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Abstract
In this paper, the sine-cosine wavelet method is presented for solving Riccati
differential equations. The sine-cosine wavelet operational matrix of fractional
integration is derived and utilized to transform the equations to system of algebraic
equations. Also, the error analysis of the sine-cosine wavelet bases is given. The
proposed method can be used to solve not only the classical Riccati differential
equations but also the fractional ones. Some examples are included to demonstrate
the validity and applicability of the technique.
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1 Introduction
Fractional calculus is an extension of derivatives and integrals to non-integer orders and it
has been widely used to model engineering and scientific problems. Many physical prob-
lems are governed by fractional differential and integral equations, and finding the solu-
tions of these equations has been the subject of many investigators in recent years. How-
ever, it is difficult to derive the analytical solutions to most of the fractional equations.
Therefore, there has been significant interest in developing numerical schemes for their
solutions. Some numerical methods include the homotopy perturbation method (HPM)
[], the homotopy analysis method (HAM) [], the variational iteration method (VIM) [],
the Adomian decomposition method (ADM) [], and different wavelet methods, such as
the Legendre wavelet [, ], Haar wavelet [], Chebyshev wavelet [–], Bernoulli wavelet
[], and ultraspherical wavelet methods [, ].

The Riccati equations play a significant role in many fields of engineering and applied
science such as the theory of random processes, diffusion problems, transmission-line
phenomena and optimal control theory. Thus, the solving methods for the Riccati dif-
ferential equations are important. There have been several methods for solving the Ric-
cati differential equations, such as He’s variational iteration method (HVIM) [], ADM
[], HPM [] and piecewise VIM []. Moreover, Saha et al. [] used the modified
ADM method to solve the fractional Riccati differential equations, Odibat and Momani
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[], Hosseinnia et al. [] and Khan et al. [] used the modified homotopy perturbation
method (MHPM) to solve the fractional Riccati differential equations. Khan [] used the
Laplace-Adomian-Padé method, Abd-Elhameed et al. [] used the spectral wavelets al-
gorithms, and Mehmet et al. [] applied an iterative reproducing kernel Hilbert space
method to get the solutions of fractional Riccati differential equations.

In this paper, we consider the following Riccati differential equation:

Dαy(t) = u(t) + v(t)y(t) + w(t)
[
y(t)

], n ≤ α < n + , t > , ()

with the initial conditions

y(k)() = gk , k = , , . . . , n – . ()

where α is a parameter describing of the order of fractional derivative, n is an integer, u(t),
v(t) and w(t) are given functions, and gk is a constant. When α is a positive integer, the
fractional equation becomes the classical Riccati differential equation. Our main aim is
to solve the Riccati differential equations by using sine-cosine wavelet. The sine-cosine
wavelet was proposed in [] and used to solve the variational problem. Furthermore, the
sine-cosine wavelet has been used to solve the integro-differential equation [].

We notice that the sine-cosine wavelet was constructed by sine and cosine functions, and
it is more suitable to solve periodic solution problem. Moreover, since the basis functions
used to construct the sine-cosine wavelet are orthogonal and have compact support, it
makes the more useful and simple in actual computations. Also, the numbers of mother
wavelet’s components are restricted to one, so they do not lead to the growth of complexity
of calculations comparing with other wavelets. It is worthy to mention here that the CAS
wavelet [] has similar properties to the sine-cosine wavelet, but they have completely
different constructs and expressions. In this paper, the sine-cosine wavelet operational
matrix of fractional integration is derived firstly and used to solve the Riccati differential
equations, the wavelet operational matrix method is computer oriented. The efficiency
and accuracy of the presented method are shown by several examples.

The rest of the paper is organized as follows. In the next section, some necessary defi-
nitions and mathematical preliminaries of the fractional calculus are introduced. In Sec-
tion  the error analysis of the sine-cosine wavelet bases and the sine-cosine wavelet op-
erational matrix of fractional integral are obtained. The sine-cosine wavelet method for
solving () with initial conditions () is presented in Section . Numerical examples are
presented in Section . A conclusion is given in Section .

2 Preliminaries and notations
In this section, we present some definitions, notations and preliminaries of the fractional
calculus theory which will be used in this paper.

