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1 Introduction
In , the notion of an altering distance function was introduced and studied by Khan et
al. [], applying it to define weak contractions. They also proved the existence and unique-
ness of a fixed point for mappings satisfying such a contraction condition. Afterward, some
fixed point results for generalized weak contraction mappings were proved by Choudhury
et al. [] by using some control function along with the notion of an altering distance func-
tion. Moreover, the notion of weak contraction mappings was extended in many different
directions (see [, ] and references therein).

On the other hand, the notion of a w-distance on a metric space was introduced and
investigated by Kada et al. []. Using this concept, they also improved the following famous
results:

• Caristi’s fixed point theorem;
• Ekland’s variational principle;
• Takahashi’s existence theorem.

Afterward, Du [] proved the existence of a fixed point for some nonlinear mappings by
using a specific w-distance, called a w-distance. From this trend, several mathematicians
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extended fixed point results for weak contraction mappings and generalized weak con-
traction mappings with respect to w-distances on metric spaces (see [, ] and references
therein).

In this paper, we introduce the concept of a special w-distance, the so-called ceiling
distance, and use this concept for proving fixed point theorems for generalized contraction
mappings with respect to w-distances in complete metric spaces via the concept of an
altering distance function. As an application, the obtained results are used in the warrant
of the existence and uniqueness of the solution for nonlinear Fredholm integral equations
and Volterra integral equations together with nonlinear fractional differential equations
of Caputo type.

2 Preliminaries
In this section, we recall some important notation, definitions, and primary results to-
gether with references.

Definition . ([]) Let (X, d) be a metric space. A function q : X × X → [,∞) is called
a w-distance on X if it satisfies the following three conditions for all x, y, z ∈ X:

(W) q(x, y) ≤ q(x, z) + q(z, y);
(W) q(x, ·) : X → [,∞) is lower semicontinuous;
(W) for each ε > , there exists δ >  such that q(x, y) ≤ δ and q(x, z) ≤ δ imply

d(y, z) ≤ ε.

It is well known that each metric on a nonempty set X is a w-distance on X. Here, we
give some other examples of w-distances.

Example . Let (X, d) be a metric space. A function q : X × X → [,∞) defined by
q(x, y) = c for every x, y ∈ X, where c is a positive real number, is a w-distance on X. How-
ever, q is not a metric since q(x, x) = c �=  for any x ∈ X.

Example . Let (X,‖ · ‖) be a normed space. Then the function q : X × X → [,∞)
defined by

q(x, y) = ‖y‖

for all x, y ∈ X is a w-distance.

Definition . ([]) Let (X, d) be a metric space. A function q : X × X → [,∞) is called
a w-distance if it is a w-distance on X with q(x, x) =  for all x ∈ X.

Note that each metric is a w-distance. Next, we give another example of a w-distance
that is not a metric.

Example . ([]) Let X = R with the metric d : X × X →R defined by d(x, y) = |x – y| for
all x, y ∈ X, and let a, b > . Define the function q : X × X → [,∞) by

q(x, y) = max
{

a(y – x), b(x – y)
}
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for all x, y ∈ X. Then q is nonsymmetric, and hence q is not a metric. It is easy to see that
q is a w-distance.

The following lemma will be used in the next section.

Lemma . ([]) Let (X, d) be a metric space, q be a w-distance on X, {xn} and {yn} be two
sequences in X, and x, y, z ∈ X.

(i) If limn→∞ q(xn, x) = limn→∞ q(xn, y) = , then x = y. In particular, if
q(z, x) = q(z, y) = , then x = y.

(ii) If q(xn, yn) ≤ αn and q(xn, y) ≤ βn for any n ∈N, where {αn} and {βn} are sequences
in [,∞) converging to , then {yn} converges to y.

(iii) If for each ε > , there exists Nε ∈N such that m > n > Nε implies q(xn, xm) < ε, then
{xn} is a Cauchy sequence.

Next, we give the definition of an altering distance function.

