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Abstract
We consider a perturbed linear stochastic difference equation

X(n + 1) = a(n)X(n) + g(n) + σ (n)ξ (n + 1), n = 0, 1, . . . , X0 ∈R, ()

with real coefficients a(n), g(n), σ (n), and independent identically distributed random
variables ξ (n) having zero mean and unit variance. The sequence (a(n))n∈N is
K-periodic, where K is some positive integer, limn→∞ g(n) = ĝ <∞ and
limn→∞ σ (n)ξ (n + 1) = 0, almost surely. We establish conditions providing almost sure
asymptotic periodicity of the solution X(n) for |L| = 1 and |L| < 1, where L :=

∏K–1
i=0 a(i).

A sharp result on the asymptotic periodicity of X(n) is also proved. The results are
illustrated by computer simulations.
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1 Introduction
There is a vast literature about the periodic solutions of difference equations and we men-
tion here only few works. Reference [] which can be considered as a text book for dif-
ference equations, discusses periodicity. Reference [] gives an overview of the results on
the existence of periodic solutions of difference equations that have been obtained in the
last two decades. It covers both ordinary and Volterra difference systems. Reference [] is
devoted to the periodicity for nonlinear difference equations. In [, ] the authors study
linear difference equations perturbed by Volterra terms. Reference [] discusses asymp-
totic stability of perturbed continuous time-difference equation with a small parameter.
All these works consider only deterministic difference equations.

Stochastic difference equations have been studied intensively during the last  years.
For results on asymptotic behaviour of the solutions to stochastic difference equations and
stabilisation see e.g. [–]. References [] and [] deal with the nonlinear stochastic dif-
ference equation perturbed by a vanishing noise. The main equation in the present note
has a similar structure, but it is linear, contains periodic coefficients and in addition to
stochastic perturbations it also has deterministic perturbations. In other words we con-
sider a linear difference equation perturbed by the deterministic term g and the stochastic
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term σξ :

X(m + ) = a(m)X(m) + g(m) + σ (m)ξ (m + ), m ∈ N, X() = X ∈ R. ()

Here N = N ∪ {}, (a(m))m∈N, (β(m))m∈N and (σ (m))m∈N are nonrandom sequences of
real numbers, sequence (a(m))m∈N is periodic with a period K ∈ N, limm→∞ g(m) = ĝ ∈R,
and (ξ (m))m∈N is a sequence of independent and identically distributed random variables
with zero mean, variance  and a distribution function F . The term σ (m)ξ (m + ) is the
random perturbation added on step n + .

There are several publications about the periodic, asymptotically periodic, and almost
periodic solutions of the stochastic differential equations; see e.g. [–]. However, to the
best of our knowledge, the periodicity for stochastic difference equations of type () was
discussed only in [], where sufficient conditions of periodicity was derived for g ≡ .
This note can be viewed as an extension and generalisation of [].

Let

J(m) :=
m–∏

i=

a(i), m ∈ N, L := J(K). ()

The unperturbed counterpart of (), i.e. the equation

Z(m + ) = a(m)Z(m), m ∈ N, X() = X ∈R, ()

has a periodic solution only when |L| = . This case along with all other possible cases of
the asymptotic behaviour of the solution Z(m) is discussed in Lemma , Section .

We assume that

lim
m→∞σ (m)ξ (m + ) = , almost surely. ()

A detailed analysis of condition () can be found in [] (see also [, ]). In particular, it
was shown there that when ξ (m) are independent N (, )-random variables, the following
rate of decay of σ :

σ (m)
√

log m → , as m → ∞,

is the critical one which guarantees (). It was also shown in [] that when tails of ξ decay
polynomially, i.e. [ – F(y)]yM → constant, as y → ∞, for some M ≥ , then () holds if
and only if

∑∞
i=[σ (i)]M < ∞.

In several statements of the paper we impose more restrictions on the decay of σ ,
assuming that σ ∈ l, that is,

∑∞
i= σ (i) < ∞. This assumption implies that the series

∑∞
i= σ (i)ξ (i + ) converges almost surely (see, e.g., [], page , or Lemma  below).

This, in turn, implies condition ().
We cannot expect the solution X(m) of () to be periodic when perturbations g(m) and

σ (m)ξ (m + ) are not periodic. So we are looking for the asymptotic periodicity, when X(n)
approaches a periodic stochastic process almost surely. The main result of the paper about
the asymptotic periodicity of X(n) is given in Theorem , Section .. For L = , σ ∈ l and
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some additional assumptions on g , it states that there exists an almost surely finite random
function R(s), defined on S := {, , . . . , K – }, such that, almost surely,

lim
n→∞

∣
∣X(nK + s) – R(s)

∣
∣ = , for each s ∈ S . ()

Equation () also holds when |L| <  and condition () is fulfilled. In case L = –, σ ∈ l,
∑∞

i= |g(i) – ĝ| < ∞, instead of limit () we get, almost surely,

lim
n→∞

∣
∣X(nK + e) – R(e)

∣
∣ = , for each e ∈ E := {, , . . . , K – }. ()

In Proposition , Section ., we present a sharp result, which proves that, under some
additional assumptions on g , condition σ ∈ l is necessary and sufficient for the asymptotic
periodicity of X(n) in form (), when L = , and in form (), when L = –.

The proofs of Theorem  and Proposition  are based on Lemma , Section ., which
establishes the asymptotic behaviour of the auxiliary process Y s, defined by

Y s(n) = X(nK + s), s ∈ S , n ∈ N.

In Section . we show that Y s satisfies the equation

Y s(n + ) = LY s(n) + Gs(n) + Hs(n + ), Y s() = X(s), ()

where Gs(n) and Hs(n+) behave similar to g(n) and σ (n)ξ (n+) from equation (). In par-
ticular, for each s ∈ S , Gs(n) is nonrandom and converges to a finite limit and (Hs(n))n∈N

is a sequence of independent random perturbations having mean zero and uniformly
bounded second moments. Properties of Gs and Hs are discussed in Sections . and ..

By solving the linear equation () we get the following representation of Y s:

Y s(n) = LnY s() + V s(n) + Hs(n + ), n ∈ N, ()

which allows us to get a conclusion about the asymptotic behaviour of Y s(n) based on
the limits of each term in the right-hand side of (). The convergence of the sequences
(Y s(n))n∈N for each s ∈ S , implies convergence of X(n). So we reduce the K-periodic case
with any K ∈ N to K = .

Deterministic sequences (V s(n))n∈N are analysed in Lemma , Section .. Stochastic
sequences (Hs(n))n∈N are analysed in Lemma , Section .. The proof of Lemma  is based
on the results about the limits of martingales, which are given in Section .. In Section 
we give necessary definitions and formulate our main assumptions. Two auxiliary lemmata
are referred to the Appendix, Section ..

