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Abstract
In this article, we propose a new two-level implicit method of accuracy two in time
and three in space based on spline in compression approximations using two off-step
points and a central point on a quasi-variable mesh for the numerical solution of the
system of 1D quasi-linear parabolic partial differential equations. The new method is
derived directly from the continuity condition of the first-order derivative of the spline
function. The stability analysis for a model problem is discussed. The method is
directly applicable to problems in polar systems. To demonstrate the strength and
utility of the proposed method, we solve the generalized Burgers-Fisher equation,
generalized Burgers-Huxley equation, coupled Burgers-equations and heat equation
in polar coordinates. We demonstrate that the proposed method enables us to obtain
high accurate solution for high Reynolds number.
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1 Introduction
We consider the one-space dimensional quasi-linear parabolic partial differential equation
(PDE) of the form

uxx = f (x, t, u, ux, ut),  < x < , t > . (.)

The initial and boundary conditions are given by

u(x, ) = u(x),  ≤ x ≤ , (.)

u(, t) = g(t), u(, t) = g(t), t > , (.)
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where we assume that the functions f , u(x), g(t) and g(t) are sufficiently smooth and
their required higher-order derivatives exist.

The quasi-linear parabolic equation describes a wide class of physical phenomenon
such as the interaction between reaction mechanism, convection, effects and diffusion
transports. It is used in many fields such as chemistry, biology, metallurgy and engineer-
ing. The one-dimensional viscous generalized Burgers-Fisher equation (GBFE) and gen-
eralized Burgers-Huxley equation (GBHE) are famous examples of quasi-linear parabolic
equations.

The GBFE is given by

εuxx = ut + αuδux + βu
(
uδ – 

)
, t > , (.)

where α,β are real parameters, δ is a positive integer and  < ε ≤ .
The GBHE is given by

εuxx = ut + αuδux + βu
(
uδ – 

)(
uδ – γ

)
, t > , (.)

where α,β ≥ , γ ∈ (, ), δ >  and  < ε ≤  are the parameters.
In both cases, equations describe the interaction between diffusion, convection and re-

action.
The GBFE has wide applications in the fields such as gas dynamics, fluid mechanics,

elasticity, heat conduction and plasma physics. The well-known equation (.) was first
used by Fisher [] to describe the propagation of gene in a habitat. In his memory, it is
generally referred as Fisher’s equation. When α =  and δ = , equation (.) reduces to
the classical Fisher equation. Kolmogorov et al. [] independently wrote down the same
equation to describe the dynamic spread of a combustion front. This equation has been
found in various contexts in which a perturbation spreads in an excitable medium.

The GBHE was investigated by Satsuma et al. [] in . When ε = , α = , δ = ,
equation (.) reduces to the Huxley equation and describes nerve pulse propagation in
nerve fibers and wall motion in liquid crystals. For ε = , β = , equation (.) reduces
to the generalized Burgers equation, which describes the far field of wave propagation in
nonlinear dissipative systems. When ε = , α = , β =  and δ = , equation (.) becomes
the Fitz-Hugh-Nagumo (FHN) equation which is the reaction diffusion equation used in
circuit theory and biology. When α �= , β �=  and δ = , equation (.) turns into the
Burgers-Huxley equation (BHE) and shows a prototype model for describing the interac-
tion between diffusion transports, convection and reaction mechanisms.

There has been vast variety of numerical methods, such as finite element methods, fi-
nite difference methods, spectral techniques and finite volume methods for quasi-linear
parabolic initial-boundary value problems. In recent years, various numerical methods
were used by the researchers to solve GBHE and GBFE. A fourth-order scheme for GBHE
was proposed by Bratsos []. Mohammadi [] has discussed a spline method for GBFE.
Zhang et al. [] solved GBFE using the local discontinuous Galerkin method. Diaz [] anal-
ysed the solitary wave solution of the BHE through Cardano’s method. Mittal and Tripathi
[] discussed the schemes using collocation of cubic B-splines for numerical solutions of
GBFE and GBHE. A two-level implicit compact operator method of order two in time
and four in space was discussed for the approximate solution of time dependent BHE by
Mohanty et al. [].
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Higher-order finite difference methods on a uniform mesh for the solution of nonlinear
parabolic equations were proposed by Jain et al. []. Mittal and Jiwari [] developed dif-
ferential quadrature method for numerical solution of coupled viscous Burgers’ equations.
Mohanty et al. [] used compact operator technique to solve coupled Burgers’ equations.
In recent past, Talwar et al. [] proposed spline in compression method based on three
full-step grid points for the solution of D quasi-linear parabolic equations and in those
methods the consistency equation is only second-order accurate and the method is not
directly applicable to singular problems, which is a main drawback of those methods. To
the best of the authors’ knowledge, no numerical method of order two in time and three
in space, directly obtained from the consistency condition, for the solution of parabolic
equation (.) on a quasi-variable mesh has been discussed in the literature so far.

In this paper, using a central point and two off-step points in x-direction, we propose
a new two-level implicit method of accuracy two in time and three in space, based on
spline in compression approximations for the solution of differential equation (.). The
proposed method is obtained directly from the consistency condition and is of order three
in space. Difficulties were experienced in the past for the higher-order spline solution of
parabolic equation in polar coordinates. The solution usually deteriorates in the vicinity of
the singularity. A special technique is required to handle such problems, whereas the pro-
posed method is directly applicable to solve singular problems without any modification,
which is the main attraction of our work. Our paper is arranged as follows: In Section , we
discuss the non-polynomial spline in compression function and its properties on a quasi-
variable mesh. In Section , we give derivation of the method. In Section , we generalize
the proposed method for the system of quasi-linear parabolic PDEs. Stability analysis for
model problem is discussed and it is shown that the linear scheme is unconditionally sta-
ble in Section . In this section, we also discuss the stability analysis for a fourth-order
parabolic equation which is consistent with system of D quasi-linear parabolic PDEs.
In Section , numerical results are presented for some benchmark problems with tabu-
lar and graphical illustrations and compare the results with the results obtained by other
researchers. Final remarks are given in Section .

2 Spline in compression approximations and its properties
For the approximate solution of the initial-boundary value problems (.)-(.), we dis-
cretize the space interval [, ] as  = x < x < · · · < xN < xN+ = , where N is a positive
integer. The spline approximation consists of two off-step points xl±/ and a central point
xl , l = , , , . . . , N with two end points x and xN+, where hl = xl – xl–, l = , , . . . , N + ,
be the mesh size in x-direction and k = tj+ – tj > , j = , , , . . . be the mesh spacing
in t-direction. Spatial grid points are defined by xl = x +

∑l
i= hi, l = ()N + , and the

time steps are given by tj = jk, j = ()J , where J is a positive integer. The mesh ratio is
denoted by σl = (hl+/hl) > , l = ()N . The neighboring off-step points are defined as
xl–/ = xl – hl

 and xl+/ = xl + σlhl
 , l = ()N . For σl = , it reduces to the uniform mesh

case. Let Uj
l = u(xl, tj) be the exact solution value of u(x, t) and is approximated by uj

l . For
simplicity, we consider σl = σ (a constant �= ), l = ()N . For σ >  or σ < , the mesh sizes
are either increasing or decreasing in order. Such a mesh is called a quasi-variable mesh.

A non-polynomial spline function of degree  which interpolate uj
l at jth level is given

by

Pj(x) = aj
l + bj

l(x – xl) + cj
l sin w(x – xl) + dj

l cos w(x – xl), xl– ≤ x ≤ xl, (.)
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which satisfy the following conditions at jth time level:
(i) Pj(x) ∈ C[, ], and

(ii) Pj(xl) = Uj
l , Pj(xl–) = Uj

l–, where w is an arbitrary parameter and P′′
j (xl) = Mj

l = Uj
xxl ,

P′′
j (xl±) = Mj

l± = Uj
xxl±, P′′

j (xl±/) = Mj
l±/ = Uj

xxl±/, l = ()N + , j > .
The derivatives of non-polynomial spline function Pj(x) for x ∈ [xl–, xl] are given by

P′
j(x) = bj

l + wcj
l cos w(x – xl) – wdj

l sin w(x – xl), (.)