Definition . ([]) A function ψ : [,∞) → [,∞) is said to be an altering distance func-
tion if it satisfies the following conditions:

(a) ψ is continuous and nondecreasing;
(b) ψ(t) =  if and only if t = .

Example . Define ψ,ψ,ψ,ψ : [,∞) → [,∞) by ψ(t) = t, ψ(t) =
√

t + t,
ψ(t) = (t + t)et , and ψ(t) = ln(t + ) for all t ≥ . We see that ψ,ψ,ψ, and ψ are
altering distance functions because ψ,ψ,ψ, and ψ are continuous and nondecreasing.
Moreover, ψi(t) =  if and only if t =  for all i = , , , . (The graphs of the functions
ψ,ψ,ψ, and ψ are shown in Figure .)

3 Main results
In this section, we introduce the new concepts of a distance on a metric space and a gen-
eralized weak contraction mapping along with w-distance in metric spaces. Furthermore,
we investigate the sufficient condition for the existence and uniqueness of a fixed point for
a self-mapping on a metric space satisfying the generalized weak contractive condition.

First, we introduce the new definition of a ceiling distance on a metric space.

Definition . A w-distance q on a metric space (X, d) is said to be a ceiling distance of d
if and only if

q(x, y) ≥ d(x, y) (.)

for all x, y ∈ X.

Now we give some examples of a ceiling distance.

Example . Each metric on a nonempty set X is a ceiling distance of itself.

Example . Let X = R with the metric d : X × X → R defined by d(x, y) = |x – y| for all
x, y ∈ X, and let a, b ≥ . Define the w-distance q : X × X → [,∞) by

q(x, y) = max
{

a(y – x), b(x – y)
}
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Figure 1 Graphs of ψ1,ψ2,ψ3,ψ4 in Example 2.8.

for all x, y ∈ X. For all x, y ∈ X, we get

d(x, y) = |x – y|

=

{
x – y, x ≥ y,
y – x, x ≤ y,

≤ max
{

a(y – x), b(x – y)
}

= q(x, y).

Thus q is a ceiling distance of d.

Example . Let a, b ∈ R with a < b, and X = C[a, b] (the set of all continuous functions
from [a, b] into R) with the metric d : X × X →R defined by d(x, y) = supt∈[a,b] |x(t) – y(t)|
for all x, y ∈ X. Define the w-distance q : X × X → [,∞) by

q(x, y) = sup
t∈[a,b]

∣∣x(t)
∣∣ + sup

t∈[a,b]

∣∣y(t)
∣∣

for all x, y ∈ X. For all x, y ∈ X and t ∈ [a, b], we have

∣∣x(t) – y(t)
∣∣ ≤ ∣∣x(t)

∣∣ +
∣∣y(t)

∣∣

≤ sup
t∈[a,b]

∣∣x(t)
∣∣ + sup

t∈[a,b]

∣∣y(t)
∣∣,
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which yields

d(x, y) = sup
t∈[a,b]

∣∣x(t) – y(t)
∣∣ ≤ sup

t∈[a,b]

∣∣x(t)
∣∣ + sup

t∈[a,b]

∣∣y(t)
∣∣ = q(x, y)

for all x, y ∈ X. So q is a ceiling distance of d.

Next, we introduce the new type of generalized weak contraction mappings, the so-
called w-generalized weak contraction mappings.

Definition . Let q be a w-distance on a metric space (X, d). A mapping T : X → X is
said to be a w-generalized weak contraction mapping if

ψ
(
q(Tx, Ty)

) ≤ ψ
(
m(x, y)

)
– φ

(
q(x, y)

)
(.)

for all x, y ∈ X, where

m(x, y) := max

{
q(x, y),



[
q(x, Ty) + q(Tx, y)

]}
,

ψ : [,∞) → [,∞) is an altering distance function, and φ : [,∞) → [,∞) is a continu-
ous function with φ(t) =  if and only if t = . If q = d, then the mapping T is said to be a
generalized weak contraction mapping.