2 Main notations and assumptions
In this section we give a number of necessary definitions and lemmata which we use in
the proofs of our results. A detailed exposition of the definitions and facts of the theory of
random processes can be found in, for example, [].

Let (�,F ,P) be a given probability space.
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Assumption  Let (ξ (n))n∈N be a sequence of independent and identically distributed
random variables with zero mean and variance , Eξ = , Eξ  = , and with a distribution
function F .

The sequence of random variables (ξ (n))n∈N satisfying Assumption  generates a filtra-
tion {Fn}n∈N, where

Fn = σ
{
ξ (i) : i = , , . . . , n

}
, n ∈ N. ()

We use the standard abbreviation ‘a.s.’ for the wordings ‘almost sure’ or ‘almost surely’
throughout the text.

A stochastic process (M(n))n∈N is said to be an Fn-martingale if M(n) is Fn-measurable,
E|M(n)| < ∞ and E[M(n)|Fn–] = M(n – ) for all n ∈ N a.s.

A martingale (M(n))n∈N is called square integrable, if EM(n) < ∞ for all n ∈ N.
Let (ρ(n))n∈N be a sequence of independent random variables with Eρ(n) =  and

E[ρ(n)] < ∞, for all n ∈ N. Then the stochastic process (M(n))n∈N, where M() =  and
M(n) =

∑n–
i= ρ(i), is a square integrable martingale with the quadratic variation 〈M(n)〉

defined by

〈
M(n)

〉
= E

[
M(n)

] =
n–∑

i=

E
[
ρ(i)

].

In this situation the quadratic variation 〈M(n)〉 is not random and 〈M(n)〉 = Var(M(n)), for
all n ∈ N.

Assumption  Let (σ (n))n∈N be a bounded sequence of real numbers: for some Hσ > 
and all n ∈ N

∣
∣σ (n)

∣
∣ ≤ Hσ . ()

To avoid the trivial case we also assume that there are infinitely many i ∈ N such that
σ (i) �= .

Remark  If Assumptions  and  hold, then (M(n))n∈N, where M() =  and M(n) =
∑n–

i= σ (i)ξ (i), is a square integrable martingale with

〈
M(n)

〉
=

n–∑

i=

σ (i).

Also, 〈M(n)〉 �=  for big enough n ∈ N.

Assumption  Let (a(n))n∈N be a periodic sequence of nonzero real numbers with a pe-
riod K ∈ N, i.e. a(n + K) = a(n), a(n) �=  for each n ∈ N.

Assumption  Let (g(n))n∈N be a sequence of real numbers such that, for some ĝ ∈R,

lim
n→∞ g(n) = ĝ. ()
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Denote by l a Banach space of sequences σ = (σ (n))n∈N of real numbers, such that

‖σ‖l =
∞∑

n=

σ (n) < ∞.

Denote by L = L(�,F , P) a Banach space of random variables ς with E|ς | < ∞.
Since random variables ξ (n), n ∈ N which satisfy Assumption  are identically dis-

tributed, sometimes we omit the index n and write, for example, E|ξ |.

3 Presentation of the solution
Consider the perturbed stochastic linear difference equation

X(m + ) = a(m)X(m) + g(m) + σ (m)ξ (m + ), m ∈ N, X() = X ∈ R, ()

where sequences (ξ (m))m∈N, (σ (m))m∈N, (a(m))m∈N, and (g(m))m∈N satisfy Assumptions ,
, , and , respectively.

Define

J(m) :=
m–∏

i=

a(i), m ∈ N, ()

and

S := {, , . . . , K – }. ()

Since a(m) �=  for each m ∈ N, the function J : N →R\ {}, so [J(m)]– is well defined and
[J(m)]– �=  for all m ∈ N. By the periodicity of a(i), we have, for all m ∈ N,

J(m + K) =
K–∏

i=

a(i) ×
m+K–∏

i=K

a(i) = J(K)
m–∏

j=

a(j) = J(K)J(m). ()

Denote

L := J(K) =
K–∏

i=

a(i). ()

Lemma  Let Assumption  hold. Let J be defined as in () and S be defined as in ().
Then

(i) L =
∏K–

i= a(i + l) =
∏K+l–

i=l a(i) for each l ∈ N.
(ii) For each τ ∈ N, s ∈ S , we have

J(τK + s) = Lτ J(s).

(iii) If L = , then J is K -periodic.
(iv) If L = –, then J is K -periodic.
(v) If |L| < , then limm→∞ |J(m)| = .

(vi) If |L| > , then limm→∞ |J(m)| = ∞.
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The proof of Lemma  is straightforward and we do not present it. Note that Lemma  gives
a full description of the limiting behaviour of the solution of unperturbed equation ().

Since equation () is linear, solution X(n) can be presented in the following form (see
e.g. [], page ):

X(m) = J(m)

[

X +
m–∑

i=

J–(i + )
(
g(i) + σ (i)ξ (i + )

)
]

, m ∈ N. ()

Denoting, for m ∈ N,

V (m) := J(m)
m–∑

i=

J–(i + )g(i), S(m) := J(m)
m–∑

i=

J–(i + )σ (i)ξ (i + ), ()

we write () in the form

X(m) = J(m)X + V (m) + S(m), m ∈ N. ()

Remark  Notice that we have adopted the notation

k∏

i=k+

a(i) =  and
k∑

i=k+

a(i) = .

3.1 Reduction to K = 1
Let X be a solution to equation (). Since each m ∈ N is presented in the form

m = nK + s, n ∈ N, s ∈ S ,

for each s ∈ S we can introduce a new process

Y s(n) := X(nK + s), n ∈ N. ()

From () we conclude that convergence of the sequences (Y s(n))n∈N, s ∈ S , implies
asymptotic behaviour of X. Equation () which we derive for Y s in this section will also
show that by introduction of Y s we reduce the K-periodic case with any K ∈ N to K = .

From () we get the following expression for Y s:

Y s(n) = J(nK + s)X + V (nK + s) + S(nK + s), n ∈ N, Y s() = X(s),

where, for each s ∈ S ,

X(s) = J(s)X + V (s) + S(s)

= J(s)X +
s–∑

i=

J(s)J–(i + )g(i) +
s–∑

i=

J(s)J–(i + )σ (i)ξ (i + ).

Note that the initial value Y s() is random and Fs-measurable.
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Applying Lemma (i)-(ii), and () we get

Y s(n + ) = LJ(nK + s)X + V
(
(n + )K + s

)
+ S

(
(n + )K + s

)
,

where

V
(
(n + )K + s

)
= J

(
(n + )K + s

) (n+)K+s–∑

i=

J–(i + )g(i)

= LJ(nK + s)
nK+s–∑

i=

J–(i + )g(i) + J
(
(n + )K + s

) (n+)K+s–∑

i=nK+s

J–(i + )g(i)

= LV (nK + s) + J
(
(n + )K + s

) (n+)K+s–∑

i=nK+s

J–(i + )g(i),

S
(
(n + )K + s

)
= LS(nK + s)

+ J
(
(n + )K + s

) (n+)K+s–∑

i=nK+s

J–(i + )σ (i)ξ (i + ).