The Riemann-Liouville fractional integral operator of order α >  of a function is defined
as

(
Iαu

)
(t) =


�(α)

∫ t


(t – τ )α–u(τ ) dτ , α > , t > , ()

(
Iu

)
(t) = u(t). ()
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The Riemann-Liouville fractional derivative of order α >  is normally used,

(
Dα

l u
)
(t) =

(
d
dt

)n(
In–αu

)
(t), n –  < α ≤ n, ()

where n is an integer.
It has the following properties:

(i) IαIβ = Iα+β ,

(ii) IαIβ = Iβ Iα ,

(iii) Iαtν =
�(ν + )

�(α + ν + )
tα+ν .

The Caputo definition of fractal derivative operator is given by

(
Dαu

)
(t) =


�(n – α)

∫ t


(t – τ )n–α–u(n)(τ ) dτ , n –  < α ≤ n, ()

where t > , n ∈ N . It has the following two basic properties for n –  < α ≤ n:

(
DαIαu

)
(t) = u(t) ()

and

(
IαDαu

)
(t) = u(t) –

n–∑

k=

u(k)(+) tk

k!
, t > . ()

More details of the mathematical properties of fractional derivatives and integrals can be
found in [, ].

3 Sine-cosine wavelet and operational matrix of the fractional integration
3.1 Wavelet and sine-cosine wavelet
Wavelets constitute a family of functions constructed from dilation and translation of a
single function ψ(x) called the mother wavelet. When the dilation parameter a and the
translation parameter b vary continuously we have the following family of continuous
wavelets [–]:

ψab(t) = |a|– 
 ψ

(
t – b

a

)
, a, b ∈ R, a �= .

If we restrict the parameters a and b to discrete values by a = a–k
 , b = nba–k

 , a > ,
b > , we have the following family of discrete wavelets:

ψkn(t) = |a| k
 ψ

(
ak

t – nb
)
, k, n ∈ Z,

where ψkn form a wavelet basis for L(R). In particular, when a =  and b =  then ψkn(t)
form an orthonormal basis.
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Sine-cosine wavelets ψn,m(t) = ψ(k, n, m, t) involve four arguments, k = , , , . . . , n =
, . . . , k – , the values m are given in equation () and t is the normalized time. They are
defined on the interval [, ) as [, ]

ψn,m(t) =

⎧
⎨

⎩
 k+

 fm(kt – n), n
k ≤ t < n+

k ,

, otherwise,
()

where

fm(t) =

⎧
⎪⎪⎨

⎪⎪⎩

√
 , m = ,

cos(mπ t), m = , , . . . , L,

sin((m – L)π t), m = L + , L + , . . . , L,

()

where L is any positive integer. The set of sine-cosine wavelet is an orthonormal set.

3.2 Function approximation
A function u(t) defined over [, ) may be expanded as

u(t) =
∞∑

m=

∞∑

n=

cn,mψn,m(t), ()

where

cn,m =
(
u(t),ψn,m(t)

)
=

∫ 


ψn,m(t)u(t) dt, ()

in which (·, ·) denotes the inner product in L[, ]. If the infinite series in equation () is
truncated, then it can be written as

u(t) ≈
L∑

m=

k –∑

n=

cn,mψn,m(t) = CT	(t) = û(t), ()

where C and 	(t) are k(L + ) ×  matrices given by

C = [c,, c,, . . . , c,L, c,, . . . , c,L, . . . , ck –,, . . . , ck –,L]T ()

and

	(t) = [ψ,,ψ,, . . . ,ψ,L,ψ,, . . . ,ψ,L, . . . ,ψk –,, . . . ,ψk –,L]T. ()

Notation: From now on we define m′ = k(L + ).
Taking the collocation points as follows:

ti =
i – 
m′ , i = , , . . . , m′, ()

we define sine-cosine wavelet matrix 
m′×m′ as


m′×m′ =
[
	( 

m′ ) 	( 
m′ ) · · · 	( m′–

m′ )
]
. ()
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Correspondingly, we have

ûm′ =
[
û( 

m′ ) û( 
m′ ) · · · û( m′–

m′ )
]

= CT
m′×m′ . ()

Because the sine-cosine wavelet matrix 
m′×m′ is an invertible matrix, the sine-cosine
wavelet coefficient vector CT can be gotten by

CT = ûm′
–
m′×m′ . ()

3.3 Error analysis of the sine-cosine wavelet bases
In this section, the error analysis of the sine-cosine wavelet is derived. We can conclude
that the sine-cosine wavelet expansion of a function u(t), with bounded second derivative,
converges uniformly to u(t).