Our main result is the following:

Theorem . Let (X, d) be a complete metric space, and q : X × X → [,∞) be a w-
distance on X and a ceiling distance of d. Suppose that T : X → X is a continuous w-
generalized weak contraction mapping. Then T has a unique fixed point in X. Moreover,
for each x ∈ X, the Picard iteration {xn} defined by xn = Tnx for all n ∈ N converges to a
unique fixed point of T .

Proof Suppose that ψ ,φ : [,∞) → [,∞) are two functions in the contractive condition
(.). Starting from a fixed arbitrary point x ∈ X, we put xn+ = Txn for all n ∈ N ∪ {}. If
xn∗ = xn∗+ for some n∗ ∈ N∪ {}, then xn∗ is a fixed point of T . Thus we will assume that
xn �= xn+ for all n ∈ N ∪ {}, that is, d(xn, xn+) >  for all n ∈ N ∪ {}. Since q is a ceiling
distance of d, we obtain q(xn, xn+) >  for all n ∈ N ∪ {}. From the contractive condition
(.), for all n ∈N∪ {}, we have

ψ
(
q(xn+, xn+)

)

= ψ
(
q(Txn, Txn+)

)

≤ ψ
(
m(xn, xn+)

)
– φ

(
q(xn, xn+)

)

= ψ

({
q(xn, xn+),



[
q(xn, Txn+) + q(Txn, xn+)

]})
– φ

(
q(xn, xn+)

)

≤ ψ

({
q(xn, xn+),



[
q(xn, xn+) + q(xn+, xn+)

]})
– φ

(
q(xn, xn+)

)
. (.)



Wongyat and Sintunavarat Advances in Difference Equations  (2017) 2017:211 Page 6 of 15

Suppose that

q(xn, xn+) ≤ q(xn+, xn+)

for some n ∈N∪ {}. From (.) we have

ψ
(
q(xn+, xn+)

) ≤ ψ
(
q(xn+, xn+)

)
– φ

(
q(xn, xn+)

)
,

which yields that φ(q(xn, xn+)) = , and so q(xn, xn+) = , a contradiction. Therefore,

q(xn+, xn+) < q(xn, xn+)

for all n ∈ N ∪ {}, and hence {q(xn, xn+)} is decreasing and bounded below. Therefore,
there exists r ≥  such that

lim
n→∞ q(xn, xn+) = r. (.)

Now, from (.) we have that, for all n ∈N∪ {},

ψ
(
q(xn+, xn+)

) ≤ ψ
(
q(xn, xn+)

)
– φ

(
q(xn, xn+)

)
.

Taking the limit as n → ∞ in this inequality and using the continuity of φ and ψ , we have

ψ(r) ≤ ψ(r) – φ(r),

which is a contradiction unless r = . Hence

lim
n→∞ q(xn, xn+) = . (.)

Similarly, we can prove that

lim
n→∞ q(xn+, xn) = . (.)

Next, we show that {xn} is a Cauchy sequence. Suppose by contradiction with Lemma .
(iii) that there exist ε >  and subsequences {xmk } and {xnk } of {xn} with nk > mk ≥ k such
that

q(xmk , xnk ) ≥ ε for all k ∈N. (.)

Choosing nk to be the smallest integer exceeding mk for which (.) holds, we obtain that

q(xmk , xnk –) < ε. (.)

From (.), (.), and (W) we obtain

ε ≤ q(xmk , xnk ) ≤ q(xmk , xnk –) + q(xnk –, xnk ) < ε + q(xnk –, xnk ).



Wongyat and Sintunavarat Advances in Difference Equations  (2017) 2017:211 Page 7 of 15

Taking the limit as k → ∞ in this inequality and using (.), we have

lim
n→∞ q(xmk , xnk ) = ε. (.)

By using (W) we have

q(xmk , xnk ) ≤ q(xmk , xmk +) + q(xmk +, xnk +) + q(xnk +, xnk )

and

q(xmk +, xnk +) ≤ q(xmk +, xmk ) + q(xmk , xnk ) + q(xnk , xnk +).