Since

LY s(n) = LJ(nK + s)X + LV (nK + s) + LS(nK + s),

we arrive at

Y s(n + ) – LY s(n) = J
(
(n + )K + s

) (n+)K+s–∑

i=nK+s

J–(i + )g(i)

+ J
(
(n + )K + s

) (n+)K+s–∑

i=nK+s

J–(i + )σ (i)ξ (i + ). ()

Denote

Gs(n) :=
K∑

j=

[K–∏

τ=j

a(τ + s)

]

g(nK + s + j – ), ()

Hs(n + ) :=
K∑

j=

[K–∏

τ=j

a(τ + s)

]

σ (nK + s + j – )ξ (nK + s + j). ()

Remark  Note that the reason for considering Hs in () as a function of n +  is that the
ξ with the maximum index is

ξ (nK + s + K) = ξ
(
(n + )K + s

)
.

Since for j ∈ S

J
(
(n + )K + s

)
J–(nK + s + j) = J(s + K)J–(s + j) =

K–∏

τ=j

a(τ + s),



Rodkina and Rapoo Advances in Difference Equations  (2017) 2017:220 Page 8 of 29

by substituting j = i +  – nK – s we obtain

J
(
(n + )K + s

) (n+)K+s–∑

i=nK+s

J–(i + )g(i)

=
K∑

j=

J
(
(n + )K + s

)
J–(nK + s + j)g(nK + s + j – ) = Gs(n)

and

J
(
(n + )K + s

) (n+)K+s–∑

i=nK+s

J–(i + )σ (i)ξ (i + ) = Hs(n + ).

Now equation () for Y s can be written as

Y s(n + ) = LY s(n) + Gs(n) + Hs(n + ), Y s() = X(s). ()

From equation () we derive, for each n ∈ N,

Y s(n + ) = Ln+Y s() +
n∑

i=

LiGs(n – i) +
n∑

i=

LiHs(n +  – i)

= Ln+Y s() +
n∑

j=

Ln–jGs(j) +
n∑

j=

Ln–jHs(j + ). ()

Denoting

V s(n) :=
n∑

j=

Ln–jGs(j), Hs(n) :=
n–∑

j=

Ln––jHs(j + ), ()

we arrive at the following presentation of solution Y s(n) to equation ():

Y s(n) = LnY s() + V s(n – ) + Hs(n), n ∈ N. ()

Presentation () shows that in order to know limiting behaviour of Y s it is enough to get
the same for V s and Hs. In Lemma , Section ., we analyse the asymptotic behaviour
of V s. Lemma , Section ., deals with Hs.

4 Limiting behaviour of V s

Denote, for each s ∈ S ,

As :=
K∑

j=

[K–∏

τ=j

a(τ + s)

]

, As :=
K∑

j=

[K–∏

τ=j

∣
∣a(τ + s)

∣
∣

]

, ()

and

Cs := max
j=,...,K–

{K–∏

τ=j

∣
∣a(τ + s)

∣
∣

}

, cs := min
j=,...,K–

{K–∏

τ=j

∣
∣a(τ + s)

∣
∣

}

. ()
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Remark  Note that As >  if a(i) >  for all i ∈ S and As > . Also, for each s ∈ S ,

Kcs ≤As ≤ KCs.

In Example , Section , we consider coefficients a(i), i ∈ {, , }, such that A =  while
A,A �= .

4.1 Limiting behaviour of Gs(n)
Lemma  below shows that the limiting behaviour of Gs is similar to g .

Lemma  Let Assumptions  and  hold. Let Gs be defined as in (). Then, for each s ∈ S ,

lim
n→∞ Gs(n) = ĝAs.

Proof Let As be defined in (). Fix some ε >  and let lε ∈ N be such that, for l ≥ lε ,

∣
∣g(l) – ĝ

∣
∣ <

ε

As
.

Then, for n ≥ lε+
K and for all s, j ∈ S , we have

∣
∣g(nK + s + j – ) – ĝ

∣
∣ <

ε

As
,

which implies that

∣
∣Gs(n) – ĝAs

∣
∣ ≤

K∑

j=

[K–∏

τ=j

∣
∣a(τ + s)

∣
∣

]
∣
∣g(mK + s + j – ) – ĝ

∣
∣ ≤ ε

As
As = ε.

�

4.2 Limiting behaviour of V s

The next lemma describes some important cases of the limiting behaviour of V s.

Lemma  Let Assumptions  and  hold.
(i) Let L = .

(a) If ĝ �= , As �= , then |V s(n)| → ∞.
(b) If either As = ,

∑∞
i= |g(i) – ĝ| < ∞ or ĝ = ,

∑∞
i= |g(i)| < ∞, then there exists a

number V s ∈R such that

lim
n→∞V s(n) = V s.

(c) If g(n) ≡ , then V s(n) ≡ .
(ii) Let L = – and

∑∞
i= |g(i) – ĝ| < ∞. Then there exist a number V s ∈ R and a

-periodic function V s
(n) such that

lim
n→∞

∣
∣V s(n) – V s – V s

(n)
∣
∣ = .
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(iii) Let |L| < . Then

lim
n→∞V s(n) =

ĝAs

 – L
.

(iv) If |L| >  and
∑∞

j= L–jGs(j) �=  then |V s(n)| → ∞.

Proof (i) In case (a), limn→∞ Gs(n) = ĝAs �= , so the series which defines V s(n) diverges.
When ĝAs > , we can find N such that Gs(n) >  for n ≥ N . So, for n ≥ N ,

V s(n) =
N∑

j=

Gs(j) +
n∑

j=N+

Gs(j)

and limn→∞
∑n

j=N+ Gs(j) = ∞. Similarly, limn→∞
∑n

j=N+ Gs(j) = –∞ when ĝAs < .
In case (b), when As = ,

∑∞
i= |g(i) – ĝ| < ∞, we have

V s(n) =
n∑

m=

( K∑

j=

[K–∏

k=j

a(k + s)

]
[
g(mK + s + j – ) – ĝ

]
)

()

and

∣
∣V s(n)

∣
∣ ≤ Cs

n∑

m=

K∑

j=

∣
∣g(mK + s + j – ) – ĝ

∣
∣ ≤ Cs

(n+)K+s∑

i=

∣
∣g(i) – ĝ

∣
∣, ()

so V s(n) converges absolutely to the number

V s =
∞∑

m=

( K∑

j=

[K–∏

k=j

a(k + s)

]
[
g(mK + s + j – ) – ĝ

]
)

. ()

When ĝ = ,
∑∞

i= |g(i)| < ∞, we substitute ĝ by  in ()-() and obtain the result.
Case (c) is straightforward.
(ii) We have

V s(n) =
n∑

m=

(–)n–m

[ K∑

j=

[K–∏

k=j

a(k + s)

]
[
g(mK + s + j – ) – ĝ

]
]

+ ĝ
n∑

m=

(–)n–m
K∑

j=

[K–∏

k=j

a(k + s)

]

= V s
(n) + V s

(n). ()

The term V s
(n) converges absolutely to the number V s defined by (). Noting that

V s
(n) = ĝAs

n∑

m=

(–)n–m = ĝAs
 + (–)n


, ()

we conclude that V s
(n) is a -periodic nonrandom function.