P′′
j (x) = –w[cj

l sin w(x – xl) + dj
l cos w(x – xl)

]
. (.)

Using the conditions described above with algebraic calculations, we obtain the coeffi-
cients

aj
l = Uj

l +
Mj

l
w , bj

l =
Uj

l – Uj
l–

hl
+

Mj
l

wμl
–

Mj
l–/

wμl
cosμl,

cj
l =

Mj
l–/ – Mj

l cosμl

w sinμl
, dj

l = –
Mj

l
w .

Here μl = whl
 .

Substituting the coefficients aj
l , bj

l , cj
l , dj

l , in equation (.), we obtain the non-polynomial
spline in compression function

Pj(x) = Uj
l +

Mj
l

w +
(

Uj
l – Uj

l–
hl

+
Mj

l
wμl

–
Mj

l–/
wμl

cosμl

)
(x – xl)

+
(Mj

l–/ – Mj
l cosμl

w sinμl

)
sin w(x – xl) –

Mj
l

w cos w(x – xl), x ∈ [xl–, xl]. (.)

Similarly, we get

Pj(x) = Uj
l +

Mj
l

w +
(

Uj
l+ – Uj

l
hl+

–
Mj

l
wμl+

+
Mj

l+/
wμl+

cosμl+

)
(x – xl)

+
(Mj

l cosμl+ – Mj
l+/

w sinμl+

)
sin w(x – xl)

–
Mj

l
w cos w(x – xl), x ∈ [xl, xl+]. (.)

On differentiating equations (.) and (.), we get

P′
j(x) =

Uj
l – Uj

l–
hl

+
Mj

l
wμl

–
Mj

l–/
wμl

cosμl

+
(Mj

l–/ – Mj
l cosμl

w sinμl

)
cos w(x – xl)

+
Mj

l
w sin w(x – xl), x ∈ [xl–, xl] (.)
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and

P′
j(x) =

Uj
l+ – Uj

l
hl+

–
Mj

l
wμl+

+
Mj

l+/
wμl+

cosμl+

+
(Mj

l cosμl+ – Mj
l+/

w sinμl+

)
cos w(x – xl)

+
Mj

l
w sin w(x – xl), x ∈ [xl, xl+]. (.)

Using the continuity of the first derivative, that is, P′
j(xl–) = P′

j(xl+),we obtain the con-
sistency condition

Uj
l+ – ( + σ )Uj

l + σUj
l–

σh
l

=
[
αlM

j
l+/ + (βl + βl)M

j
l + γlM

j
l–/

]
+ Tj

l , l = ()N , (.)

where

αl =
σ

μ
l+

[
μl+

sinμl+
– cosμl+

]
=

σ


–

σ μ
l


+ O

(
μ

l
)
, (.a)

βl =
σ

μ
l+

( – μl+ cotμl+) =
σ


+

σ μ
l


+ O

(
μ

l
)
, (.b)

βl =


μ
l

( – μl cotμl) =



+
μ

l


+ O
(
μ

l
)
, (.c)

γl =


μ
l

[
μl

sinμl
– cosμl

]
=




–
μ

l


+ O
(
μ

l
)
, (.d)

and Tj
l = O(h

l ).
On equating the coefficients of Mj

l in (.), we obtain the condition

αl + βl + βl + γl =
( + σ )


+ O

(
μ

l
)
. (.)

Using (.a)-(.d) in equation (.), we get the consistency condition in the following
form:

Uj
l+ – ( + σ )Uj

l + σUj
l–

= σh
l

[(
σ


–

σ μ
l



)
Mj

l+/ +
( + σ )


Mj

l +
( + σ )μ

l


Mj
l +

(



–
μ

l


)
Mj

l–/

]

+ O
(
h

l
)

=
σh

l


[
σMj

l+/ +
( + σ )


Mj

l + Mj
l–/

]

–
σh

l μ

l


[
σ Mj

l+/ + Mj
l–/ –

(
 + σ )Mj

l
]

+ O
(
h

l
)
. (.)
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Since the term σh
l μ

l
 [σ Mj

l+/ + Mj
l–/ – ( + σ )Mj

l] is of O(h
l ), simplifying (.), we

obtain the consistency condition

Uj
l+ – ( + σ )Uj

l + σUj
l– =

σh
l



[
σMj

l+/ +
( + σ )


Mj

l + Mj
l–/

]
+ O

(
h

l
)
. (.)

Further, substituting the values of (.a)-(.d) in (.) and neglecting O(μ
l ) terms, we

get

tan(μl/) = μl/. (.)

The above equation has an infinite number of roots, the smallest positive non-zero root
being given by μl = μ = .. When w → , then (αl,βl,βl,γl) → ( σ

 , σ
 , 

 , 
 ), and

equation (.) reduces to a cubic spline relation.
Further, from equations (.)-(.), we get

P′
j(xl–/) =

Uj
l – Uj

l–
hl

+
(Mj

l – Mj
l–/ cosμl)

wμl

+
(Mj

l–/ – Mj
l cosμl)

w sinμl
cosμl –

Mj
l

w
sinμl, (.)

and

P′
j(xl+/) =

Uj
l+ – Uj

l
σhl

–
(Mj

l – Mj
l+/ cosμl+)

wμl+

+
(Mj

l cosμl+ – Mj
l+/)

w sinμl+
cosμl+ +

Mj
l

w
sinμl+. (.)

Simplifying (.) and (.), we obtain

P′
j(xl–/) =

Uj
l – Uj

l–
hl

–
hl


(
βlM

j
l – γlM

j
l–/

)
, (.)

P′
j(xl+/) =

Uj
l+ – Uj

l
σhl

+
hl


(
βlM

j
l – αlM

j
l+/

)
. (.)

Equations (.) and (.) are two important properties of non-polynomial spline in
compression function Pj(x).

3 Derivation of the numerical method
For the derivation of the method, we simply follow the approaches given by Mohanty [].

At the grid point (xl, tj), let us denote

Upq =
∂p+qU
∂xp ∂tq , α

j
l =

∂f
∂u

, β
j
l =

∂f
∂ux

, γ
j
l =

∂f
∂ut

, δ
j
l =

∂f
∂t

. (.)

Differentiating the differential equation (.) partially with respect to ‘t’ at the grid point
(xl, tj), we obtain a relation

–γ
j
l U = δ

j
l + Uα

j
l + Uβ

j
l – U. (.)
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At the grid point (xl, tj), we can write the differential equation as

Mj
l = f

(
xl, tj, Uj

l , Uj
xl, Uj

tl
)
. (.)

Similarly,

Mj
l+/ = f

(
xl+/, tj, Uj

l+/, Uj
xl+/, Uj

tl+/
)
, (.)

Mj
l–/ = f

(
xl–/, tj, Uj

l–/, Uj
xl–/, Uj

tl–/
)
. (.)

Since Mj
l and Mj

l±/contain the first derivative terms, from the consistency condition
(.), the non-polynomial spline in compression method for the parabolic equation (.)
can be written as

[
Ūj

l+ – ( + σ )Ūj
l + σ Ūj

l–
]

=
σh

l


[
σM̂j

l+/ +
( + σ )


M̂j

l + M̂j
l–/

]
+ T̂ j

l , (.)

where T̂ j
l ≡ O(kh

l + h
l ), provided σ �=  and we use the following approximations:

t̄j = tj + θk, (.)

Ūj
l = θUj+

l + ( – θ )Uj
l = Uj

l + θkU + O
(
k), (.)

Ūj
l+ = θUj+

l+ + ( – θ )Uj
l+ = Uj

l+ + θk(U + σhlU) + O
(
k), (.)