Taking the limit as k → ∞ in the last two inequalities and using (.), (.), and (.), we
have

lim
n→∞ q(xmk +, xnk +) = ε. (.)

Again, by using (W) we obtain

q(xmk , xnk ) ≤ q(xmk , xnk +) + q(xnk +, xnk )

≤ q(xmk , xnk ) + q(xnk , xnk +) + q(xnk +, xnk )

and

q(xmk , xnk ) ≤ q(xmk , xmk +) + q(xmk +, xnk )

≤ q(xmk , xmk +) + q(xmk +, xmk ) + q(xmk , xnk ).

Taking the limit as k → ∞ in the last two inequalities and using (.), (.), and (.), we
have

lim
n→∞ q(xmk , xnk +) = ε, lim

n→∞ q(xmk +, xnk ) = ε. (.)

Substituting of x = xmk and y = xnk into (.), we have

ψ
(
q(xmk +, xnk +)

)

≤ ψ

(
max

{
q(xmk , xnk ),



[
q(xmk , xnk +) + q(xmk +, xnk )

]})
– φ

(
q(xmk , xnk )

)
.

Letting k → ∞ and using (.), (.), (.), and the continuity of φ and ψ , we have

ψ(ε) ≤ ψ(ε) – φ(ε),

which is a contradiction with the property of φ. Hence by Lemma .(iii) we can conclude
that {xn} is a Cauchy sequence. Since (X, d) is a complete metric space, there exists p ∈ X
such that xn → p as n → ∞. From the continuity of T we get xn+ = Txn → Tp as n → ∞,
that is, p = Tp. Thus, T has a fixed point.
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Finally, we will show that the fixed point is unique. Suppose that p and p∗ are two distinct
fixed points of T . Putting x = p and y = p∗ in (.), we obtain

ψ
(
q
(
Tp, Tp∗)) ≤ ψ

(
max

{
q
(
p, p∗),



[
q
(
p, Tp∗) + q

(
Tp, p∗)]

})
– φ

(
q
(
p, p∗)),

that is, ψ(q(p, p∗)) ≤ ψ(q(p, p∗))–φ(q(p, p∗)), which is a contradiction by the property of φ.
Therefore, p = p∗, and hence the fixed point is unique. This completes the proof. �

In the next theorem, we replace the continuity hypothesis of T in Theorem . by an-
other condition.

Theorem . Let (X, d) be a complete metric space, and q : X × X → [,∞) be a continu-
ous w-distance on X and a ceiling distance of d. Suppose that T : X → X is a w-generalized
weak contraction mapping. Then T has a unique fixed point in X. Moreover, for each x ∈ X,
the Picard iteration {xn} defined by xn = Tnx for all n ∈ N converges to a unique fixed point
of T .

Proof Suppose that ψ ,φ : [,∞) → [,∞) are two functions in the contractive condition
(.). Let x be an arbitrary point in X, and {xn} be a Picard sequence in X defined by
xn+ = Txn for all n ∈ N ∪ {}. If xn∗ = xn∗+ for some n∗ ∈ N ∪ {}, then xn∗ is a fixed
point of T . So we will assume that xn �= xn+ for all n ∈ N ∪ {}. Following the proof of
Theorem ., we know that {xn} is a Cauchy sequence in X. The completeness of (X, d)
ensures that there exists p ∈ X such that xn → p as n → ∞. Assume that p �= Tp. Putting
x = xn and y = p in (.), we have

ψ
(
q(xn+, Tp)

)
= ψ

(
q(Txn, Tp)

)

≤ ψ

(
max

{
q(xn, p),



[
q(xn, Tp) + q(xn+, p)

]})
– φ

(
q(xn, p)

)

for all n ∈ N∪ {}. Taking the limit as n → ∞ and using the continuity of φ, ψ , and q, we
have

ψ
(
q(p, Tp)

) ≤ ψ

(



q(p, Tp)
)

,

which is a contradiction. Thus p = Tp, that is, p is a fixed point of T . Following the proof
of Theorem ., we know that p is a unique fixed point of T . This completes the proof. �

Taking q = d in Theorem ., we obtain the following result.