(iii) The result follows from Lemma  and Lemma  (see Appendix).
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(iv) The result follows from the representation

V s(n) = Ln
n∑

j=

L–jGs(j).
�

Remark  Note that if g(n) ≡ ĝ , where ĝ is any real number, and As = , then V s = .

5 On limits of random series
In Section . we present several auxiliary statements about the limits of the martingales.
In Section . we introduce a new sequence of σ -algebras and discuss properties of ran-
dom variables Hs(n).

Lemma  in Section . describes the asymptotic behaviour of Hs(n), as n → ∞.

5.1 Limits of martingales
In this section we deal with limits at infinity of the martingales (M(n))n∈N which have the
following form:

M() = , M(n) =
n–∑

i=

β(i)η(i + ), n ∈ N. ()

Here β(i) and η(i) satisfy the following assumptions.

Assumption  Let (η(n))n∈N be a sequence of independent random variables with zero
mean, Eηn = , and with distribution functions Fn. Let also E|η(n)| ≤ Hη for some con-
stant Hη >  and all n ∈ N.

Assumption  Let Assumption  hold. Let also there exist constants hη, H̄η >  such that,
for all n ∈ N,

E
∣
∣η(n)

∣
∣ ≤ H̄η, E

∣
∣η(n)

∣
∣ ≥ hη. ()

Assumption  Let β = (β(n))n∈N be a bounded sequence of real numbers: |β(n)| ≤ Hβ for
some Hβ >  and all n ∈ N.

Lemma  below is a variant of martingale convergence theorem (see e.g. []).

Lemma  Let Assumption  hold. Let M = (M(n))n∈N be a martingale defined by (). Let
β ∈ l. Then limn→∞ M(n) = M̄, where M̄ is an a.s. finite random variable.

Remark  Assumptions of Lemma  imply that M is a Cauchy sequence in L(�,F , P),
so

M̄ =
∞∑

i=

β(i)η(i + ) ∈ L(�,F , P).

Also, EM̄ =  and E[M̄] =
∑∞

i= β(i)E|η(i + )| ≤ Hη‖β‖l .



Rodkina and Rapoo Advances in Difference Equations  (2017) 2017:220 Page 12 of 29

Lemma  provides conditions under which M(n) has an a.s. finite limit. In the proofs
of our results in Section . we also need Lemma  about lim supn→∞

M(n)√
〈M(n)〉 and

lim infn→∞ M(n)√
〈M(n)〉 . To prove Lemma  we apply a variant of the central limit theorem

which is based on Theorem  from [], page , for the sum of independent but not
identically distributed random variables. To apply Theorem  to the martingale M we
need to show that the Lindeberg condition is satisfied. In order to do this we prove that the
Lyapunov condition with δ =  holds, which implies the Lindeberg condition for M (see
Lemma , Corollary  and Corollary  below). For more details as regards the Lyapunov
and Lindeberg conditions see [], page .

Lemma  Let Assumption  hold and β /∈ l. Then

∑n
i= |β(i)|

(
∑n

i= |β(i)|). → , as n → ∞. ()

Proof The proof follows from the estimates

∑n
i= |β(i)|

(
∑n

i= |β(i)|). ≤ Hβ

∑n
i= |β(i)|

(
∑n

i= |β(i)|). = Hβ

( n∑

i=

∣
∣β(i)

∣
∣

)–.

→ , as n → ∞. �

Corollary  Let Assumptions ,  and  hold. Let β /∈ l. Then the Lyapunov condition
with δ =  holds:

∑n
i= |β(i)|E|η(i + )|

[
∑n

i= |β(i)|E|η(i + )|]. → , as n → ∞.

Proof The result follows from Lemma  and the estimate

∑n
i= |β(i)|E|η(i + )|

[
∑n

i= |β(i)|E|η(i + )|]. ≤ H̄η

h.
h

∑n
i= |β(i)|

[
∑n

i= |β(i)|]. . �

Corollary  Let Assumptions ,  and  hold. Let β /∈ l. Then the Lindeberg condition
holds:

∑n
i=

∫
y:|y|≥εDn

y dF̃k(y)
D

n
→ , as n → ∞,

where F̃k are distributions of β(k)η(k), D
n =

∑n
i= |β(i)|E|η(i + )|.

Proof By Corollary , the Lyapunov condition with δ =  holds, which, by [], page ,
implies the Lindeberg condition. �

Corollary  Let Assumptions ,  and  hold. Let β /∈ l. Let � be the standard normal
cumulative distribution function. Then the central limit theorem holds:

lim
n→∞ P

[ ∑n
i= β(i)η(i)

√∑n
i= |β(i)|E|η(i + )|

> y
]

=  – �(y), ∀y ∈R. ()
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The proof of the following result is an adaptation of the argument presented on pages
- in [] (see also []) and is referred to the Appendix.

Lemma  Let Assumptions ,  and  hold. Let β /∈ l. Then

lim sup
n→∞


√∑n

i= |β(i)|E|η(i + )|
n∑

i=

β(i)η(i + ) = ∞, a.s.,

lim inf
n→∞


√∑n

i= |β(i)|E|η(i + )|
n∑

i=

β(i)η(i + ) = –∞, a.s.

()

5.2 Properties of Hs(n)
By () we have

Hs(n) :=
K∑

j=

[K–∏

τ=j

a(τ + s)

]

σ
(
(n – )K + s + j – 

)
ξ
(
(n – )K + s + j

)
. ()

Before discussing properties of random variables Hs(n) we need to introduce a new se-
quence of σ -algebras: for all n ∈ N, we define

Gs
n := FnK+s, where Fn is defined by (). ()

Lemma  Let Assumptions ,  and  hold. Let Hσ be defined by (), Hs(n) be defined by
(), Cs be defined by ().

Then, for any s ∈ S ,
(i) E(Hs(n)) =  for each n ∈ N;

(ii) E(Hs(n)) < H
σ (K – )C

s for each n ∈ N;
(iii) Hs(n) and Hs(k) are independent for each n, k ∈ N, n �= k;
(iv) the family {Gs

n}n∈N is a filtration;
(v) Hs(n) is Gs

n measurable for each n ∈ N;
(vi) Hs(n) →  a.s, if σ (n)ξ (n + ) →  a.s., as n → ∞.