Ūj
l– = θUj+

l– + ( – θ )Uj
l– = Uj

l– + θk(U – hlU) + O
(
k), (.)

Ūj
l+/ =



(
Ūj

l+ + Ūj
l
)

= Uj
l+/ + θkU +

σh
l


U + O

(
khl + h

l + k), (.)

Ūj
l–/ =



(
Ūj

l– + Ūj
l
)

= Uj
l–/ + θkU +

h
l


U + O

(
khl + h

l + k), (.)

Ūj
tl =


k
(
Uj+

l – Uj
l
)

= U +
k


U + O
(
k), (.)

Ūj
tl+ =


k
(
Uj+

l+ – Uj
l+

)
= Uj

tl+ +
k


U + O
(
khl + k), (.)

Ūj
tl– =


k
(
Uj+

l– – Uj
l–

)
= Uj

tl– +
k


U + O
(
khl + k), (.)

Ūj
tl+/ =


k

(
Uj+

l+ + Uj+
l – Uj

l+ – Uj
l
)

= Uj
tl+/ +

k


U +
σ h

l


U + O
(
khl + h

l + k), (.)

Ūj
tl–/ =


k

(
Uj+

l– + Uj+
l – Uj

l– – Uj
l
)

= Uj
tl–/ +

k


U +
h

l


U + O
(
khl + h

l + k), (.)

Ūj
xl =

Ūj
l+ – ( – σ )Ūj

l – σ Ūj
l–

hlσ (σ + )
= U +




σh
l U + θkU + O

(
khl + h

l
)
, (.)

Ūj
xl+/ =

Ūj
l+ – Ūj

l
σhl

= Uj
xl+/ +




σ h
l U + θkU + O

(
khl + k + h

l
)
, (.)
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Ūj
xl–/ =

Ūj
l – Ūj

l–
hl

= Uj
xl–/ +




h
l U + θkU + O

(
khl + k + h

l
)
, (.)

Ūj
xxl =

[Ūj
l+ – ( + σ )Ūj

l + σ Ūj
l–]

σ (σ + )h
l

= Uj
xxl + θkU +

(σ – )hl


U + O

(
k + h

l
)
, (.)

where ‘θ ’ is a parameter to be determined.
With the help of the approximations (.)-(.), we can simplify the following approx-

imations:

M̄j
l = f

(
xl, t̄j, Ūj

l , Ūj
xl, Ūj

tl
)

= Mj
l + θk

(
δ

j
l + Uα

j
l + Uβ

j
l
)

+
σ h

l


Uβ
j
l

+
k


Uγ
j
l + O

(
khl + h

l + k), (.)

M̄j
l+/ = f

(
xl+/, t̄j, Ūj

l+/, Ūj
xl+/, Ūj

tl+/
)

= Mj
l+/ + θk

(
δ

j
l + Uα

j
l + Uβ

j
l
)

+
σ h

l


(
Uα

j
l + Uβ

j
l + Uγ

j
l
)

+
k


Uγ
j
l + O

(
khl + h

l + k), (.)

M̄j
l–/ = f

(
xl–/, t̄j, Ūj

l–/, Ūj
xl–/, Ūj

tl–/
)

= Mj
l–/ + θk

(
δ

j
l + Uα

j
l + Uβ

j
l
)

+
h

l


(
Uα

j
l + Uβ

j
l + Uγ

j
l
)

+
k


Uγ
j
l + O

(
khl + h

l + k). (.)

From the properties of spline function given by (.) and (.), we define the approxi-
mations:

Ûj
xl–/ =

Ūj
l – Ūj

l–
hl

–
hl


(
βlM̄

j
l – γlM̄

j
l–/

)
, (.)

Ûj
xl+/ =

Ūj
l+ – Ūj

l
σhl

+
hl


(
βlM̄

j
l – αlM̄

j
l+/

)
. (.)

With the help of the approximations (.)-(.), (.)-(.), and simplifying (.)
and (.), we obtain

Ûj
xl–/ = Uj

xl–/ + θkU + O
(
k + khl + h

l
)
, (.)

Ûj
xl+/ = Uj

xl+/ + θkU + O
(
k + khl + h

l
)
. (.)

Now, we need O(khl + h
l + k)-approximations for Uj

l , Uj
xl and O(k + h

l )-approximation
for Ūj

tl . Let

Ûj
l = Ūj

l + ah
l Ū j

xxl, (.)
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Ûj
xl = Ūj

xl + bhl
(
M̄j

l+/ – M̄j
l–/

)
, (.)

Ûj
tl = Ūj

tl + c
(
Ūj

tl+ – ( + σ )Ūj
tl + σ Ūj

tl–
)
, (.)

where ‘a’, ‘b’ and ‘c’ are parameters to be determined.
With the help of the approximation (.), (.), (.), from (.) we obtain

Ûj
xl = Uj

xl + θkU +
h

l


[
σ + b( + σ )

]
U + O

(
k + khl + h

l
)
, σ �= . (.)

Equating the coefficient of h
l to zero in equation (.), we obtain b = –σ

(+σ ) and equation
(.) reduces to

Ûj
xl = Uj

xl + θkU + O
(
k + khl + h

l
)
, σl �= . (.)

Similarly, simplifying (.) and (.), we obtain

Ûj
l = Uj

l + θkU + ah
l U + O

(
k + kh

l + h
l
)
, (.)

Ûj
tl = Uj

tl +
k


U + cσ ( + σ )
h

l


U + O
(
k + h

l
)
, σ �= . (.)

Further, we define

M̂j
l = f

(
xl, t̄j, Ûj

l , Ûj
xl, Ûj

tl
)
, (.)

M̂j
l±/ = f

(
xl±/, t̄j, Ūj

l±/, Ûj
xl±/, Ūj

tl±/
)
. (.)

With the help of the approximations (.), (.)-(.), (.)-(.), (.)-(.), from
(.)-(.), we obtain

M̂j
l = Mj

l + θk
(
δ

j
l + Uα

j
l + Uβ

j
l
)

+
k


Uγ
j
l

+
h

l


(
aUα

j
l + cσ ( + σ )Uγ

j
l
)

+ O
(
k + khl + h

l
)
, (.)

M̂j
l+/ = Mj

l+/ + θk
(
δ

j
l + Uα

j
l + Uβ

j
l
)

+
k


Uγ
j
l

+
σ h

l


(
Uα

j
l + Uγ

j
l
)

+ O
(
k + khl + h

l
)
, (.)

M̂j
l–/ = Mj

l–/ + θk
(
δ

j
l + Uα

j
l + Uβ

j
l
)

+
k


Uγ
j
l

+
h

l


(
Uα

j
l + Uγ

j
l
)

+ O
(
k + khl + h

l
)
. (.)

Using the approximation (.)-(.), (.)-(.), from (.), we obtain

(
Uj

l+ – ( + σ )Uj
l + σUj

l–
)

+ O
(
kh

l + h
l
)

=
σh

l


[
σMj

l+/ +
( + σ )


Mj

l + Mj
l–/ +

( + σ )


θk
(
δ

j
l + Uα

j
l + Uβ

j
l – U

)
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+
k( + σ )


Uγ

j
l

+
h

l


{(
 + σ ) + a( + σ )

}
Uα

j
l

+
h

l


{(
 + σ ) + cσ ( + σ )}Uγ

j
l

]
+ T̂ j

l . (.)

Now with the help of the consistency condition (.) and equation (.), and from
(.), we obtain the local truncation error

T̂ j
l =

–σh
l



[
( + σ )



(



– θ

)
kUγ

j
l +

h
l


{(

 + σ ) + a( + σ )
}

Uα
j
l

+
h

l


{(
 + σ ) + cσ ( + σ )}Uγ

j
l

]
+ O

(
kh

l + h
l
)
, σ �= . (.)

The proposed non-polynomial spline in compression method (.) to be of O(khl + h
l ),

the coefficients of kh
l and h

l in (.) must be zero.
Thus we obtain θ = 

 , a = –(–σ+σ)
 , c = –(–σ+σ)

σ (+σ ) and the local truncation error given by
(.) reduces to T̂ j

l = O(kh
l + h

l ).