Lemma . If the sine-cosine wavelet expansion of a continuous function u(t) converges
uniformly, then the sine-cosine wavelet expansion converges to the function u(t).

Proof Let

v(t) =
∞∑

m=

∞∑

n=

cn,mψn,m(t),

where cn,m is shown in equation (). Multiplying ψp,q(t), in which p, q are fixed and then
integrating term-wise, justified by uniform convergence, on [, ], we have

∫ 


ψp,q(t)v(t) dt =

∫ 



∞∑

m=

∞∑

n=

cn,mψp,q(t) dt

=
∞∑

m=

∞∑

n=

cn,m

∫ 


ψp,q(t) dt = cp,q.

Thus, cn,m = (v(t),ψn,m(t)) for n ∈ N , m ∈ N . Consequently u, v have the same Fourier
expansions with the sine-cosine wavelet basis and therefore u(t) = v(t). �

Theorem . A function u(t) ∈ L[, ], with bounded second derivative, say |u′′(t)| ≤ δ,
can be expanded as an infinite sum of the sine-cosine wavelet and the series converges uni-
formly to u(t), that is u(t) =

∑∞
m=

∑∞
n= cn,mψn,m(t). Furthermore, we have

∣∣û(t) – u(t)
∣∣ ≤ δ√

π

∞∑

m=L+

∞∑

n=k


(n + )/M , t ∈ [, ],

where M = m or m – L.

Proof From equation (), it follows that

cn,m =
∫ 


ψn,m(t)u(t) dt =

∫ n+
k

n
k


k+

 fm
(
kt – n

)
u(t) dx.
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Substituting kt – n = x into above equation yields

cn,m = 
–k



∫ 


fm(x)u

(
x + n

k

)
dx = 

–k


∫ 


u
(

x + n
k

)
dFm(x),

where F ′
m(x) = fm(x), so we have

cn,m = 
–k

 u
(

x + n
k

)
Fm(x)| – 

–k


∫ 


Fm(x)u′

(
x + n

k

)
dx

= –
–k



∫ 


u′

(
x + n

k

)
dGm(x),

where G′′
m(x) = fm(x). Thus, we have

cn,m = 
–k

 u′
(

x + n
k

)
Gm(x)| + 

–k


∫ 


Gm(x)u′′

(
x + n

k

)
dx

= –
–k




(Mπ )

∫ 


u′′

(
x + n

k

)
fm(x) dx,

where M = m or M = m – L.
So, we obtain

|cn,m| ≤
∣
∣∣∣



 k–
 (Mπ )

∫ 


u′′

(
x + n

k

)
fm(x) dx

∣
∣∣∣

≤
(



 k–
 (Mπ )

) ∫ 



∣
∣∣
∣u

′′
(

x + n
k

)∣
∣∣
∣



dx
∫ 



∣∣fm(x)
∣∣ dx

≤
(

δ

 k–
 (Mπ )

)

.

Since n ≤ k – , we have |cn,m| ≤ δ



 π(n+)


 M

. Hence, the series
∑∞

n=
∑∞

m= cn,m is abso-

lutely convergent. On the other hand, we have

∣∣∣
∣∣

∞∑

n=

∞∑

m=

cn,mψn,m(t)

∣∣∣
∣∣
≤

∞∑

n=

∞∑

m=

|cn,m||ψn,m| ≤ 
∞∑

n=

∞∑

m=

|cn,m| < ∞.

Using Lemma ., the series converges to u(t). Moreover, we can conclude that

∣∣û(t) – u(t)
∣∣ ≤

∣
∣∣
∣∣

∞∑

m=L+

∞∑

n=k

cn,mψn,m(t)

∣
∣∣
∣∣

≤ 
∞∑

m=L+

∞∑

n=k

|cn,m|

≤ δ√
π

∞∑

m=L+

∞∑

n=k


(n + )/M .

