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Abstract
Recently, Kim and Kim introduced some identities of degenerate Daehee numbers
which are derived from nonlinear differential equations (see (Kim and Kim in
J. Nonlinear Sci. Appl. 10:744-751, 2017)). From the viewpoint of inversion formula, we
study the degenerate Daehee number arising from a nonlinear differential equation.
In this paper, we obtain the explicit expression of degenerate Daehee numbers from
the inversion formula of (Kim and Kim in J. Nonlinear Sci. Appl. 10:744-751, 2017)
using the generating function and nonlinear differential equations.

MSC: 11B68; 11S40; 11S80

Keywords: differential equations; degenerate Daehee numbers; Stirling numbers

1 Introduction
The Daehee polynomials are defined by the generating function to be

log( + t)
t

( + t)x =
∞∑

n=

Dn(x)
tn

n!
(.)

(see [–]).
For x = , Dn = Dn() are called the Daehee numbers.
In [], Kim and Kim introduced the degenerate Daehee numbers which are given by the

generating function:

λ log( + 
λ

log( + λt))
log( + λt)

=
∞∑

n=

Dn,λ
tn

n!
. (.)

For x = , Dn,λ = Dn,λ() are called the degenerate Daehee numbers.
We observe here that Dn,λ −→ Dn as λ −→ .
The Stirling numbers of the first kind are given by

(x)n = x(x – ) · · · (x – n + ) =
n∑

l=

S(n, l)xl (x ≥ ), (.)
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and the Stirling numbers of the first kind are defined by the generating function to be

(
log(x + )

)n = n!
∞∑

l=n

S(l, n)
xl

l!
(n ≥ )

(see [, ]).
Recently, many researchers have studied nonlinear differential equations arising from

the generating functions of various special polynomials (see [–, –]). They also in-
vestigated some identities and explicit expression of these polynomials from the solution
of nonlinear differential equations. In [], Kim and Kim have studied some results of de-
generate Daehee numbers which are derived from nonlinear differential equations. From
the viewpoint of the inversion formula, we study the degenerate Daehee number arising
from a nonlinear differential equation. In this paper, by using the generating function and
nonlinear differential equations, we deduce the explicit expression of degenerate Daehee
numbers as the inversion formula of [].

2 Some identities of degenerate Daehee numbers arising from nonlinear
differential equations

Let

F = F(t) = log

(
 +


λ

log( + λt)
)

. (.)

Then, by taking the derivative with respect to t of (.), we get

F () =
d
dt

F(t) =
(

 +

λ

log( + λt)
)– 

 + λt

=


 + λt
e– log(+ 

λ
log(+λt))

=


 + λt
e–F . (.)

From (.), we get

e–F = ( + λt)F (). (.)

From (.), we note that

(
–F ())e–F = λF () + ( + λt)F (). (.)

Thus, by multiplying ( + λt) on both sides of (.), we get

( + λt)F ()e–F = –λ( + λt)F () – ( + λt)F (). (.)

From (.) and (.), we get

e–F = –λ( + λt)F () – ( + λt)F (). (.)
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From (.), we have

–F ()e–F = –λF () – λ( + λt)F () – ( + λt)F (). (.)

Multiplying ( + λt) on both sides of (.), we get

!( + λt)F ()e–F = (–)λ( + λt)F () + (–)λ( + λt)F ()

+ (–)( + λt)F (). (.)

From (.) and (.), we get

!e–F = (–)λ( + λt)F () + (–)λ( + λt)F () + (–)( + λt)F (). (.)

From (.), we have

!
(
–F ())e–F = (–)λF () + (–)λ( + λt)F ()

+ (–)λ( + λt)F () + (–)( + λt)F (). (.)

Multiplying ( + λt) on both sides of (.), we get

!( + λt)F ()e–F = (–)λ( + λt)F () + (–)λ( + λt)F ()

+ (–)λ( + λt)F () + (–)( + λt)F (). (.)

From (.) and (.), we get

!e–F = (–)λ( + λt)F () + (–)λ( + λt)F ()

+ (–)λ( + λt)F () + (–)( + λt)F (). (.)

Continuing this process, we get

(N – )!e–NF = (–)N–
N∑

k=

λN–k( + λt)kak(N)F (k). (.)

Let us take the derivative on both sides of (.) with respect to t. Then we have

(N – )!
(
–NF ())e–NF = (–)N–

N∑

k=

λN–kak(N)
{

kλ( + λt)k–

× F (k) + ( + λt)kF (k+)}. (.)