Proof Proof of (i) is straightforward. To prove (ii) we apply the inequality

E
[
Hs(n)

] =
K∑

j=

[K–∏

k=j

a(k + s)

]

σ ((n – )K + s + j
)

< H
σ (K – )C

s . ()

To prove (iii) we note that, for any k > n, k, n ∈ N, the random variable Hs(n) defined as in
() is a weighted sum of random variables from the set

Tn :=
{
ξ
(
(n – )K + s + 

)
, ξ

(
(n – )K + s + 

)
, . . . , ξ (nK + s)

}
,

and the random variable Hs(k) is a weighted sum of random variables from the set

Tk :=
{
ξ
(
(k – )K + s + 

)
, ξ

(
(k – )K + s + 

)
, . . . , ξ (kK + s)

}
.
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Since k ≥ n + , the minimum index of ξ in set Tk is greater than the maximum index of ξ

in set Tn,

(k – )K + s +  ≥ nK + s +  > nK + s.

So Tn ∩Tk = ∅, which, due to independence of ξi, implies independence of Hs(n) and Hs(k).
To prove (iv) we notice that, for each n ≤ n, we have

Gs
n = FnK+s ⊆FnK+s = Gs

n .

Item (v) follows from the proof of (iii) and the definition () of Gs
n.

To prove (vi) we apply the estimate

∣
∣Hs(n)

∣
∣ ≤

K∑

j=

K–∏

k=j

∣
∣a(k + s)

∣
∣
∣
∣σ

(
(n – )K + s + j – 

)
ξ
(
(n – )K + s + j

)∣
∣

≤ Cs(K – ) max
j=,...,K

∣
∣σ

(
(n – )K + s + j – 

)
ξ
(
(n – )K + s + j

)∣
∣. �

5.3 On limits of Hs(n)
Fix s ∈ S and L ∈R. Let Hs(j) be defined by (). Denote

Ms(n) :=
n–∑

j=

L–jHs(j + ), n ∈ N. ()

The next lemma describes the properties of Ms(n) for |L| =  and |L| > . It is the main
tool for proving Lemma  about the asymptotic behaviour of Hs(n).

Lemma  Let Assumptions ,  and  hold. Let (Gs
n)n∈N be defined as in () and let Ms(n)

be defined as in (). Then
(i) Ms := (Ms(n))n∈N is a Gs

n-martingale.
(ii) Let |L| = .

(a) If σ ∈ l2, then, for some a.s. finite random variable M̄s,

lim
n→

Ms(n) = M̄s, a.s. ()

(b) If σ /∈ l2 and E|ξ | < ∞, then, a.s.,

lim sup
n→∞

Ms(n) = ∞ and lim inf
n→∞ Ms(n) = –∞.

(iii) Let |L| > , then () holds.

Proof From Lemma  we conclude that (Gs
n)n∈N is a filtration, the random variable Ms(n)

is Gs
n-measurable, EHs(j) = , and E|Hs(j)| ≤ Hσ (K – )Cs, for each j ∈ N. This implies that,
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for each n ∈ N,

E
∣
∣Ms(n)

∣
∣ ≤

n–∑

j=

L–jE
∣
∣Hs(j + )

∣
∣ < ∞ and

E
(
Ms(n)|Gs

n–
)

=
n–∑

j=

L–jHs(j + ) = Ms(n – ),

which proves (i).
(ii) Applying () we get

〈
Ms(n)

〉
=

n–∑

i=

E
(|L|–iHs(i + )

) =
n–∑

i=

|L|–iE
(
Hs(i + )

)

=
n–∑

i=

|L|–i
K∑

j=

[K–∏

k=j

a(k + s)

]

σ (iK + s + j – ). ()

For |L| = , we have

〈
Ms(n)

〉
=

n–∑

i=

K∑

j=

[K–∏

k=j

a(k + s)

]

σ (iK + s + j – ),

and then, for Cs and cs defined as in (), we obtain

c
s

nK+s–∑

q=s
σ (q) ≤ 〈

Ms(n)
〉 ≤ C

s

nK+s–∑

q=s
σ (q). ()

Now part (a) follows from Lemma .
To prove part (b) we present Ms(n) in the following form:

Ms(n) :=
n–∑

j=

L–j

[ K∑

i=

(K–∏

τ=i

a(τ + s)

)

σ (jK + s + i – )

]

ξ (jK + s + i). ()

By the substitution

q := jK + s + i – , s ≤ q ≤ nK + s –  for  ≤ j ≤ n – ,  ≤ i ≤ K ,

we transform () into

Ms(n) =
nK+s–∑

q=s

[ K∑

i=

L– q+–i–s
K

(K–∏

τ=i

a(τ + s)

)

σ (q)

]

ξ (q + ). ()

Denoting

(q) :=
K∑

i=

L– q+–i–s
K

(K–∏

τ=i

a(τ + s)

)

σ (q)
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we arrive at

Ms(n) =
nK+s–∑

q=s
(q)ξ (q + ). ()

Since σ /∈ l2 and |L| = , we have

l∑

q=

(q) =
l∑

q=

[ K∑

i=

(K–∏

τ=i

a(τ + s)

)]

σ (q) ≥ c
s (K – )

l∑

q=

σ (q) → ∞, ()

as l → ∞. Then, for each s ∈ S ,

nK+s–∑

q=s
(q) =

nK+s–∑

q=s

[ K∑

i=

(K–∏

τ=i

a(τ + s)

)]

σ (q) ≥ c
s (K – )

nK+s–∑

q=s
σ (q) → ∞, ()

as n → ∞.
In addition, E|ξ | = , E|ξ | < ∞, so after application of Lemma  we obtain, a.s.,

lim sup
l→∞

[∑l
q= (q)ξ (q + )
√∑l

q= (q)

]

= ∞, lim inf
l→∞

[∑l
q= (q)ξ (q + )
√∑l

q= (q)

]

= –∞. ()

The limits in () imply that, for each s ∈ S ,

lim sup
n→∞

[∑nK+s–
q=s (q)ξ (q + )
√∑nK+s–

q=s (q)

]

= ∞, lim inf
n→∞

[∑nK+s–
q=s (q)ξ (q + )
√∑nK+s–

q=s (q)

]

= –∞.

Then, applying (), () and (), we conclude that

lim sup
n→∞

Ms(n) = ∞, lim inf
n→∞ Ms(n) = –∞.

(iii) For |L| >  we obtain from () that, for all n ∈ N,

〈
Ms(n)

〉 ≤ (K – )C
s H

σ

n–∑

i=

L–i < (K – )C
s H

σ


 – L– ,

which along with Lemma  implies (). �

Lemma  Let Assumptions , , , and  hold. Let Hs(n) be defined as in () and M̄s be
defined as in ().

