k=

Mk

]

α(W )

= M
(
MM∗ + 

)
[

ML( + ωK + ωH)ωα

�(α + )
+

m∑

k=

Mk

]

α(W ).

Hence, for any t ∈ J , we have

α
(
Q

(
D(t)

)) ≤ M
(
MM∗ + 

)
[

ML( + ωK + ωH)ωα

�(α + )
+

m∑

k=

Mk

]

α(W ).

Since Q(W) is bounded and equicontinuous, by Lemma ., (H) and (H), we have

α
(
Q(W )

) ≤ α
(
Q(W)

)
=  max

t∈J
α
(
Q

(
W(t)

))

≤ M
(
MM∗ + 

)
[

ML( + ωK + ωH)ωα

�(α + )
+

m∑

k=

Mk

]

α(W ) < α(W ).

Then Q : Br (J) → Br (J) is a condensing mapping. By Lemma ., Q has at least one fixed
point u in PC(J , E). �

Theorem . Let E be a Banach space, A : D(A) ⊂ E → E be a closed linear operator and
–A generate an equicontinuous C-semigroup T(t) (t ≥ ) in E. Assume that the set

{
R(vn–)

}
=

{

B

[∫ ω


(ω – s)α–Sα(ω – s)f

(
s, vn–(s), Fvn–(s), Gvn–(s)

)
ds

+
m∑

i=

Tα(ω – ti)Ii
(
vn–(ti)

)
]

: n ∈N

}

is relatively compact and (H)-(H) hold with the following conditions:
(H) There exist constants L >  such that, for any bounded and equicontinuous sets

Vi ⊂ C(J , E) (i = , , ) and t ∈ J ,

β
(
f (t, V, V, V)

) ≤ L
∑

i=

β(Vi).
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(H) The inequality

M[L + ωL(K + H)]
�(α + )

ωα < 

is satisfied. Then the problem (.) has at least one solution on J .

Proof For convenience, we denote B = {vn : n ∈N} and B = {vn– : n ∈N}. Then B = Q(B).
We will consider set B and prove set B is relatively compact.

It follows from Theorem . that B is uniformly bounded and equicontinuous on J .
Next, we only prove that, for any t ∈ J , set B(t) = {vn–(t) : n ∈ N} is relatively compact
in E. From B = B ∪ {v} it follows that α(B(t)) = α(B(t)) for t ∈ J . Let ϕ(t) := α(B(t)), t ∈ J ,
going from J to Jm interval by interval we show that ϕ(t) ≡  in J .

For t ∈ J , there exists a Jk– such that t ∈ Jk–. By (.) and Lemma ., we have

α
(
F(B)(t)

)
= α

({∫ t


K(t, s)vn–(s) ds : n ∈N

})

≤
k–∑

j=

α

({∫ tj

tj–

K(t, s)vn–(s) ds : n ∈N

})

+ α

({∫ t

tk–

K(t, s)vn–(s) ds : n ∈N

})

≤ K

k–∑

j=

∫ tj

tj–

α
(
B(s)

)
ds + K

∫ t

tk–

α
(
B(s)

)
ds

= K

k–∑

j=

∫ tj

tj–

ϕ(s) ds + K

∫ t

tk–

ϕ(s) ds

= K

∫ t


ϕ(s) ds,

and therefore,

∫ t


α
(
F(B)(s)

)
ds ≤ ωK

∫ t


ϕ(s) ds (.)

and

α
(
G(B)(t)

)
= α

({∫ ω


H(t, s)vn–(s) ds : n ∈N

})

≤
k–∑

j=

α

({∫ tj

tj–

H(t, s)vn–(s) ds : n ∈N

})

+ α

({∫ ω

tk–

H(t, s)vn–(s) ds : n ∈N

})

≤ H

k–∑

j=

∫ tj

tj–

α
(
B(s)

)
ds + H

∫ ω

tk–

α
(
B(s)

)
ds
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= H

k–∑

j=

∫ tj

tj–

ϕ(s) ds + H

∫ ω

tk–

ϕ(s) ds

= H

∫ ω


ϕ(s) ds,

and therefore,

∫ t


α
(
G(B)(s)

)
ds ≤ ωH

∫ ω


ϕ(s) ds. (.)