4 Method extended to a system of quasi-linear parabolic equations
We now extend our method to the system of quasi-linear parabolic PDEs of the form

∂u
∂x = F, (.)

where u = [u(), u(), . . . , u(n)]T , F = [f (), f (), . . . , f (n)]T , T denotes the transpose of the ma-
trix.

Throughout this section, we consider

f (i) = f (i)(x, t, u(), u(), . . . , u(n), u()
x , u()

x , . . . , u(n)
x , u()

t , u()
t , . . . , u(n)

t
)
, i = ()n.

The initial and boundary conditions are given by

u(i)(x, ) = u(i)
 (x),  ≤ x ≤ , (.)

u(i)(, t) = g(i)
 (t), u(i)(, t) = g(i)

 (t), t > , (.)

where we assume that the functions u(i)
 (x), g(i)

 (t), g(i)
 (t) are sufficiently smooth.

Let U (i)j
l and u(i)j

l be the exact and approximate solution of the ith PDE of the system (.)
at each grid point (xl, tj). At the grid point (xl, tj), we define the following approximations:

t̄j = tj +
k


, (.)

Ū (i)j
l =



(
U (i)j+

l + U (i)j
l

)
, (.)

Ū (i)j
l+ =



(
U (i)j+

l+ + U (i)j
l+

)
, (.)
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Ū (i)j
l– =



(
U (i)j+

l– + U (i)j
l–

)
, (.)

Ū (i)j
l+/ =



(
Ū (i)j

l+ + Ū (i)j
l

)
, (.)

Ū (i)j
l–/ =



(
Ū (i)j

l– + Ū (i)j
l

)
, (.)

Ū (i)j
tl =

U (i)j+
l – U (i)j

l
k

, (.)

Ū (i)j
tl+ =

U (i)j+
l+ – U (i)j

l+
k

, (.)

Ū (i)j
tl– =

U (i)j+
l– – U (i)j

l–
k

, (.)

Ū (i)j
tl+/ =

Ū (i)j
tl+ + Ū (i)j

tl


, (.)

Ū (i)j
tl–/ =

Ū (i)j
tl– + Ū (i)j

tl


, (.)

Ū (i)j
xl =

Ū (i)j
l+ – ( – σ )Ū (i)j

l – σ Ū (i)j
l–

hlσ (σ + )
, (.)

Ū (i)j
xl+/ =

Ū (i)j
l+ – Ū (i)j

l
σhl

, (.)

Ū (i)j
xl–/ =

Ū (i)j
l – Ū (i)j

l–
hl

, (.)

Ū (i)j
xxl =

[Ū (i)j
l+ – ( + σ )Ū (i)j

l + σ Ū (i)j
l–]

σ (σ + )h
l

. (.)

Further, we define

M(i)j
l = f (i)(xl, t̄j, Ū ()j

l , Ū ()j
l , . . . , Ū (n)j

l , Ū ()j
xl , Ū ()j

xl , . . . , Ū (n)j
xl , Ū ()j

tl , Ū ()j
tl , . . . , Ū (n)j

tl
)
, (.)

M(i)j
l±/ = f (i)(xl±/, t̄j, Ū ()j

l±/, Ū ()j
l±/, . . . , Ū (n)j

l±/, Ū ()j
xl±/, Ū ()j

xl±/, . . . ,

Ū (n)j
xl±/, Ū ()j

tl±/, Ū ()j
tl±/, . . . , Ū (n)j

tl±/
)
, (.)

Û (i)j
l = Ū (i)j

l –
( – σ + σ )h

l


Ū (i)j
xxl , (.)

Û (i)j
xl = Ū (i)j

xl –
σhl

( + σ )
(
M(i)j

l+/ – M(i)j
l–/

)
, (.)

Û (i)j
xl+/ =

Ū (i)j
l+ – Ū (i)j

l
σhl

+
hl


(
βlM

(i)j
l – αlM

(i)j
l+/

)
, (.)

Û (i)j
xl–/ =

Ū (i)j
l – Ū (i)j

l–
hl

–
hl


(
βlM

(i)j
l – γlM

(i)j
l–/

)
, (.)

Û (i)j
tl = Ū (i)j

tl –
( – σ + σ )
σ ( + σ )

(
Ū (i)j

tl+ – ( + σ )Ū (i)j
tl + σ Ū (i)j

tl–
)
, (.)

where the values of αl , βl , βl and γl are already defined in Section .
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Finally, let

M̂(i)j
l = f (i)(xl, t̄j, Û ()j

l , Û ()j
l , . . . , Û (n)j

l , Û ()j
xl , Û ()j

xl , . . . , Û (n)j
xl , Û ()j

tl , Û ()j
tl , . . . , Û (n)j

tl
)
, (.)

M̂(i)j
l±/ = f (i)(xl±/, t̄j, Ū ()j

l±/, Ū ()j
l±/, . . . , Ū (n)j

l±/, Û ()j
xl±/, Û ()j

xl±/, . . . ,

Û (n)j
xl±/, Ū ()j

tl±/, Ū ()j
tl±/, . . . , Ū (n)j

tl±/
)
. (.)

Then at each grid point (xl, tj), each differential equation of the system (.) is discretized
by

[
Ū (i)j

l+ – ( + σ )Ū (i)j
l + σ Ū (i)j

l–
]

=
σh

l


[
σM̂(i)j

l+/ +
( + σ )


M̂(i)j

l + M̂(i)j
l–/

]
+ T̂ (i)j

l , i = ()n, (.)

where T̂ (i)j
l = O(kh

l + h
l ), provided σ �= .

5 Application and stability analysis
Now let us consider the one-dimensional Burgers equation in polar coordinates


Re

(
urr +

p
r

ur –
p
r u

)
= ut + uur + g(r, t),  < r < , t > , (.)

where Re >  denotes the Reynolds number. For p =  and , the above equation represents
Burgers’ equation in cylindrical and spherical coordinates, respectively. It is the simplest
model for the differential equations of fluid flow. It is used in fluid dynamics as a simplified
model for turbulence, boundary layer behavior and shock wave formation. The viscous
Burgers equation in polar coordinates is a useful test equation for investigating various
numerical schemes, which are then applied to more complicated systems of partial differ-
ential equations. It shows a structure roughly similar to that of Navier-Stokes equations
due to the form of the nonlinear convection term and the occurrence of the viscosity term.
So it can be considered as a simplified form of the one-space dimensional Navier-Stokes
equation. If we suppress the variables θ , z and θ , ϕ from the Navier-Stokes equations of
motion in cylindrical polar coordinates (r, θ , z, t) and spherical polar coordinates (r, θ ,ϕ, t),
respectively (see []), we obtain Burgers’ equation (.) in polar coordinates. The high-
accuracy numerical solution of Burgers’ equation in polar coordinates plays an important
role for viscous fluid flow. It has been experienced in the past that the high-accuracy nu-
merical solution usually deteriorates in the vicinity of the singular point say r = , whereas
the proposed spline method is applicable to D nonlinear parabolic equations irrespective
of coordinates, that is, the proposed spline method is directly applicable to solve equa-
tion (.). We do not require any modification in the spline scheme unlike other methods
discussed in [, ]. Thus the numerical schemes for problems in polar coordinates are
of importance in this discussion.