(i) Let |L| = .
(a) If σ ∈ l2, then limn→ Hs(n) = M̄s a.s.
(b) If σ /∈ l2 and E|ξ | < ∞, then

lim sup
n→∞

Hs(n) = ∞ and lim inf
n→∞ Hs(n) = –∞.
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(ii) Let |L| <  and

lim
n→∞σ (n)ξ (n + ) = , a.s., ()

then limn→∞ Hs(n) =  a.s.
(iii) Let |L| > , then M̄s is a.s. finite and lim supn→ |Hs(n)| = ∞ a.s. on the set

{ω : M̄s(ω) �= }.

Proof Parts (i)(a)-(b) follow from Lemma (ii)(a)-(b).
To prove (ii) we apply first Lemma (vi), and then apply, almost surely, Lemma  (see

the Appendix).
When |L| > , Lemma (iii), implies that Ms(n) → M̄s, where M̄s is a.s. finite. Since

|L|n → ∞, part (iii) follows on the set {ω : M̄s(ω) �= }. �

Remark  Note that condition () holds when ξ (n) are normally distributed random
variables and σ (n) decays as [log n]–/–ε or or more quickly as n → ∞.

When tails of ξ decay polynomially, i.e. [ – F(n)]nM → constant as n → ∞, where
F is the distribution function of the ξ and M ≥ , then () holds if and only if
∑∞

i=[σ (i)]M < ∞.
Note also that assumption σ ∈ l implies a.s. convergence of

∑∞
i= σ (i)ξ (i+), and, there-

fore, condition ().
A detailed analysis of condition () can be found in [] (see also [, ]).

6 Almost sure asymptotic periodicity of X(n)
In Section . we deal with the a.s. convergence of the solution Y s(n), and then, in Sec-
tion ., with the a.s. asymptotic periodicity of the solution X(m) of the original equa-
tion ().

In Section . we also discuss the possibility of a partial a.s. periodicity; see Remark .

6.1 On limits of Ys(n)
In this section we prove Lemma  about the asymptotic behaviour of Y s(n), applying
Lemmata  and  and equation (). Proposition , which is a corollary of Lemma ,
contains several sharp results about convergence of Y s(n).

Lemma  Let Assumptions , , , and  hold. Let ĝ be defined as in () and S be defined
as in ().

Let s ∈ S . Let As be defined as in () and Y s be defined as in ().
(i) Let L = , σ ∈ l, ĝ = ,

∑∞
i= |g(i)| < ∞. Then there exists an a.s. finite random

variable Qs such that

lim
n→∞

∣
∣Y s(n) – Qs∣∣ = , a.s. ()

(ii) Let L = , σ ∈ l, As = ,
∑∞

i= |g(i) – ĝ| < ∞. Then there exists an a.s. finite random
variable Qs such that () holds.

(iii) Let L = –, σ ∈ l,
∑∞

i= |g(i) – ĝ| < ∞. Then there exist an a.s. finite random variable
Qs and a -periodic nonrandom function V̂ s(n) such that

lim
n→

∣
∣Y s(n) – Qs – V̂ s(n)

∣
∣ = , a.s. ()
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(iv) Let |L| <  and let condition () hold. Then

lim
n→∞ Y s(n) =

ĝAs

 – L
.

Proof In cases (i)-(ii) we have Y s(n) = Y s() +V s(n) +Hs(n + ), Lemma (i)(b), and Lemma
(i)(a), hold, and then

lim
n→∞Hs(n) = M̄s, where M̄s is a.s. finite random variable, ()

lim
n→∞V s(n) = V s. ()

The result holds for Qs = Y s() + V s + M̄s, where V s defined by (), with ĝ =  in case (i).
Note that V s =  if g(n) ≡ .

In case (iii) we have Y s(n) = (–)nY s() + V s(n) + Hs(n + ), Lemma (ii), and
Lemma (i)(a), hold. So, in addition to (), we have

lim
n→∞

∣
∣V s(n) – V s – V s

(n)
∣
∣ = ,

where V s is number defined by () and V s
(n) is a -periodic nonrandom function. Then

the result holds for Qs = V s + M̄s and V̂ s(n) = (–)nY s() + V s
(n).

In case (iv) we have Y s(n) = LnY s() + V s(n) + Hs(n + ), Lemma (iii), and Lemma (ii),
hold, and

lim
n→∞ LnY s() = , lim

n→∞V s(n) =
ĝAs

 – L
, and lim

n→∞Hs(n) = ,

which implies the result. �

Remark  Recalling that Var(M̄s) �= , we can conclude that under assumptions of
Lemma ,

(a) Y s(n) converges either to an a.s. finite random variable in (i)-(ii) and (iv), or to a
-periodic function in (iii);

(b) The limit in (iv) is nonrandom, while the limits in (i)-(iii) are random.
(c) In all cases the limit of Y s(n) may depend on s ∈ S ; see Example , Section .
(d) The only case when the limit of Y s(n) can be zero is given in (iv), when either ĝ = 

or As ≡ .

In the next proposition, which is a corollary of Lemmata  and , we highlight the cases
when condition σ ∈ l is necessary and sufficient for the convergence of Y s(n) to an a.s.
finite random variable (or to -periodic nonrandom function).

Proposition  Let Assumptions , , , and  hold and let E|ξ | < ∞. Let ĝ be defined as
in (), S be defined as in (), L be defined as in (), As be defined as in ().

(i) Let L = , ĝ = ,
∑∞

i= |g(i)| < ∞. Then, for each s ∈ S , there exists an a.s. finite
random variable Qs such that

lim
n→

∣
∣Y s(n) – Qs∣∣ = , a.s., if and only if σ ∈ l. ()
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(ii) Let L = , ĝ �=  and
∑∞

i= |g(i) – ĝ| < ∞. Let As =  for some s ∈ S . Then there exists
an a.s. finite random variable Qs such that () holds.

(iii) Let L = –. Then, for each s ∈ S , there exist an a.s. finite random variable Qs and
-periodic nonrandom function V̂ s(n) such that

lim
n→

∣
∣Y s(n) – Qs – V̂ s(n)

∣
∣ = , a.s., if and only if σ ∈ l.

Proof Lemma (i)-(ii), implies the sufficiency for parts (i)-(ii), respectively. To prove
the necessity, assume that σ /∈ l. By Lemma (i)(b), lim supn→ |Hs(n)| = ∞, a.s. The
first term, LnY s() = Y s() in the right-hand-side of () is a.s. bounded, and, by
Lemma (i)-(ii), the second term V s(n) is nonrandom and converges. This implies that
lim supn→ |Y s(n)| = ∞, a.s.

Lemma (iii), implies the sufficiency for part (iii). To prove the necessity, we are rea-
soning as in the proof for parts (i)-(ii). By Lemma (i)(b), lim supn→ |Hs(n)| = ∞, a.s.
if σ /∈ l. Since the first term (–)nY s() in the right-hand-side of () is a.s. bounded,
and, by Lemma (iii), the second term V s(n) is nonrandom and bounded, we have
lim supn→ |Y s(n)| = ∞, a.s. �

6.2 Almost sure asymptotic periodicity of X(n)
In this section we return to the solution X of the original problem (). Armed with
Lemma  we formulate the main result of the paper, Theorem , which establishes con-
ditions of a.s. asymptotic periodicity of X(n).