Corollary . Let (X, d) be a complete metric space. Suppose that T : X → X is a general-
ized weak contraction mapping. Then T has a unique fixed point in X. Moreover, for each
x ∈ X, the Picard iteration {xn} defined by xn = Tnx for all n ∈ N, converges to a unique
fixed point of T .

We can extend the condition of w-distances in Theorems . and . to w-distances if
we replace the contractive condition (.) by some stronger condition. Here we give the
results.
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Theorem . Let (X, d) be a complete metric space, and q : X × X → [,∞) be a w-
distance on X and a ceiling distance of d. Suppose that T : X → X is a continuous mapping
such that, for all x, y ∈ X,

ψ
(
q(Tx, Ty)

) ≤ ψ
(
q(x, y)

)
– φ

(
q(x, y)

)
, (.)

where ψ : [,∞) → [,∞) is an altering distance function, and φ : [,∞) → [,∞) is a
continuous function with φ(t) =  if and only if t = . Then T has a unique fixed point in
X. Moreover, for each x ∈ X, the Picard iteration {xn} defined by xn = Tnx for all n ∈ N

converges to a unique fixed point of T .

Theorem . Let (X, d) be a complete metric space,and q : X × X → [,∞) be a contin-
uous w-distance on X and a ceiling distance of d. Suppose that T : X → X is a mapping
such that, for all x, y ∈ X,

ψ
(
q(Tx, Ty)

) ≤ ψ
(
q(x, y)

)
– φ

(
q(x, y)

)
, (.)

where ψ : [,∞) → [,∞) is an altering distance function, and φ : [,∞) → [,∞) is a
continuous function with φ(t) =  if and only if t = . Then T has a unique fixed point in
X. Moreover, for each x ∈ X, the Picard iteration {xn} defined by xn = Tnx for all n ∈ N

converges to a unique fixed point of T .

4 Existence of a solution for nonlinear integral equations and fractional
differential equations

The aim of this section is to present an application of our theoretical results in the previous
section for guaranteeing the existence and uniqueness of a solution for various problems
regarded by the following equations:

• nonlinear Fredholm integral equations;
• nonlinear Volterra integral equations;
• fractional differential equations of Caputo type.

4.1 Nonlinear integral equations
In this subsection, we prove the existence and uniqueness of a solution for nonlinear
Fredholm integral equations and nonlinear Volterra integral equations by using Theo-
rem ..

Theorem . Consider the nonlinear Fredholm integral equation

x(t) = ϕ(t) +
∫ b

a
K

(
t, s, x(s)

)
ds, (.)

where a, b ∈ R with a < b, and ϕ : [a, b] →R and K : [a, b] ×R →R are given continuous
mappings. Suppose that the following conditions hold:

(i) the mapping T : C[a, b] → C[a, b] defined by

(Tx)(t) = ϕ(t) +
∫ b

a
K

(
t, s, x(s)

)
ds for all x ∈ C[a, b] and t ∈ [a, b]

is a continuous mapping;
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(ii) there are two functions ψ ,φ : [,∞) → [,∞) with ψ is an altering distance function
and φ is a continuous function such that ψ(t) < t for all t >  and φ(t) =  if and only
if t = , and for all x, y ∈ C[a, b], we have

∣∣K
(
t, s, x(s)

)∣∣ +
∣∣K

(
t, s, y(s)

)∣∣

≤ [ψ(|x(s)| + |y(s)|)] – [φ(supl∈[a,b] |x(l)| + supl∈[a,b] |y(l)|)] – |ϕ(t)|
b – a

for all t, s ∈ [a, b].
Then the nonlinear integral equation (.) has a unique solution. Moreover, for each x ∈
C[a, b], the Picard iteration {xn} defined by

(xn)(t) = ϕ(t) +
∫ b

a
K

(
t, s, xn–(s)

)
ds

for all n ∈N converges to a unique solution of the nonlinear integral equation (.).