Re-write equation (.) as

εurr = ut + Q(r)ur + uur + S(r)u + g(r, t), (.)

where Re = ε– >  represents a Reynolds number and Q(r) = –pε

r , S(r) = pε

r .
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Replacing the variable ‘x’ by ‘r’ and applying the method (.) to the differential equation
(.), we obtain

ε
[
Ūj

l+ – ( + σ )Ūj
l + σ Ūj

l–
]

=
σh

l


[
σM̂j

l+/ +
( + σ )


M̂j

l + M̂j
l–/

]
+ T̂ j

l , (.)

where

M̂j
l = Ûj

tl + QlÛ
j
rl + Ûj

l Û
j
rl + SlÛ

j
l + ḡj

l ,

M̂j
l±/ = Ūj

tl±/ + Ql±/Ûj
rl±/ + Ūj

l±/Ûj
rl±/ + Sl±/Ūj

l±/ + ḡj
l±/,

where Ūj
l±/, Ūj

tl±/, Ûj
l , Ûj

rl , Ûj
rl±/ and Ûj

tl are defined in Section  and Ql = Q(rl),
Ql±/ = Q(rl±/), Sl = S(rl), Sl±/ = S(rl±/), ḡl = g(rl, tj + k

 ), ḡl±/ = g(rl±/, tj + k
 ).

Note that the scheme (.) is of O(khl + h
l ) for the solution of differential equation (.)

and is free from the terms /(rl±), thus, it is very easily solved for l = ()N ; j = , , , . . . ,
in the solution region without any modification. We do not require any fictitious point to
solve the singular problem.

For stability, we consider the -D linear parabolic equation with variable coefficients

νuxx = ut + D(x)ux + f (x, t),  < x < , t > , (.)

where ν >  and D and f are sufficiently smooth functions. Applying the method (.) to
the differential equation (.) on a uniform mesh (that is, when hl+ = hl = h), we obtain
the following scheme for the solution of the above differential equation:

ν
(
Ūj

l+ – Ūj
l + Ūj

l–
)

=
h


[
M̂j

l+/ + M̂j
l–/ + M̂j

l
]

+ T̂ j
l , (.)

where

M̂j
l = Ûj

tl + DlÛ
j
xl + f̄ j

l , (.)

M̂j
l+/ = Ūj

tl+/ + Dl+/Ûj
xl+/ + f̄ j

l+/, (.)

M̂j
l–/ = Ūj

tl–/ + Dl–/Ûj
xl–/ + f̄ j

l–/, (.)

where

Ûj
xl–/ =

Ūj
l – Ūj

l–
h

–
h


(
β̄M̄j

l – ᾱM̄j
l–/

)
,

Ûj
xl+/ =

Ūj
l+ – Ūj

l
h

+
h


(
β̄M̄j

l – ᾱM̄j
l+/

)
,

ᾱ =


μ

[
μ

sinμ
– cosμ

]
, β̄ =


μ ( – μ cotμ)

and f̄ j
l = f (xl, tj + k

 ), . . . .
The approximations associated with (.)-(.) are already defined in Section . In order

to discuss the stability, we require the following approximations:

Dl±/ = Dl ± h


Dxl +
h


Dxxl ± O

(
h), (.)
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f̄l±/ = f̄ ± h


f̄x +
h


f̄xx ± O

(
h), (.)

ᾱ =



+ O
(
h), (.)

β̄ =



+ O
(
h). (.)

With the help of the approximations (.)-(.) and (.)-(.), neglecting higher-order
terms, from (.), we obtain

νδ
x Ūj

l =
h



[(
 + δ

x
)
Ūj

tl –
hDl

ν
(μxδx)Ūj

tl

]

+
h



[
Dxl –

D
l

ν

]
δ

x Ūj
l +

h


[
Dl + h

(
Dxxl –

DlDxl

ν

)]
(μxδx)Ūj

l

+
h



[
f̄ j

l + h
(

f̄ j
xxl –

Dlf̄
j

xl
ν

)]
+ T̂ j

l , (.)

where δxUj
l = (Uj

l+/ – Uj
l–/) and μxUj

l = 
 (Uj

l+/ + Uj
l–/).

Multiplying (.) throughout by λ = (k/h) and neglecting the local truncation error
term, we have

[
 +




( – λν + λP)δ
x –




(hQ – λP)(μxδx)
]

uj+
l

=
[

 +



( + λν – λP)δ

x –



(hQ + λP)(μxδx)

]
uj

l + FF , (.)

where

P =
h



[
Dxl –

D
l

ν

]
, P =

h


[
Dl + h

(
Dxxl –

DlDxl

ν

)]
, Q =

Dl

ν
,

FF =
–k


[
f̄ j

l + h
(

f̄ j
xxl –

Dl

ν
f̄ j
xl

)]
.

To study the stability of scheme (.), we apply the von Neumann linear stability anal-
ysis. Let ε

j
l = ξ jeiηl be the error at the grid point (xl, tj), where ξ is a complex number and η

is a real number. Substituting ε
j
l = ξ jeiηl into the homogeneous part of the error equation

of (.), we obtain the amplification factor ξ as

ξ =
( – 

 ( + λν – λP) sin η

 – i
 (hQ + λP) sinη)

( – 
 ( – λν + λP) sin η

 – i
 (hQ – λP) sinη)

=
 + (X + iY )
 – (X + iY )

, (.)

where

X =
–λ[( 

 (ν – P) sin η

 )( – 
 sin η

 ) – h
 PQ sin η]

( – 
 sin η

 ) + h
 Q

 sin η
.
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For stability, it is required that |ξ | ≤ . Imposing this condition on (.), we get

∣∣
∣∣
 + (X + iY )
 – (X + iY )

∣∣
∣∣



≤ 

⇒ ( + X) + Y  ≤ ( – X) + Y 

⇒ X ≤ .

Above inequality is satisfied for all values of η and, D(x) = –αν
x , α =  and . Hence the

scheme (.) is unconditionally stable.
Next, we consider the fourth-order parabolic equations

(
ε

∂

∂x –
∂

∂t

)

u ≡ ε ∂u
∂x – ε

∂u
∂x ∂t

+
∂u
∂t = f (x, t),  < x < , t > , (.)

where ε >  and f is sufficiently smooth function.
The initial values of u, ut are prescribed at t =  and boundary values of u, uxx are pre-

scribed at x =  and x = . Since the grid lines are parallel to the coordinate axes and the
values of u, uxx are exactly known on the boundary, the values of successive tangential
partial derivatives of u, uxx, i.e., the values of ut ,uxxt , . . . , are also known on the boundary
x =  and x = . Similarly, the values of ux, uxx, utx, . . . are also known at t = . Hence the
values of uxx(x, ) – ut(x, ), uxx(, t) – ut(, t) and uxx(, t) – ut(, t) are known exactly on
the boundary.

Now, equation (.) can be re-written as

εuxx = ut + v, (.a)

εvxx = vt + f (x, t). (.b)

Applying the numerical method (.) to the above system of equations and neglecting
local truncation errors, we obtain the following non-polynomial spline in compression
schemes in coupled form:

ε
(
ūj

l+ – ūj
l + ūj

l–
)

=
h


[
ūj

tl+ 


+ ūj
tl– 


+ ûj

tl + v̄j
l+ 


+ v̄j

l– 


+ v̂j
l
]
, (.a)

ε
(
v̄j

l+ – v̄j
l + v̄j

l–
)

=
h


[
v̄j

tl+ 


+ v̄j
tl– 


+ v̂j

tl
]

+
h


[
f̄ j
l+/ + f̄ j

l–/ + f̄ j
l
]
. (.b)

Using the approximations defined in Section , and multiplying (.a) and (.b)
throughout by λ = (k/h), we get

λεδ
x
(
uj+

l + uj
l
)

=
[(

uj+
l+ + uj+

l + uj+
l–

)
–

(
uj

l+ + uj
l + uj

l–
)]

+
k

(
vj+

l+ + vj+
l + vj+

l–
)

+
k

(
vj

l+ + vj
l + vj

l–
)
, (.a)

λεδ
x
(
vj+

l + vj
l
)

=
[(

vj+
l+ + vj+

l + vj+
l–

)
–

(
vj

l+ + vj
l + vj

l–
)]

+ k
[
f̄ j
l+/ + f̄ j

l–/ + f̄ j
l
]
. (.b)
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Neglecting the homogeneous part, the above system in matrix form may be written as

[
A A

 A

][
uj+

vj+

]

=

[
B B

 B

][
uj

vj

]

,

or

AYj+ = BYj, (.)

where Aij and Bij, i, j = ,  are N × N tri-diagonal matrices are given by

A = [, , ] – λε[, –, ], A =
k


[, , ],

B = [, , ] + λε[, –, ], B = –
k


[, , ],

and

A =

[
A A

 A

]

, B =

[
B B

 B

]

, Yj =

[
uj

vj

]

, Yj+ =

[
uj+

vj+

]

.