For t ∈ J, from (.), using Lemma ., assumption (H) and (.), (.), we have

ϕ(t) = α
(
B(t)

)
= α

(
Q(B)(t)

)

= α

(

Tα(t)R(vn–) +
∫ t


(t – s)α–Sα(t – s)f

(
s, vn–(s), Fvn–(s), Gvn–(s)

)
ds

)

≤ M
�(α)

∫ t


α
({

(t – s)α–(f
(
s, vn–(s), Fvn–(s), Gvn–(s)

))})
ds

≤ M
�(α)

∫ t


(t – s)α–(L

(
α
(
B(s)

)
+ α

(
F(B)(s)

)
+ α

(
G(B)(s)

)))
ds

≤ ML
�(α)

∫ t


(t – s)α–ϕ(s) ds +

M
�(α)

ωLK

∫ t


(t – s)α–ϕ(s) ds

+
M
�(α)

ωLH

∫ ω


(t – s)α–ϕ(s) ds.

Hence by (H) and Lemma ., ϕ(t) ≡  in J. In particular, α(B(t)) = α(B(t)) = ϕ(t) = ,
this implies that B(t) and B(t) are precompact in E. Thus I(B(t)) is precompact in E,
and α(I(B(t))) = .

Now, for t ∈ J, by the above argument for t ∈ J, we have

ϕ(t) = α
(
B(t)

)
= α

(
Q(B)(t)

)

= α

({

Tα(t)R(vn–) + Tα(t – t)I
(
vn–(t)

)

+
∫ t


(t – s)α–Sα(t – s)f

(
s, vn–(s), Fvn–(s), Gvn–(s)

)
ds

})

≤ ML
�(α)

∫ t


(t – s)α–ϕ(s) ds +

M
�(α)

ωLK

∫ t


(t – s)α–ϕ(s) ds

+
M
�(α)

ωLH

∫ ω


(t – s)α–ϕ(s) ds

=
ML
�(α)

∫ t

t

(t – s)α–ϕ(s) ds +
M
�(α)

ωLK

∫ t

t

(t – s)α–ϕ(s) ds

+
M
�(α)

ωLH

∫ ω

t

(t – s)α–ϕ(s) ds.

Again by (H) and Lemma ., ϕ(t) ≡  in J, from which we obtain α(B(t)) =  and
α(I(B(t))) = .
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Continuing such a process interval by interval up to Jm, we can prove that ϕ(t) ≡  in
every Jk , k = , , , . . . , m. Hence, for any t ∈ J , B(t) is relatively compact. Consequently, it
follows from the Ascoli-Arzela theorem that set B is relatively compact, i.e., there exists a
convergent subsequence of {vn}∞n=. With no threat of confusion, let limn→∞ vn = v∗ ∈ Br(J).

Thus, by continuous of the operator Q, we have

v∗ = lim
n→∞ vn = lim

n→∞ Qvn– = Q
(

lim
n→∞ vn–

)
= Qv∗,

which implies the PBVP (.) has at least a mild solution. This completes the proof. �

4 Examples
In this section, we give two examples to demonstrate how to utilize our results.

Example . We consider the impulsive fractional differential equations with periodic
boundary conditions,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

cD


+ u(t, y) + ∂

∂y u(t, y) = t


‖u(t,y)‖
(+‖u(t,y)‖) + 


∫ t


e–(s–t)

 u(s, y) ds

+ 

∫ t


e

–(s–t)

 u(s, y) ds, y ∈ (,π ), t ∈ [, 

 ) ∪ ( 
 , ],

�u|t= 


= |u( 


–,y)|
(+|u( 


–,y)|) , y ∈ (,π ),

u(t, ) = u(t,π ) = ,

u(, y) = u(, y), y ∈ (,π ).

(.)

Let E = L(,π ). Define Au = ∂

∂y u for u ∈ D(A),

D(A) =
{

u ∈ E :
∂u
∂y

,
∂u
∂y ∈ E, u() = u(π ) = 

}

.

Then –A is the infinitesimal generates of a C-semigroup T(t) (t ≥ ) in E, which is
equicontinuous and M = . Moreover, T(·) is also compact and ‖T(t)‖ ≤ e–t ≤ , t ≥ .
By the Fredholm alternative theorem, [I – Tα()]– exists and is bounded where Tα(·) is
defined in Section .