Proof Let X = C[a, b]. Clearly, X with the metric d : X × X → [,∞) given by

d(x, y) = sup
t∈[a,b]

∣∣x(t) – y(t)
∣∣

for all x, y ∈ X is a complete metric space. Next, we define the function q : X × X → [,∞)
by

q(x, y) = sup
t∈[a,b]

∣∣x(t)
∣∣ + sup

t∈[a,b]

∣∣y(t)
∣∣

for all x, y ∈ X. Clearly, q is a w-distance on X and a ceiling distance of d. Here, we will
show that T satisfies the contractive condition (.). Assume that x, y ∈ X and t ∈ [a, b].
Then we get

∣∣(Tx)(t)
∣∣ +

∣∣(Ty)(t)
∣∣

=
∣∣∣∣ϕ(t) +

∫ b

a
K

(
t, s, x(s)

)
ds

∣
∣∣∣ +

∣
∣∣∣ϕ(t) +

∫ b

a
K

(
t, s, y(s)

)
ds

∣
∣∣∣

≤ ∣∣ϕ(t)
∣∣ +

∣∣∣∣

∫ b

a
K

(
t, s, x(s)

)
ds

∣∣∣∣

+
∣∣ϕ(t)

∣∣ +
∣∣∣∣

∫ b

a
K

(
t, s, y(s)

)
ds

∣∣∣∣

≤ 
∣∣ϕ(t)

∣∣ +
∫ b

a

∣∣K
(
t, s, x(s)

)∣∣ds +
∫ b

a

∣∣K
(
t, s, y(s)

)∣∣ds

= 
∣∣ϕ(t)

∣∣ +
∫ b

a

(∣∣K
(
t, s, x(s)

)∣∣ +
∣∣K

(
t, s, y(s)

)∣∣)ds

≤ 
∣∣ϕ(t)

∣∣ +
∫ b

a

(
[ψ(|x(s)| + |y(s)|)] – φ(q(x, y)) – |ϕ(t)|

b – a

)
ds

≤ 
∣∣ϕ(t)

∣∣ +


b – a

∫ b

a

(
ψ

(
q(x, y)

)
– φ

(
q(x, y)

)
– 

∣∣ϕ(t)
∣∣)ds

= ψ
(
q(x, y)

)
– φ

(
q(x, y)

)
.
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This implies that

sup
t∈[a,b]

∣∣(Tx)(t)
∣∣ + sup

t∈[a,b]

∣∣(Ty)(t)
∣∣ ≤ ψ

(
q(x, y)

)
– φ

(
q(x, y)

)
,

and so

q(Tx, Ty) ≤ ψ
(
q(x, y)

)
– φ

(
q(x, y)

)

for all x, y ∈ X. Hence we have

ψ
(
q(Tx, Ty)

) ≤ q(Tx, Ty) ≤ ψ
(
q(x, y)

)
– φ

(
q(x, y)

)

for all x, y ∈ X. It follows that T satisfies condition (.). Therefore, all conditions of The-
orem . are satisfied, and thus T has a unique fixed point. This implies that there exists
a unique solution of the nonlinear Fredholm integral equation (.). This completes the
proof. �

By using the identical method in the proof of Theorem ., we get the following result.

Theorem . Consider the nonlinear Volterra integral equation

x(t) = ϕ(t) +
∫ t

a
K

(
t, s, x(s)

)
ds, (.)

where a, b ∈ R with a < b, and ϕ : [a, b] →R and K : [a, b] ×R →R are given continuous
mappings. Suppose that the following conditions hold:

(i) the mapping T : C[a, b] → C[a, b] defined by

(Tx)(t) = ϕ(t) +
∫ t

a
K

(
t, s, x(s)

)
ds for all x ∈ C[a, b] and t ∈ [a, b]

is a continuous mapping;
(ii) there are two functions ψ ,φ : [,∞) → [,∞) with ψ is an altering distance

function and φ is a continuous function such that ψ(t) < t for all t > , φ(t) =  if
and only if t = , and for each x, y ∈ C[a, b], we have

∣∣K
(
t, s, x(s)