Assume that the matrix A is non-singular. Pre-multiplying both sides of (.) by A–,
we get

Yj+ = A–BYj. (.)

The eigenvalues of N × N tri-diagonal matrix [a, b, c] are defined by

λs = b + 
√

ac cos
sπ

N + 
= b + 

√
ac

(
 –  sin ψ

)
,

ψ =
sπ

N + 
, s = ()N .

(.)

Using equation (.), the eigenvalues of the tri-diagonal matrices A, A, B and B

are given by

 –  sin ψ + λε sin ψ ,
k

[
 –  sin ψ

]
,

 –  sin ψ – λε sin ψ and
–k


[
 –  sin ψ

]
,

respectively.
The characteristic equations of the matrices A and B are given by

∣
∣∣
∣∣
 –  sin ψ + λε sin ψ – ξ k

 [ –  sin ψ]
  –  sin ψ + λε sin ψ – ξ

∣
∣∣
∣∣

= , (.)

and
∣
∣∣
∣∣
 –  sin ψ – λε sin ψ – η k

 [ –  sin ψ]
  –  sin ψ – λε sin ψ – η

∣
∣∣
∣∣

= , (.)
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respectively. Hence the eigenvalues of A are given by ξ =  –  sin ψ + λε sin ψ , and
the eigenvalues of B are given by η =  –  sin ψ – λε sin ψ .

Since A– and B commute with each other, the eigenvalues of A–B are given by

ρ =
 –  sin ψ – λε sin ψ

 –  sin ψ + λε sin ψ
. (.)

For stability, it is required that |ρ| ≤  for all values of ψ . Imposing this condition on
(.) yields

– ≤  –  sin ψ – λε sin ψ

 –  sin ψ + λε sin ψ
≤ . (.)

Both inequalities of (.) are true for all values of ψ . Hence the scheme (.a)-(.b)
is unconditionally stable.

6 Numerical illustrations
In this section, we have solved several benchmark problems using the proposed method
based on spline in compression and compared the results with the results obtained by
other researchers. The exact solutions are provided in each case. The right hand side ho-
mogeneous functions, initial and boundary conditions are obtained using the exact so-
lution as a test procedure. The linear equations are solved using a tri-diagonal solver,
whereas nonlinear equations are solved using the Newton-Raphson method. While us-
ing the Newton-Raphson method, we choose  as the initial guess. All the computations
are carried out using MATLAB codes.

From equation (.), we have obtained the value μl = μl+ = .. In order to
compute the proposed method (.), we have evaluated the values of

αl =
σ

μ
l+

[
μl+

sinμl+
– cosμl+

]
, βl =

σ

μ
l+

[ – μl+ cotμl+],

βl =


μ
l

[ – μl cotμl] and γl =


μ
l

[
μl

sinμl
– cosμl

]

using the values of μl and μl+.
The given interval [, ] is divided into (N + ) parts with  = x < x < · · · < xN < xN+ = ,

where hl = xl – xl–, l = , , . . . , N +  and σ = hl+/hl > , l = , , . . . , N .
We can write

 = xN+ – x = (xN+ – xN ) + (xN – xN–) + · · · + (x – x)

= hN+ + hN + · · · + h =
(
σ N + σ N– + · · · + σ  + σ

)
h. (.)

Thus,

h = /
(
σ + σ  + · · · + σ N)

. (.)

Alternatively, (.) can be re-written as

h = ( – σ )/
(
 – σ N+). (.)
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By prescribing the total number of mesh points (N + ), we can compute the value of
h from (.) or (.). This is the first mesh spacing on the left and remaining mesh is
determined by hl+ = σhl , l = , , . . . , N .

Example  The one-dimensional GBFE is given by the following form:

εuxx = ut + αuδux + βu
(
uδ – 

)
, a ≤ x ≤ b, t > , (.)

where the real valued function u = u(x, t) is a sufficiently smooth function of the space and
time variables; [a, b] = [, ], and α,β are real parameters and δ is a positive integer.

The initial condition associated with differential equation (.) is given by

u(x, ) =
[

γ


+

γ


tanh(ax)

] 
δ

, a ≤ x ≤ b, (.)

and the boundary conditions associated with (.) are given by

u(a, t) =
[

γ


+

γ


tanh

(
a(a – at)

)]

δ

, t ≥ , (.)

u(b, t) =
[

γ


+

γ


tanh

(
a(b – at)

)]

δ

, t ≥ . (.)

The exact solution [] of (.) is given by

u(x, t) =
[

γ


+

γ


tanh

(
a(x – at)

)]

δ

, t ≥ , (.)

where

ε = , a =
–αδ

( + δ)
, a =

α

( + δ)
+

β( + δ)
α

.

This problem is solved with N= , , k = . and mesh ratio σ = . by present
method. The following cases have been discussed for different values of the parameters
α,β ,γ and δ, which are involved in equation (.).

Case .: We choose α = ., β = ..
Case .(a): In this case, results are computed for different time levels and δ = , . The

maximum absolute errors are tabulated for x = ., ., . in Tables -.
Case .(b): In this case, results are computed for different time levels and δ = , , . The

maximum absolute errors are tabulated for t = , , , ,  in Table .
Case .: We consider α = , β = , N = . In this case, results are computed for differ-

ent time levels t = ., ., ., ., . and δ = , , . The maximum absolute errors are
tabulated in Tables -.

Case .: We consider α = , β = , N = . In this case, results are computed for different
time levels and δ = , , . The maximum absolute errors are tabulated for x = ., ., .
in Tables -.
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Table 1 Example 1: Case 1.1(a)(i): Maximum absolute errors at δ = 1

x t Method given in [23] Method given in [5] Proposed method (3.6)

0.1 0.001 1.11(–16) 5.55(–16) 5.55(–17)
0.005 9.43(–16) 1.77(–15) 7.77(–16)
0.010 4.21(–15) 2.55(–15) 3.13(–14)

0.5 0.001 1.11(–16) 3.88(–16) 1.66(–16)
0.005 4.44(–16) 2.60(–15) 1.38(–15)
0.010 1.66(–16) 4.99(–15) 8.16(–15)

0.9 0.001 0 1.05(–15) 5.55(–17)
0.005 1.99(–15) 3.44(–15) 0
0.010 5.05(–15) 5.16(–15) 4.44(–16)

Table 2 Example 1: Case 1.1 (a)(ii): Maximum absolute errors at δ = 4

x t Method given in [23] Method given in [5] Proposed method (3.6)

0.1 0.001 1.11(–16) 3.76(–14) 1.11(–16)
0.005 2.22(–16) 1.43(–13) 9.99(–16)
0.010 6.66(–16) 2.39(–13) 1.75(–16)

0.5 0.001 1.12(–16) 3.20(–14) 1.11(–16)
0.005 3.33(–16) 1.61(–13) 3.33(–16)
0.010 3.33(–16) 3.22(–13) 2.88(–15)

0.9 0.001 1.11(–16) 3.84(–14) 1.11(–16)
0.005 5.55(–16) 1.45(–13) 1.11(–16)
0.010 1.11(–15) 2.41(–13) 2.22(–16)

Table 3 Example 1: Case 1.1(b): Maximum absolute errors

t δ = 1 δ = 4 δ = 8

1.0 3.44(–15) 9.95(–14) 9.55(–13)
2.0 1.66(–15) 9.61(–14) 9.54(–13)
3.0 1.33(–15) 9.73(–14) 9.61(–13)
4.0 1.31(–15) 9.76(–14) 9.88(–13)
5.0 1.22(–15) 9.78(–14) 9.89(–13)