Let

Fu =
∫ t



e–(s–t)


u(s, y) ds, Gu =

∫ t



e
–(s–t)




u(s, y) ds,

f (t, u, Fu, Gu) =
t


‖u(t, y)‖

( + ‖u(t, y)‖)
+ Fu + Gu, y ∈ (,π ), t ∈

[

,



)

∪
(




, 
]

, u ∈ E

and f : [, ] × E × E × E → E is a continuous function.
Next, we can calculate

∥
∥f (t, u, Fu, Gu)

∥
∥ =

∥
∥
∥
∥

t


‖u(x, t)‖
( + ‖u(x, t)‖)

+



∫ t



e–(s–t)


u(x, s) ds +




∫ t



e
–(s–t)




u(x, s) ds

∥
∥
∥
∥

≤ 


‖u‖ +



‖u‖ +




‖u‖ =


‖u‖,

hence the condition (H) holds with MR(t) = 
 ,
(r) = r.
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Define

I

(

u
(




–
, y

))

=
|u( 


–, y)|

( + |u( 


–, y)|) , y ∈ (,π ), u ∈ E

and

∥
∥I(u)

∥
∥ =

∥
∥
∥
∥

u
( + u)

∥
∥
∥
∥ ≤ 


‖u‖,

hence the condition (H) holds with ρ = 
 .

Moreover,

M
(
MM∗ + 

)
(‖Mr‖
(r)ωα

(α + )
+ mρ

)

=
(
M∗ + 

)
(

r

�( 
 )

+




)

< r.

Thus, one can choose r > 
 /[ 

M∗+ – 
�( 

 )
] such that (H) holds. Furthermore, assume

that (H), (H) hold. Therefore, by Theorem ., the problem (.) has a mild solution on
[, ].

Example . We consider the impulsive fractional differential equations with periodic
boundary conditions,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

cD


+ u(t, y) = ∂

∂y u(t, y) + ‖u(t,y)‖
(+et )(+‖u(t,y)‖) +

∫ t


e–(s–t)

 u(s, y) sin u(s, y) ds

+
∫ t


e

–(s–t)


 u(s, y) cos u(s, y) ds, y ∈ (,π ), t ∈ [, 
 ) ∪ ( 

 , ],

�u|t= 


= |u( 


–,y)|
(+t)(+|u( 


–,y)|) , y ∈ (,π ),

u(t, ) = u(t,π ) = ,

u(, y) = u(, y), y ∈ (,π ).

(.)

Let E = L(,π ). Define Au = – ∂

∂y u for u ∈ D(A), where

D(A) =
{

u ∈ E :
∂u
∂y

,
∂u
∂y ∈ E, u() = u(π ) = 

}

.

Then A is the infinitesimal generates of a C-semigroup T(t) (t ≥ ) in E, which is equicon-
tinuous and M = . Moreover, T(·) is also compact and ‖T(t)‖ ≤ e–t ≤ , t ≥ . By the
Fredholm alternative theorem, [I – Tα()]– exists and is bounded where Tα(·) is defined
in Section .

Let

Fu =
∫ t



e–(s–t)


u(s, y) sin u(s, y) ds, Gu =

∫ t



e
–(s–t)




u(s, y) cos u(s, y) ds,

f (t, u, Fu, Gu) =
‖u(t, y)‖

( + et)( + ‖u(t, y)‖)
+ Fu + Gu,

y ∈ (,π ), t ∈
[

,



)

∪
(




, 
]

, u ∈ E,

and f : [, ] × E × E × E → E is a continuous function.
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Next, we can calculate

∥
∥f (t, u, Fu, Gu)

∥
∥ =

∥
∥
∥
∥

‖u(t, y)‖
( + et)( + ‖u(t, y)‖)

+
∫ t



e–(s–t)


u(s, y) sin u(s, y) ds

+
∫ t



e
–(s–t)




u(s, y) cos u(s, y) ds

∥
∥
∥
∥

≤ 


‖u‖ +



‖u‖ +



‖u‖ =


‖u‖,

hence the condition (H) holds with MR(t) = 
 ,
(r) = r.

Define

I

(

u
(




–
, y

))

=
|u( 


–, y)|

( + t)( + |u( 


–, y)|) , y ∈ (,π ), u ∈ E,

hence the condition (H) holds with ρ = 
 .

Moreover,

M
(
MM∗ + 

)
(‖Mr‖
(r)ωα

�(α + )
+ mρ

)

=
(
M∗ + 

)
(

r

�( 
 )

+




)

< r.

Thus, one can choose r > 
 /[ 

M∗+ – 
�( 

 )
] such that (H) holds. Furthermore, assume

that (H), (H) holds. Therefore, by Theorem ., the problem (.) has a mild solution
on [, ].

5 Conclusions
In this paper, by applying some well-known fixed point theorem, many new existence theo-
rems of solutions are established under weaker conditions. In particular, we can extend the
well-known results in Mu [, ] and point out some essential flaws in their manuscripts.
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