Multiplying ( + λt) on both sides of (.), we get

N !( + λt)F ()e–NF = (–)N
N∑

k=

λN–kak(N)
{

kλ( + λt)k

× F (k) + ( + λt)k+F (k+)}. (.)
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Then, by (.) and (.), we get

N !e–(N+)F = (–)N
N∑

k=

λN–K ak(N)
{

kλ( + λt)k

× F (k) + ( + λt)k+F (k+)}

= (–)N
N∑

k=

λN–k+( + λt)kkak(N)F (k)

+ (–)N
N∑

k=

λN–k( + λt)k+ak(N)F (k+)

= (–)N
N∑

k=

λN–k+( + λt)kkak(N)F (k)

+ (–)N
N+∑

k=

λN–k+( + λt)kak–(N)F (k)

= (–)NλN ( + λt)a(N)F () + (–)N ( + λt)N+

× aN (N)F (N+) + (–)N
N∑

k=

λN–k+( + λt)k

× (
kak(N) + ak–(N)

)
F (k). (.)

By replacing N by N +  in (.), we get

N !e–(N+)F = (–)N
N+∑

k=

λN–k+( + λt)kak(N + )F (k)

= (–)NλN ( + λt)a(N + )F () + (–)N ( + λt)N+

× aN+(N + )F (N+) + (–)N
N∑

k=

λN–k+( + λt)k

× ak(N + )Fk . (.)

Comparing the coefficients on both sides of (.) and (.), we have

a(N + ) = a(N), aN+(N + ) = aN (N), (.)

and

ak(N + ) = kak(N) + ak–(N), for  ≤ k ≤ N . (.)

From (.) and (.), we have

e–F = ( + λt)F () = ( + λt)a()F (). (.)
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By (.), we get

a() = . (.)

Thus, by (.) and (.), we have

a(N + ) = a(N) = a(N – ) = · · · = a() =  (.)

and

aN+(N + ) = aN (N) = aN–(N – ) = · · · = a() = . (.)

For k =  in (.), we have

a(N + ) = a(N) + a(N)

= 
(
a(N – ) + a(N – )

)
+ a(N)

= a(N – ) + a(N – ) + a(N)

= · · ·
= N–a() + N–a() + · · · + a(N). (.)

Then by (.), (.) and (.), we get

a(N + ) = N–a() + N–a() + · · · + a(N)

= N–a() + N–a() + · · · + a(N)

= N– + N– + · · · + 

=
N–∑

i=

i . (.)

For k =  in (.), we have

a(N + ) = a(N) + a(N)

= 
(
a(N – ) + a(N – )

)
+ a(N)

= a(N – ) + a(N – ) + a(N)

= · · ·
= N–a() + N–a() + · · · + a(N)

= N–a() + N–a() + · · · + a(N)

=
N–∑

i=

i a(N – i). (.)
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Then by (.) and (.), we get

a(N + ) =
N–∑

i=

i a(N – i)

=
N–∑

i=

i
N––i∑

i=

i

=
N–∑

i=

N––i∑

i=

i i . (.)

For k =  in (.), we have

a(N + ) = a(N) + a(N)

= 
(
a(N – ) + a(N – )

)
+ a(N)

= a(N – ) + a(N – ) + a(N)

= · · ·
= N–a() + N–a() + · · · + a(N)

= N–a() + N–a() + · · · + a(N)

=
N–∑

i=

i a(N – i). (.)

By (.) and (.), we have

a(N + ) =
N–∑

i=

i a(N – i)

=
N–∑

i=

i
N––i∑

i=

N––i–i∑

i=

i i

=
N–∑

i=

N––i∑

i=

N––i–i∑

i=

i i i . (.)

Continuing this process, for  ≤ k ≤ N , we have

ak(N + ) =
N–k+∑

ik–=

N–k+–ik–∑

ik–=

· · ·
N–k+–ik––···–i∑

i=

kik– · · ·i . (.)

Therefore, we obtain the following differential equations.

Theorem . Let N ∈ N. Then the differential equations

(N – )!e–NF = (–)N–
N∑

k=

λN–k( + λt)kak(N)F (k)
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have a solution F = F(t) = log( + 
λ

log( + λt)), where

aN (N) = , a(N) = 

and

ak(N) =
N–k∑

ik–=

N–k–ik–∑

ik–=

· · ·
N–k–ik––···–i∑

i=

kik– · · ·i .

From (.), we easily get

F = log

(
 +


λ

log( + λt)
)

=
λ log( + 

λ
log( + λt))

log( + λt)
· log( + λt)

λ

=

( ∞∑

l=

Dl,λ
tl

l!

)(

λ

∞∑

l=

(–)l–λl

l
tl

)

=

( ∞∑

l=

Dl,λ
tl

l!