Table 4 Example 1: Case 1.2(a): Maximum absolute errors at δ = 1

t Method given in [24] Method given in [5] Proposed method (3.6)

0.2 5.5574(–07) 3.5315(–07) 3.4453(–09)
0.4 9.0550(–07) 1.7573(–07) 2.9736(–09)
0.6 2.1880(–06) 1.2889(–07) 2.1401(–09)
0.8 2.9331(–06) 3.8543(–07) 1.5383(–09)
1.0 3.0145(–06) 6.1749(–07) 1.2262(–09)

Table 5 Example 1: Case 1.2(b): Maximum absolute errors at δ = 2

t Method given in [24] Method given in [5] Proposed method (3.6)

0.2 2.5610(–06) 7.9688(–07) 2.9321(–07)
0.4 4.2430(–06) 1.4540(–06) 3.9463(–07)
0.6 3.5684(–06) 1.8274(–06) 3.7075(–07)
0.8 1.4651(–06) 1.8775(–06) 2.7398(–07)
1.0 5.5423(–06) 1.6771(–06) 1.7040(–07)

Table 6 Example 1: Case 1.2(c): Maximum absolute errors at δ = 4

t Method given in [24] Method given in [5] Proposed method (3.6)

0.2 1.7616(–06) 3.2650(–06) 5.0521(–07)
0.4 4.1735(–07) 3.5607(–06) 3.8995(–07)
0.6 2.4240(–06) 2.5228(–06) 1.6247(–07)
0.8 2.3575(–06) 1.4074(–06) 4.6672(–08)
1.0 1.4435(–06) 6.9013(–07) 1.0805(–08)
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Table 7 Example 1: Case 1.3(a): Maximum absolute errors at δ = 1

x t Method given in [25] Method given in [5] Proposed method (3.6)

0.1 0.5 1.68(–11) 2.59(–12) 5.66(–13)
1.0 1.79(–11) 2.74(–12) 3.42(–13)
2.0 1.46(–11) 2.74(–12) 6.27(–13)

0.5 0.5 3.40(–12) 7.36(–13) 7.52(–14)
1.0 3.72(–12) 7.99(–13) 4.81(–14)
2.0 3.13(–12) 8.39(–13) 3.06(–14)

0.9 0.5 1.31(–11) 2.67(–12) 5.55(–17)
1.0 1.37(–11) 2.96(–12) 5.55(–17)
2.0 1.07(–11) 3.24(–12) 8.88(–16)

Table 8 Example 1: Case 1.3(b): Maximum absolute errors at δ = 2

x t Method given in [25] Method given in [5] Proposed method (3.6)

0.1 0.5 4.49(–11) 2.83(–11) 6.14(–12)
1.0 4.19(–11) 2.78(–11) 7.28(–12)
2.0 2.70(–11) 2.41(–11) 9.17(–12)

0.5 0.5 8.13(–12) 8.42(–12) 2.24(–13)
1.0 7.72(–12) 8.50(–12) 2.71(–13)
2.0 4.77(–12) 7.85(–12) 3.55(–13)

0.9 0.5 3.55(–11) 3.13(–11) 3.33(–16)
1.0 3.23(–11) 3.23(–11) 3.33(–16)
2.0 1.98(–11) 3.14(–11) 4.44(–16)

Table 9 Example 4: Case 1.3(c): Maximum absolute errors at δ = 8.

x t Method given in [25] Method given in [5] Proposed method (3.6)

0.1 0.5 4.60(–11) 9.37(–12) 1.20(–11)
1.0 4.39(–11) 8.93(–12) 1.25(–11)
2.0 3.78(–11) 7.72(–12) 1.31(–11)

0.5 0.5 7.03(–12) 3.06(–12) 4.36(–13)
1.0 6.75(–12) 2.99(–12) 4.57(–13)
2.0 5.67(–12) 2.74(–12) 4.88(–13)

0.9 0.5 3.69(–11) 1.19(–11) 5.55(–16)
1.0 3.45(–11) 1.18(–11) 6.66(–16)
2.0 2.84(–11) 1.13(–11) 6.66(–16)

Example  Consider equation (.) with α = , β = , δ =  initial and boundary condi-
tions as given in Mittal and Jiwari [], namely

u(x, ) = x
(
 – x),  < x < , (.a)

u(, t) = u(, t) = , t > . (.b)

In this example, we have computed solutions for ε = – and – at t = ., ., ., .
with step size k = . and mesh ratio σ = .. The computed numerical solutions as pre-
sented in Figure (a)-(b) are consistent with the dynamics of the corresponding differential
equations. Similar patterns have been presented in [, , ] also.

Example  Consider equation (.) with α = , δ =  initial and boundary conditions as
given in Zhao et al. [], namely

u(x, ) = x
(
 – x)ex, – ≤ x ≤ , (.a)
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(a) (b)

Figure 1 Example 2: Computed solutions for different time levels. (a) ε = 2–3, (b) ε = 2–6.

u(–, t) = u(, t) = , t > . (.b)

The computed numerical solutions for this example are presented in Figure (a)-(f )
for different value of the parameters. In our first computation, we compute the results
for a fixed value of β and different value of ε at different time levels. We take β = ,
t = ., ., ., . and ε = ., ., ., respectively. The corresponding graphical so-
lutions are presented in Figure (a)-(c). In our second computation, we compute the results
for a fixed value of ε and different valued of β at different time levels. We choose ε = .,
t = ., ., ., . and β = ., ., ., respectively. The corresponding graphical results
are presented in Figure (d)-(f ). The numerical solutions, as presented in Figure (a)-(f ),
are consistent with those illustrated in [, ]. In Figure (a)-(c), the results exhibit that the
numerical diffusion is dominated with the increasing diffusion coefficient ε, whereas the
reaction is gradually dominant with the increasing coefficient β as shown in Figure (d)-
(f ). Thus, the computed and numerical solutions are in good agreement with the solution
in the literature and the physical behavior of the differential equation.

Example  The one-dimensional GBHE is given by the following form:

εuxx = ut + αuδux + βu
(
uδ – 

)(
uδ – γ

)
, a < x < b, t > , (.)

where u = u(x, t) is sufficiently differentiable function, [a, b] = [, ], ε >  is a small posi-
tive parameter, αis real parameter, β ≥ , δ > , γ ∈ (, ) and γ = –( + γ ). When α = ,
β = , δ =  and  < ε � , (.) is the well-known Burgers equation [], where ε is the
coefficient of viscosity and Re = ε– >  is the Reynolds Number.

The initial condition associated with differential equation (.) is given by

u(x, ) =
[

γ


+

γ


tanh(ax)

]/δ

, a ≤ x ≤ b, (.)

and the boundary condition associated with the (.) are given by

u(a, t) =
[

γ


+

γ


tanh

(
a(a – at)

)]/δ

, t ≥ , (.)
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(a) (b)

(c) (d)

(e) (f )

Figure 2 Example 3: Computed solutions for different time levels. (a) ε = 0.005, β = 1.0, (b) ε = 0.05,
β = 1.0, (c) ε = 0.5, β = 1.0, (d) ε = 0.2, β = 1.5, (e) ε = 0.2, β = 2.5, (f) ε = 0.2, β = 5.0.

u(b, t) =
[

γ


+

γ


tanh

(
a(b – at)

)]/δ

, t ≥ , (.)

the exact solution [] of (.) is given by

u(x, t) =
[

γ


+

γ


tanh

(
a(x – at)

)]/δ

, t ≥ , (.)

where

ε = , a =
–αδ + δ

√
α + β( + δ)