�
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3.4 Sine-cosine wavelet operational matrix of the fractional integration
The integration of the vector 	(t) defined in equation () can be obtained:

∫ t


	(τ ) dτ ≈ P	(t),

where P is the m′ × m′ operational matrix for integration. The operational matrix of inte-
gration of the sine-cosine wavelet has been derived by [].

Now, we derive the sine-cosine wavelet operational matrix of the fractional integration.
If u(t) is expanded in the sine-cosine wavelet, as shown in equation (), the Riemann-
Liouville fractional integration becomes

(
Iαu

)
(t) =

CT

�(α)

∫ t


(t – τ )α–	(τ ) dτ =

CT

�(α)
tα– ∗ 	(t), ()

where α ∈ R is the order of the integration, �(α) is the Gamma function and tα– ∗ 	(t)
denotes the convolution product of tα– and 	(t).

Also, we define a m-set of block pulse function (BPF) over the interval [, T) by

bi(t) =

⎧
⎨

⎩
, iT/m ≤ t < (i + )T/m,

, otherwise,
()

where i = , , , . . . , m – .
The functions bi(t) are disjoint and orthogonal. That is

bi(t)bl(t) =

⎧
⎨

⎩
, i �= l,

bi(t), i = l,
()

∫ 


bi(τ )bl(τ ) dτ =

⎧
⎨

⎩
, i �= l,

/m, i = l.
()

From the orthogonality property of BPF, it is possible to expand functions into their block
pulse series, this means that the sine-cosine wavelet may be expanded into an m′-term
BPF as

	(t) = 
m′×m′Bm′ (t), ()

where

Bm′ (t) =
[
b(t), b(t), . . . , bm′–(t)

]T,

Kilicman [] has given the block pulse operational matrix of the fractional integration
Fα as follows:

(
IαBm

)
(t) ≈ FαBm(t), ()
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where

Fα =


mα


�(α + )

⎡

⎢
⎢⎢⎢
⎢⎢
⎢⎢
⎢
⎣

 ξ ξ ξ · · · ξm–

  ξ ξ · · · ξm–

   ξ · · · ξm–
...

...
. . . . . .

...
  · · ·   ξ

   · · ·  

⎤

⎥
⎥⎥⎥
⎥⎥
⎥⎥
⎥
⎦

, ()

with ξk = (k + )α+ – kα+ + (k – )α+.
Next, we derive the sine-cosine wavelet operational matrix of the fractional integration.

Let

(
Iα	

)
(t) ≈ Pα

m′×m′	(t), ()

where the matrix Pα
m′×m′ is called the sine-cosine wavelet operational matrix of the frac-

tional integration.
Using equations () and (), we have

(
Iα	

)
(t) ≈ (

Iα
m′×m′Bm′
)
(t) = 
m′×m′

(
IαBm′

)
(t) ≈ 
m′×m′FαBm′ (t). ()

From equations () and () we get

Pα
m′×m′	(t) = Pα

m′×m′
m′×m′Bm′ (t) = 
m′×m′FαBm′ (t). ()

Then the sine-cosine wavelet operational matrix of the fractional integration Pα
m′×m′ is

given by

Pα
m′×m′ = 
m′×m′Fα
–

m′×m′ . ()

In particular, for k = , L = , α = ., the sine-cosine wavelet operational matrix of frac-
tional order integration Pα

m′×m′ is given by

P.
× =

⎡

⎢⎢
⎢⎢
⎢⎢⎢
⎢
⎣

. –. –. . . .
–. . . . . .

. –. . –. –. –.
   . –. –.
   –. . .
   . –. .

⎤

⎥⎥
⎥⎥
⎥⎥⎥
⎥
⎦

.

4 Applications of the operational matrix of fractional integration
Consider the Riccati differential equation

Dαy(t) = u(t) + v(t)y(t) + w(t)
[
y(t)

], n ≤ α < n + , t > , ()

subject to the initial conditions

y(k)() = gk , k = , , . . . , n – , ()
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where α is a parameter describing of the order of fractional derivative, n is an integer, u(t),
v(t) and w(t) are given functions, and gk is constant.