)∣∣ +
∣∣K

(
t, s, y(s)

)∣∣

≤ [ψ(|x(s)| + |y(s)|)] – [φ(supl∈[a,b] |x(l)| + supl∈[a,b] |y(l)|)] – |ϕ(t)|
b – a

for all t, s ∈ [a, b].
Then the nonlinear integral equation (.) has a unique solution. Moreover, for each x ∈
C[a, b], the Picard iteration {xn} defined by

(xn)(t) = ϕ(t) +
∫ t

a
K

(
t, s, xn–(s)

)
ds

for all n ∈N converges to a unique solution of the nonlinear integral equation (.).
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4.2 Nonlinear fractional differential equations
The theory of nonlinear fractional differential equations nowadays is a large subject of
mathematics, which found numerous applications of many branches such as physics, en-
gineering, and other fields connected with real-world problems. Based on this fact, many
authors studied various results on this theory (see [–]).

First, let us recall some basic definitions of fractional calculus (see [, ]). For a con-
tinuous function g : [,∞) → R, the Caputo derivative of g of order β >  is defined
as

CDβ
(
g(t)

)
:=


	(n – β)

∫ t


(t – s)n–β–g(n)(s) ds,

where n := [β] +  with [β] denoting the integer part of a positive real number β , and 	 is
the gamma function.

The aim of this subsection is to present an application of Theorem . for proving the
existence and uniqueness of a solution for the following nonlinear fractional differential
equation of Caputo type:

CDβ
(
x(t)

)
= f

(
t, x(t)

)
(.)

with integral boundary conditions

x() = , x() =
∫ η


x(s) ds,

where  < β ≤ ,  < η < , x ∈ C[, ], and f : [, ] ×R → R is a continuous function (see
[]). It is well known that if f is continuous, then (.) is immediately inverted as the very
familiar integral equation

x(t) =


	(β)

∫ t


(t – s)β–f

(
s, x(s)

)
ds

–
t

( – η)	(β)

∫ 


( – s)β–f

(
s, x(s)

)
ds

+
t

( – η)	(β)

∫ η



(∫ s


(s – m)β–f

(
m, x(m)

)
dm

)
ds. (.)

Now, we prove the following existence theorem.

Theorem . Consider the nonlinear fractional differential equation (.). Suppose that
there are two functions ψ ,φ : [,∞) → [,∞) with ψ is an altering distance function and
φ is a continuous function such that ψ(t) < t for all t >  and φ(t) =  if and only if t = ,
and for each x, y ∈ C[, ], we have

∣
∣f

(
s, x(s)

)∣∣ +
∣∣f

(
s, y(s)

)∣∣

≤ 	(β + )


[
ψ

(∣∣x(s)
∣∣ +

∣∣y(s)
∣∣)] –

[
φ
(

sup
t∈[,]

∣∣x(t)
∣∣ + sup

t∈[,]

∣∣y(t)
∣∣
)]
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for all s ∈ [, ]. If the mapping T : C[, ] → C[, ] defined by

(Tx)(t) =


	(β)

∫ t


(t – s)β–f

(
s, x(s)

)
ds

–
t

( – η)	(β)

∫ 


( – s)β–f

(
s, x(s)

)
ds

+
t

( – η)	(β)

∫ η



(∫ s


(s – m)β–f

(
m, x(m)

)
dm

)
ds

for all x ∈ C[a, b] and t ∈ [a, b], is a continuous mapping, then the nonlinear fractional
differential equation of Caputo type (.) has a unique solution. Moreover, for each x ∈
C[, ], the Picard iteration {xn} defined by

(xn)(t) =


	(β)

∫ t


(t – s)β–f

(
s, xn–(s)

)
ds

–
t

( – η)	(β)

∫ 


( – s)β–f

(
s, xn–(s)

)
ds

+
t

( – η)	(β)

∫ η



(∫ s


(s – m)β–f

(
m, xn–(m)

)
dm

)
ds

for all n ∈N converges to a unique solution of the nonlinear fractional differential equation
of Caputo type (.).