Define a set

E := {, , . . . , K – , K , . . . , K – }. ()

Theorem  Let Assumptions , , , and  hold. Let S be defined as in (), ĝ be defined
as in (), As be defined as in (), E be defined as in ().

If X is a solution to equation (), then:
(i) There exists an a.s. finite random function R(s), defined on S , such that

lim
n→∞

∣
∣X(nK + s) – R(s)

∣
∣ = , a.s. for each s ∈ S , ()

if one of the following conditions holds:
(a) L = , σ ∈ l, ĝ = ,

∑∞
i= |g(i)| < ∞.

(b) L = , σ ∈ l,
∑∞

i= |g(i) – ĝ| < ∞, and As =  for each s ∈ S .
(c) |L| <  and condition () holds.

(ii) There exists an a.s. finite random function R(e), defined on E , such that

lim
n→∞

∣
∣X(nK + e) – R(e)

∣
∣ = , a.s. for each e ∈ E , ()

if L = –, σ ∈ l,
∑∞

i= |g(i) – ĝ| < ∞.

Proof Since X(nK + s) = Y s(n), the results for (i)(a)-(i)(b) follow from Lemma (i)-(ii),
respectively, with

R(s) = Y s() + V s + M̄s.



Rodkina and Rapoo Advances in Difference Equations  (2017) 2017:220 Page 20 of 29

The result for (i)(c) follows from Lemma (iv), with

R(s) =
ĝAs

 – L
.

Now we prove part (ii). Let Qs and V̂ s(n) be, respectively, an a.s. finite random variable
and -periodic nonrandom function defined as in Lemma (iii) (see also Lemma (ii)):

Qs = V s + M̄s, V̂ s(n) = (–)nY s() + V s
(n), for each s ∈ S , n ∈ N.

Define a random function R(e) on E by the following:

R() = Q + Y () + V
 (),

R() = Q + Y () + V
 (),

. . .

R(K – ) = QK– + Y K–() + VK–
 (),

R(K) = Q – Y () + V
 (),

R(K + ) = Q – Y () + V
 (),

. . .

R(K – ) = QK– – Y K–() + VK–
 ().

()

Recall that X(kK + e) = Y e(k) for e ∈ S and X(kK + e) = X((k + )K + e – K) =
Y e–K (k + ) for e – K ∈ S . So the result follows from equation () in Lemma (iii). �

Remark  Note that only in case (c) of Theorem , solution X tends to a periodic non-
random function V̂ (n), which is identical to zero if either ĝ =  or As =  for all s ∈ S . In
all other cases X tends to a periodic stochastic process, which has nonzero variance.

It can be proved that, when K = , the case As ≡ A �= , s = , , , is possible only when
a(i) = a �= , i = , , . However, this case cannot be considered as -periodic. So for |L| < ,
K = , X cannot converge to a constant nonzero limit.

Now we formulate the sharp statement about the asymptotic behaviour of X.

Proposition  Assumptions , , , and  hold and let E|ξ | < ∞. Let S be defined as in
(), ĝ be defined as in (), As be defined as in (), E be defined as in (). Let X be a
solution to equation ().

(i) Let one of the following conditions hold:
(a) L = , ĝ = ,

∑∞
i= |g(i)| < ∞.

(b) L = ,
∑∞

i= |g(i) – ĝ| < ∞, and As =  for each s ∈ S .
Then there exists an a.s. finite random function R(s), defined on S , such that

lim
n→∞

∣
∣X(nK + s) – R(s)

∣
∣ = , for each s ∈ S , a.s.,

if and only if σ ∈ l.



Rodkina and Rapoo Advances in Difference Equations  (2017) 2017:220 Page 21 of 29

(ii) Let L = –,
∑∞

i= |g(i) – ĝ| < ∞. Then there exists an a.s. finite random function R(e),
defined on E , such that

lim
n→∞

∣
∣X(nK + e) – R(e)

∣
∣ = , for each e ∈ E , a.s.,

if and only if σ ∈ l.

Proof Since X(nK + s) = Y s(n), the results for parts (i)(a)-(i)(b) follow from Proposi-
tion (i)-(ii), and the results for part (ii) follows from Proposition (iii). �

7 Examples and simulations
7.1 Calculations of As

In Example  we present a(i) such that either As = , but As �=  for some s, s ∈ S or
As =  for all s ∈ S . However, the first case can happen only if L �= , as will be shown in
Example .

Example  Let As be defined as in (). We consider K =  and K = .
(i) K = , As =

∑
j=

∏
τ=j a(τ + s), so

A =
∑

j=

∏

τ=j

a(τ ) = a() + ,

A =
∑

j=

∏

τ=j

a(τ + ) = a() +  = a() + .

For a() = –, a() = , we have A = , A = .
(ii) K =  and As =

∑
j=

∏
τ=j a(τ + s), so

A =
∑

j=

∏

τ=j

a(τ ) = a()a() + a() + ,

A =
∑

j=

∏

τ=j

a(τ + ) = a()a() + a() + ,

A =
∑

j=

∏

τ=j

a(τ + ) = a()a() + a() + .

()

(a) For a() = , a() = –, a() =  we have A = , A = –, A = .
(b) For a() = , a() = – 

a()+ = – 
 , a() = – a()+

a() = –, we have A = , A = ,
A = .

Example  Suppose that

L =
K–∏

i=

ai = . ()
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We show that if A =  then As =  for all s = , , . . . , K – , so partial periodicity is not
possible.

We have

A =
K–∏

i=

ai +
K–∏

i=

ai + · · · + aK– +  =
K–∏

i=

ai

[

 +

a

+


aa
+ · · · 

∏K–
i= ai

]

= 

so


a

+


aa
+ · · · 

∏K–
i= ai

= –.

But then

A = a

K–∏

i=

ai + a

K–∏

i=

ai + · · · + a +  = L
[


a

+


aa
+ · · · +


∏K–

i= ai
+


L

]

= .

Similar calculations can be done for each As.

7.2 Simulations
In this section we illustrate our results with computer simulations. We consider equation
() for different types of a(m). In all the examples random variables ξ (m) are supposed to
be independent and normally N (, ) distributed, X() =  and

σ (m) =
σ

m + 
,

g(m) = ĝ +


(m + ) , with either ĝ =  or ĝ = , m ∈ N.
()

So the equation which we are simulating is

X(m + ) = a(m)X(m) +
[

ĝ +
σ

(m + )

]

+


m + 
ξ (m + ), m ∈ N,

X() = .
()

Example  Let

K = , a() = –, a() = , ĝ = ,

so

L = a()a() = –, A = , A = .