The functions Dαy(t), u(t), v(t), and w(t) may be approximated by the sine-cosine wavelet
as follows:

Dαy(t) ≈ Y T	(t), u(t) ≈ UT	(t), v(t) ≈ V T	(t), w(t) ≈ W T	(t), ()

where U , V , W , Y are given in equation (), and 	(t) is given in equation ().
Using equations (), () and Dαy(t) ≈ Y T	(t), we have

y(t) ≈ Y TPα
m′×m′	(t) +

m′–∑

k=

y(k)(+) tk

k!

≈ Y TPα
m′×m′	(t) + Y T

 	(t) = AT	(t), ()

where A = (Y T Pα
m′×m′ + Y T

 )T . Substituting equations () and () into equation (), we
have

Y T	(t) = UT	(t) + V T	(t)	T (t)A + W T	(t)
[
	T (t)A

]. ()

According to equation (), we have

	(t)	T (t)A = 
m′×m′Bm′ (t)BT
m′ (t)
T

m′×m′A. ()

By equations () and (), we have

Bm′ (t)BT
m′ (t) =

⎡

⎢⎢
⎢⎢
⎣

b(t) 
b(t)

. . .
 bm′ (t)

⎤

⎥⎥
⎥⎥
⎦

.

Define


T
m′×m′A = [a, a, . . . , am′ ]. ()

Thus, we have


m′×m′Bm′ (t)BT
m′ (t)
T

m′×m′A = 
m′×m′

⎡

⎢
⎢⎢
⎢
⎣

a 
a
. . .

 am′

⎤

⎥
⎥⎥
⎥
⎦

Bm′ (t)

= 
m′×m′ diag
(

T

m′×m′A
)
Bm′ (t). ()

Hence, we have

V T	(t)	T (t)A = V T
m′×m′ diag
(

T

m′×m′A
)
Bm′ (t). ()
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From equation (), the nonlinear term of equation () can be rewritten

W T	(t)
[
	T (t)A

] = W T
m′×m′Bm′ (t)
[
BT

m′ (t)
T
m′×m′A

]. ()

Using equation (), we will have

W T	(t)
[
	T (t)A

] = W T
m′×m′ diag
(
a

 a
 · · · a

m′
)
Bm′ (t). ()

Substituting equations () and () into equation (), together with equation (), we
have

Y T
m′×m′ = UT
m′×m′ + V T
m′×m′ diag(a a · · · am′ )

+ W T
m′×m′ diag
(
a

 a
 · · · a

m′
)
, ()

which is a nonlinear system of algebraic equations. By solving this system we can obtain
the approximate solution of equation () according to equation ().

5 Numerical examples
In this section, we demonstrate the effectiveness and simplicity of the proposed method
with three examples.

Example  Consider the following the nonlinear fractional Riccati differential equation:

Dαy(t) +
[
y(t)

] = ,  < α ≤ , t > , ()

subject to the initial state y() = , which is studied by [] by using the MHPM. Here we
use the sine-cosine wavelet operational matrix of the fractional integration to solve it.

Figure  shows the numerical results for different values of m′ and  < α ≤ . For α = ,
Figure  shows the behavior of the numerical solutions for various k and L, which are in
agreement with the exact solution, y(t) = et–

et+ .
To show the efficiency of the proposed method, we use the root-mean-square error

(RMSE) to reveal the accuracy of the method. RMSE is defined as

∥
∥em′ (t)

∥
∥

 =
(∫ 


e

m′ (t) dt
)/

≈
(


N

N∑

i=

e
m′ (ti)

)/

=

(

N

N∑

i=

(
y(ti) – ym′ (ti)

)
)/

,

where y(t) is the exact solution and ym′ (t) is the approximation solution obtained by equa-
tion ().

The errors in the case α = , for different values of k and L are shown in Table . As one
can see, approximate solutions converge to the exact solution while k is increased and the
absolute error decreases.

We also use the sine-cosine operational matrix method for solving the equation with the
solution in the interval [, ]. A comparison of our result with m′ =  (k = , L = ) and
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Figure 1 The comparison between approximate solutions and exact solution of Example 1 for some k
and L.