)( ∞∑

l=

(–λ)l–

l
tl

)

=
∞∑

l=

( l–∑

l=

Dl,λ

l!
· (–λ)l–l–

(l – l)

)
tl . (.)

From (.), we get

F (k) =
(

d
dt

)k
{ ∞∑

l=

( l–∑

l=

Dl,λ

l!
· (–λ)l–l–

(l – l)

)
tl

}

=
∞∑

l=k

( l–∑

l=

Dl,λ

l!
· (–λ)l–l–

(l – l)

)
(l)ktl–k

=
∞∑

l=

(l+k–∑

l=

Dl,λ

l!
· (–λ)l+k–l–

(l + k – l)

)
(l + k)ktl . (.)

From (.), we get

( + λt)kF (k) =

( ∞∑

l=

(
k
l

)
λltl

){ ∞∑

l=

(l+k–∑

l=

Dl,λ

l!
· (–λ)l+k–l–

(l + k – l)

)
(l + k)ktl

}

=

( ∞∑

l=

(k)lλ
l tl

l!

){ ∞∑

l=

(l+k–∑

l=

Dl,λ

l!
· (–λ)l+k–l–

(l + k – l)

)
(l + k)!

tl

l!

}

=
∞∑

n=

( n∑

l=

l+k–∑

l=

(l + k)!
(n

l

)
(k)n–l

l!(l + k – l)
Dl,λ

× (–)l+k–l–λn+k–l–

)
tn

n!
(.)
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and also

e–NF =
∞∑

m=

(–N)m

m!
Fm

=
∞∑

m=

(–N)m

m!

(
log

(
 +


λ

log( + λt)
))m

=
∞∑

m=

(–N)m
∞∑

m=m

S(m, m)


m!

(

λ

log( + λt)
)m

=
∞∑

m=

( m∑

m=

(–N)m S(m, m)λ–m

)


m!
(
log( + λt)

)m

=
∞∑

m=

( m∑

m=

(–N)m S(m, m)λ–m

)( ∞∑

n=m

S(n, m)
λntn

n!

)

=
∞∑

n=

( n∑

m=

m∑

m=

(–N)m S(m, m)S(n, m)λn–m

)
tn

n!
. (.)

Here S(n, k) is the Stirling number of the first kind.
Thus, by (.) and (.), we get

(N – )!e–NF

= (–)N–
N∑

k=

λN–kak(N)

×
∞∑

n=

( n∑

l=

l+k–∑

l=

(l + k)!
(n

l

)
(k)n–l

l!(l + k – l)
Dl,λ(–)l+k–l–λn+k–l–

)
tn

n!

=
∞∑

n=

(
(–)N–

N∑

k=

λN–kak(N)
n∑

l=

l+k–∑

l=

(l + k)!
(n

l

)
(k)n–l

l!(l + k – l)
(.)

× Dl,λ(–)l+k–l–λn+k–l–

)
tn

n!

=
∞∑

n=

( N∑

k=

n∑

l=

l+k–∑

l=

(–)N+l+k–lλN+n–l–ak(N)

× (l + k)!
(n

l

)
(k)n–l

l!(l + k – l)
Dl,λ

)
tn

n!
. (.)

By (.) and (.), we get

(N – )!
∞∑

n=

( n∑

m=

m∑

m=

(–N)m S(m, m)S(n, m)λn–m

)
tn

n!

=
∞∑

n=

( N∑

k=

n∑

l=

l+k–∑

l=

(–)N+l+k–lλN+n–l–ak(N)
(l + k)!

(n
l

)
(k)n–l

l!(l + k – l)
Dl,λ

)
tn

n!
. (.)
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By equation (.), we finally get the following theorem.

Theorem . For N = , , , . . . , and n = , , , . . . , we have

(N – )!
n∑

m=

m∑

m=

(–N)m S(m, m)S(n, m)λn–m

=
N∑

k=

n∑

l=

l+k–∑

l=

(–)N+l+k–lλN+n–l–ak(N)

× (l + k)!
(n

l

)
(k)n–l

l!(l + k – l)
Dl,λ.

3 Conclusion
Kim and Kim have studied some identities of degenerate Daehee numbers which are de-
rived from the generating function using nonlinear differential equation (see []). In this
paper, from the viewpoint of the inversion formula to [], we study the degenerate Daehee
number arising from nonlinear differential equation. Therefore we obtain the inversion
formula of degenerate Daehee numbers which are related to the some identities of those
numbers. In Theorem ., we get the solution of nonlinear differential equation arising
from the generating function of the degenerate Daehee number. In Theorem ., we have
an explicit expression of the degenerate Daehee number from the result of Theorem .
using the generating function and nonlinear differential equations.
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