Since the assumptions of Theorem (ii), hold, we can expect to get four random limits of
the solution. More exactly, the limits R(e), e ∈ {, , , }, are given by (). The following
simulations illustrate the results. In all the simulations, we have used σ = ..

Figure  demonstrates one run, with four coloured lines indicating the random limits for
e = , , , .



Rodkina and Rapoo Advances in Difference Equations  (2017) 2017:220 Page 23 of 29

Figure 1 K = 2, a(0) = –1, a(1) = 1, ĝ = 1. One sample trajectory, showing the dynamics of the solution
(black line) and the four limits for e = 0 (red), e = 1 (yellow), e = 2 (blue) and e = 3 (green).

Figure 2 K = 2, a(0) = –1, a(1) = 1, ĝ = 1. A set of ten sample trajectories, showing the four random limits for
e = 0 (red), e = 1 (yellow), e = 2 (blue) and e = 3 (green).

Figures  and  demonstrate two different samples of ten runs, showing the random
limits for e = , , , .

Figures  and  demonstrate the random limits for e =  and e = , respectively, for 
different runs.
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Figure 3 K = 2, a(0) = –1, a(1) = 1, ĝ = 1. A set of ten sample trajectories, showing the four random limits for
e = 0 (red), e = 1 (yellow), e = 2 (blue) and e = 3 (green).

Figure 4 K = 2, a(0) = –1, a(1) = 1, ĝ = 1. The random limit for e = 0 for 80 different runs.

Example  Let

K = , a() = , a() =



, ĝ = ,

so

L = a()a() =



< , A = a() +  =



, A = a() +  = a() +  = .
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Figure 5 K = 2, a(0) = –1, a(1) = 1, ĝ = 1. The random limit for e = 2 for 80 different runs.

Figure 6 K = 2, a(0) = 1, a(1) = 1/2, ĝ = 1. Sample trajectory, showing the dynamics of the solution (black
line) and the two limits for s = 0 (red) and s = 1 (blue).

Now we are under assumptions of Theorem (i)(c), so we can expect to get two nonrandom
limits of the solution. More exactly, they are R(s), s ∈ {, }, where

R(s) =
ĝAs

 – L
= As, so R() = ,R() = .

Figure  demonstrates one run showing also the two limits for s = , , while Figure 
demonstrates  different runs, showing nonrandom limits for s =  and s = . Both simu-
lations used σ = ..

Example  Let

K = , a() =



, a() = , ĝ = ,
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Figure 7 K = 2, a(0) = 1, a(1) = 1/2, ĝ = 1. Ten trajectories, showing two nonrandom limits for s = 0 (red)
and s = 1 (blue).

Figure 8 K = 2, a(0) = 1/2, a(1) = 2, ĝ = 1. Sample trajectory, demonstrating the divergence of the solution,
s = 0 (red) and s = 1 (blue).

so

L = a()a() = , A = a() +  = , A = a() +  =



.

Recall that, for L = , S = {, } we have

X(nK + s) = X() + V s(n – ) + Hs(n), n ∈ N, s ∈ {, }, X() = ς ,

where V s and Hs are defined by (). Since both A �=  and A �= , and also ĝ �= , we
are under assumptions of Lemma (i)(a), which implies that |V s(n)| → ∞. Since M̄s is a.s.
finite and L = , this implies that limn→∞ |X(n + s)| = ∞ for each s = , . This is illustrated
on Figure .
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Figure 9 K = 2, a(0) = 1/2, a(1) = 2, ĝ = 0. Twenty trajectories, showing two random limits for s = 0 (red) and
s = 1 (blue).

If, however, we assume ĝ = , i.e. we simulate the solution of the equation

X(m + ) = a(m)X(m) +


(m + ) +


m + 
ξ (m + ), m ∈ N, X() = ς ,

with a(m) given above, we will get two random a.s. bounded limits. Figure  shows the
two random limits, s = , , for  different trajectories.

Appendix
First we formulate and prove an auxiliary lemma, which is used in the proofs of Lemma 
in Section  and Lemma  in Section . After that we present a proof of Lemma .

Lemma  Let (αn)n∈N be a sequence of real numbers such that limn→∞ αn = ᾱ and let
|l| < . Then

lim
n→∞ ln

n∑

i=

l–iαi =
ᾱ

 – l
.

Proof Let A >  be such a number that, for each n ∈ N,

|αi – α̂| ≤ A.

Fix some ε >  and find N ∈ N such that, for n ≥ N

|αi – α̂| <
ε( – |l|)


.
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Let

N > max

{

N, log|l|
ε( – |l|)

A(|l|–N – |l|)
}

.

Then, for n ≥ N,
∣
∣
∣
∣
∣
ln

n∑

i=

l–iαi – ᾱln
n∑

i=

l–i

∣
∣
∣
∣
∣
≤ |l|n

N∑

i=

|l|–i|αi – ᾱ| + |l|n
n∑

N+

|l|–i|αi – ᾱ|

≤ A|l|n |l|–N – |l|
 – |l| +

ε( – |l|)


 – |l|n–N

 – |l| ≤ ε,

which concludes the proof. �

Proof of Lemma  For c >  define the events

Ac =

{

ω : lim sup
n→∞


√∑n

i= |β(i)|E|η(i)|
n∑

i=

β(i)η(i) > c

}

,

A =

{

ω : lim sup
n→∞


√∑n

i= |β(i)|E|η(i)|
n∑

i=

β(i)η(i) = ∞
}

.

Then Ac ↓ A as c → ∞. The events Ac are tail events. Therefore it follows, from the inde-
pendence of the sequence (η(n))n∈N and the zero-one law, that

P[Ac] >  for every c >  ()

implies P[Ac] = , and so P[A] = limc→∞ P[Ac] = . Therefore it suffices to prove () to
establish the first part of ().

Using the fact that for any sequence of random variables {χ (n)}n∈N we have
{
ω : lim sup

n→∞
χ (n)(ω) > x

}
⊇ {

ω : χ (n)(ω) > x i.o.
}

, for all x ∈ R,

and the fact that P[Bn i.o.] ≥ lim supn→∞ P[Bn] for any sequence of events {Bn}n∈N, and
then Corollary  in turn, we get

P[Ac] = P

[

lim sup
n→∞


√∑n

i= |β(i)|E|η(i)|
n∑

i=

β(i)η(i) > c

]

≥ P

[


√∑n
i= |β(i)|E|η(i)|

n∑

i=

β(i)η(i) > c i.o.

]

≥ lim sup
n→∞

P

[


√∑n
i= |β(i)|E|η(i)|

n∑

i=

β(i)η(i) > c

]

= lim
n→∞P

[


√∑n
i= |β(i)|E|η(i)|

n∑

i=

β(i)η(i) > c

]

=  – �(c),

proving (). �
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