Proof Let X = C[, ]. Clearly, X with the metric d : X × X → [,∞) given by

d(x, y) = sup
t∈[,]

∣∣x(t) – y(t)
∣∣

for all x, y ∈ X is a complete metric space. Next, we define the function q : X × X → [,∞)
by

q(x, y) = sup
t∈[,]

∣∣x(t)
∣∣ + sup

t∈[,]

∣∣y(t)
∣∣

for all x, y ∈ X. Clearly, q is a w-distance on X and a ceiling distance of d. We will show
that T satisfies the contractive condition (.). Assume that x, y ∈ X and t ∈ [, ]. Then
we get

∣∣(Tx)(t)
∣∣ +

∣∣(Ty)(t)
∣∣

=
∣∣∣∣


	(β)

∫ t


(t – s)β–f

(
s, x(s)

)
ds –

t
( – η)	(β)

∫ 


( – s)β–f

(
s, x(s)

)
ds

+
t

( – η)	(β)

∫ η



(∫ s


(s – m)β–f

(
m, x(m)

)
dm

)
ds

∣∣
∣∣

+
∣∣∣∣


	(β)

∫ t


(t – s)β–f

(
s, y(s)

)
ds –

t
( – η)	(β)

∫ 


( – s)β–f

(
s, y(s)

)
ds

+
t

( – η)	(β)

∫ η



(∫ s


(s – m)β–f

(
m, y(m)

)
dm

)
ds

∣∣∣∣
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≤ 
	(β)

∫ t


|t – s|β–(∣∣f

(
s, x(s)

)∣∣ +
∣∣f

(
s, y(s)

)∣∣)ds

–
t

( – η)	(β)

∫ 


( – s)β–(∣∣f

(
s, x(s)

)∣∣ +
∣∣f

(
s, y(s)

)∣∣)ds

+
t

( – η)	(β)

∫ η



∣∣∣∣

∫ s


(s – m)β–(f

(
m, x(m)

)
+ f

(
m, y(m)

))
dm

∣∣∣∣ds

≤ 
	(β)

∫ t


|t – s|β– 	(β + )


([

ψ
(∣∣x(s)

∣∣ +
∣∣y(s)

∣∣)] – φ
(
q(x, y)

))
ds

–
t

( – η)	(β)

∫ 


( – s)β– 	(β + )


([

ψ
(∣∣x(s)

∣∣ +
∣∣y(s)

∣∣)] – φ
(
q(x, y)

))
ds

+
t

( – η)	(β)

×
∫ η



∣∣∣∣

∫ s


(s – m)β– 	(β + )


([

ψ
(∣∣x(s)

∣∣ + |y(s)
∣∣)] – φ

(
q(x, y)

))
dm

∣∣∣∣ds

≤ 	(β + )


([
ψ

(
q(x, y)

)]
– φ

(
q(x, y)

))

× sup
t∈(,)

(


	(β)

∫ 


|t – s|β– ds

+
t

( – η)	(β)

∫ 


( – s)β– ds +

t
( – η)	(β)

∫ η



∫ s


|s – m|β– dm ds

)

≤ ψ
(
q(x, y)

)
– φ

(
q(x, y)

)
.

This implies that

sup
t∈[a,b]

∣∣(Tx)(t)
∣∣ + sup

t∈[a,b]

∣∣(Ty)(t)
∣∣ ≤ ψ

(
q(x, y)

)
– φ

(
q(x, y)

)
,

and so

q(Tx, Ty) ≤ ψ
(
q(x, y)

)
– φ

(
q(x, y)

)

for all x, y ∈ X. Hence we have

ψ
(
q(Tx, Ty)

) ≤ q(Tx, Ty) ≤ ψ
(
q(x, y)

)
– φ

(
q(x, y)

)

for all x, y ∈ X. It follows that T satisfies condition (.). Therefore, all conditions of The-
orem . are satisfied, and thus T has a unique fixed point. This implies that there exists a
unique solution of the nonlinear fractional differential equation of Caputo type (.). This
completes the proof. �
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