Table 1 Approximate norm-2 of absolute error for some k and L

Examples ‖e12‖2 (k = 2, L = 1) ‖e24‖2 (k = 3, L = 1) ‖e48‖2 (k = 4, L = 1)

Example 1 1.5833e–03 3.9310e–04 9.7887e–05
Example 2 7.4657e–03 1.8665e–03 4.6635e–04
Example 3 1.3694e–04 3.4143e–05 8.5241e–06

Figure 2 The comparison between sine-cosine
method and MHPM of Example 1 for α = 1.

that obtained by the MHPM for a =  is shown in Figure . Figure  shows a comparison
between sine-cosine wavelet method and MHPM for α = ., .. As Figure  shows, our
result is in well agreement with the exact solution, while convergent regions of solution
obtained by MHPM is small. From Figures  and , we can see that the sine-cosine wavelet
method is accurate and is able to solve this nonlinear Riccati differential equation in a very
wider region.

Example  Consider the following initial value problem []:

Dαy(t) =  + y(t) –
[
y(t)

],  < α ≤ , t > , ()

with the initial condition y() = .
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Figure 3 The comparison between sine-cosine method and MHPM of Example 1. (a) α = 0.5 and
(b) α = 0.75.

Figure 4 The comparison between approximate solutions and exact solution of Example 2 for some k
and L.

Table 2 Comparison between sine-cosine, HPM and UWCM for Example 2 for α = 1/2, 3/4

t α = 1
2 α = 3

4

Sine-cosine HPM UWCM Sine-cosine HPM UWCM

0.1 0.62587 0.321730 0.58092 0.26346 0.216866 0.24456
0.3 1.18291 0.940941 1.12057 0.71969 0.654614 0.71031
0.5 1.50602 1.549439 1.45668 1.20886 1.132763 1.15155
0.7 1.64338 2.066523 1.63391 1.48589 1.594278 1.49335
0.9 1.75292 2.396839 1.75008 1.72284 1.962239 1.73018

Figure  shows the numerical results for different values of m′ and α. The errors in the
case α = , for different values of k and L are shown in Table . As one can see that the
conclusions are the same as for Example .

In Table , we compare the numerical solutions resulting from the application of sine-
cosine wavelet method (k = , L = ), with the HPM [] and ultraspherical wavelets col-
location method (UWCM) []. As can be seen from Table , the sine-cosine wavelet
method and UWCM method are superior to the HPM. The numerical results of sine-
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Figure 5 The comparison between sine-cosine
method and other different methods of
Example 2 for α = 1.

cosine method are closer to those of the UWCM. However, it must be pointed out that
the sine-cosine wavelet basis functions are trigonometric function and they are more suit-
able for solving the numerical solution of the periodic problem.

When α = , equation () is a classical Riccati equation, which have been studied by
using ADM, VIM, HPM, MHPM and NHPM. Figure  shows the exact solution and ap-
proximate solutions obtained by ADM, VIM, HPM, MPHM, NPHM and our method in
the interval [, ]. As Figure  shows, our results are in well agreement with the exact so-
lution, convergent regions of solution obtained by ADM, VIM, HPM, MHPM and NHPM
are small. This comparison indicates that the sine-cosine wavelet method is accurate and
is able to solve this nonlinear Riccati differential equation in a very wider region.

Example  Consider fractional Riccati equation [, ]

Dαy(t) = –y(t) +
[
y(t)

], ()

subject to the initial state y() = 
 . When α =  the exact solution of the above equation

was found to be of the form

y(t) =
e–t

 + e–t .

Figure  shows the behavior of the numerical solutions for various m′ and α. The error for
different values of k and L, for α = , is shown in Table . Figure  shows the exact solution
and approximate solutions obtained by NHPM and our method in the interval [, ].

6 Conclusion
In this paper, we proposed the sine-cosine wavelet operational matrix method to solve
nonlinear fractional Riccati differential equations. The sine-cosine wavelet operational
matrix of fractional order integration is obtained. Compared to ADM, HPM, VIM, MHPM
and NHPM, the sine-cosine wavelet method is simple and easy to implement; moreover,
it enables us to approximate the solution more accurate in a bigger interval. However,
we have also noticed that the sine-cosine wavelet is constructed from the trigonometric
polynomials and has periodicity. It is more suitable for solving the periodic problem.
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Figure 6 The comparison between approximate solutions and exact solution of Example 3 for some k
and L.

Figure 7 The exact solution and approximate
solutions obtained by our method and NHPM for
α = 1.
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