( + δ)
γ ,
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Table 10 Example 4: Case 4.1: Maximum absolute errors

x t δ = 1 δ = 2 δ = 4

0.1 0.1 6.7654(–17) 6.3838(–16) 6.4393(–15)
0.5 4.6404(–17) 4.8919(–16) 4.6352(–15)
0.9 4.7054(–17) 4.5797(–17) 4.9682(–15)

0.5 0.1 2.9816(–17) 3.4001(–16) 3.2752(–15)
0.5 4.2284(–17) 4.3716(–16) 4.2466(–15)
0.9 4.2609(–17) 4.2674(–16) 4.3854(–15)

0.9 0.1 1.0842(–19) 6.9389(–18) 2.7756(–17)
0.5 5.4210(–19) 6.9389(–18) 5.5511(–17)
0.9 5.4210(–19) 6.9389(–18) 5.5511(–17)

Table 11 Example 4: Case 4.2: Maximum absolute errors

x t β = 10 β = 100 β = 200

0.1 0.1 6.4393(–15) 6.6946(–14) 6.7590(–13)
0.5 2.6867(–14) 4.4409(–14) 2.6479(–14)
0.9 8.3267(–16) 8.8818(–15) 8.4044(–14)

0.5 0.1 5.2736(–15) 4.6241(–14) 4.5314(–13)
0.5 9.9809(–14) 7.0166(–14) 6.7590(–13)
0.9 7.0499(–15) 6.9666(–14) 7.0732(–13)

0.9 0.1 1.1102(–16) 7.7716(–16) 7.6050(–15)
0.5 2.6423(–14) 1.3878(–15) 1.4044(–14)
0.9 1.6653(–16) 1.3878(–15) 1.4044(–14)

a =
αγ

( + δ)
+

( + δ – γ )(α +
√

α + β( + δ))
( + δ)

.

The following cases have been discussed for different values of the parameters α,β ,γ
and δ which are involved in Eq. (.).

Case .: In this case, we consider α = , β = , γ = . and mesh ratio σ = .. We
have computed the numerical results for different time levels, namely t = ., ., . with
step size k = . and δ = , , , respectively. Maximum absolute errors have been pre-
sented for x = ., ., . in Table .

Case .: In this case, we consider α = , δ = , γ = – and mesh ratio σ = ..
We have computed the numerical results for fixed time level t = . with step size
k = . and β = , , . Maximum absolute errors have been presented for x =
., ., ., ., . in Table .

Case .: In this case, we consider α = , β = , δ = . and mesh ratio σ = ..
We have computed the numerical results for fixed time level t = . with step size
k = . and γ = –, –, –. Maximum absolute errors have been presented for
x = ., ., ., ., . in Table .

Case .: In this case, we consider α = , β =  and mesh ratio σ = .. We consider the
initial and boundary conditions are given by

u(x, ) =
ε sin(πx)

 + cos(πx)
,  ≤ x ≤ , (.)

u(, t) = u(, t) = , t ≥ . (.)

The exact solution [] is given by

u(x, t) =
επ exp(–επt sin(πx))
 + exp(–επt cos(πx))

. (.)
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Table 12 Example 4: Case 4.3: Maximum absolute errors

x t γ = 10–2 γ = 10–3 γ = 10–4

0.1 0.1 1.1852(–13) 6.4193(–14) 7.1360(–15)
0.5 1.1358(–13) 3.6082(–14) 1.0680(–15)
0.9 1.0858(–13) 7.6883(–15) 8.4099(–15)

0.5 0.1 8.8096(–14) 5.2708(–14) 6.9000(–14)
0.5 8.4543(–14) 7.0194(–14) 6.9375(–14)
0.9 8.1157(–14) 6.8168(–14) 4.8003(–14)

0.9 0.1 2.3870(–15) 8.8818(–16) 1.4017(–15)
0.5 2.2760(–15) 1.3878(–15) 1.4017(–15)
0.9 2.2204(–15) 1.4155(–15) 7.7716(–16)

Table 13 Example 4: Case 4.4: Maximum absolute errors α = 1, β = 0

N + 1 Proposed method (3.6) Method given in [4]

Re = 102 Re = 104 Re = 106 Re = 102 Re = 104 Re = 106

8 8.8258(–06) 1.9258(–09) 1.0430(–13) 4.1061(–04) 8.3710(–08) 8.4373(–12)
16 4.9239(–07) 9.7076(–11) 1.0463(–14) 1.1067(–04) 2.2489(–08) 2.2700(–12)
32 4.2004(–08) 7.3269(–12) 9.9642(–16) 2.7680(–05) 5.7437(–09) 5.7920(–13)
64 1.0396(–08) 1.2489(–12) 1.3421(–16) 6.9473(–06) 1.4564(–09) 1.4698(–13)

Results are computed for fixed time level t = . and for δ = . Maximum absolute errors
have been presented for Re = ε– = , ,  in Table .

Example  We consider equation (.) with initial and boundary conditions are given in
Mittal and Jiwari [], namely

u(x, ) = sin(πx),  < x < , (.a)

u(, t) = u(, t) = , t > . (.b)

In our computation, we find solutions at different time levels for various decreasing
values of ε. We take t = ., ., ., . with step size k = . and ε = –, –, –, re-
spectively. The computed solutions are interpreted graphically in Figure (a)-(c) for α = ,
β = , δ =  and γ = .. We notice that, for a fixed value of ε as time t increases, the
solutions curves fall to zero. Thus, the obtained solutions explain the nature of equation
(.) faithfully in terms of diffusivity versus time. The approximate numerical solutions
obtained by the present method exhibit correct physical behavior for several values of ε

and t. Similar patterns have been depicted in [].

Example  We consider equation (.) with initial and boundary conditions as given in
Kaushik [], namely

u(x, ) =  – cos(x),  < x < , (.a)

u(, t) = u(, t) = , t > . (.b)

We computed numerical solutions for different time levels for various decreasing values
of ε. We take t = ., ., ., . with step size k = . and ε = –, –, –, respectively.
The obtained solutions have been plotted in Figure (a)-(c) for α = , β = ., δ =  and γ =
.. The graphs obtained in Figure (a)-(c) capture the nature of equation (.) faithfully
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(a) (b)

(c)

Figure 3 Example 5: Computed solutions for different time levels. (a) ε = 2–1, (b) ε = 2–4, (c) ε = 2–6.

in terms of diffusivity versus time. As the time increases, solution curves decreases to zero.
For the decreasing value of ε, curves become steeper and propagate to the right which is
the behavior of shocks waves. Similar patterns have been presented in [, ] also.

Example  The coupled viscous nonlinear Burgers equation is given by the following
form:

ε
∂u
∂x =

∂u
∂t

+ αu
∂u
∂x

+ α
∂(uv)
∂x

, a < x < b, t > , (.)

ε
∂v
∂x =

∂v
∂t

+ βv
∂v
∂x

+ β
∂(uv)
∂x

, a < x < b, t > . (.)

Here  < ε �  is the viscosity, Re = ε– >  is the Reynolds number, α and β are real
constants, α and β are arbitrary constants depending on the system parameters []. The
coupled Burgers equations (.) and (.) represent a system of one-space dimensional
quasi-linear parabolic equations with two unknown variables u and v.

The initial condition associated with differential equations (.) and (.) is given by

u(x, ) = v(x, ) = sin x, –π ≤ x ≤ π , (.)
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(a) (b)

(c)

Figure 4 Example 6: Computed solutions for different time levels. (a) ε = 2–4, (b) ε = 2–6, (c) ε = 2–7.

and the boundary conditions associated with (.), (.) are given by

u(–π , t) = u(π , t) = ,  ≤ t ≤ T , (.)

v(–π , t) = v(π , t) = ,  ≤ t ≤ T . (.)

The values of parameters are given by α = β = – and α = β = . The exact solutions
of equations (.), (.) are u(x, t) = e–t sin x and v(x, t) = e–t sin x (see []).

In this example, we choose a uniform mesh (σ = ) to compute the numerical solutions
for different values of the parameters ε,α,α,β and β with different values of h and k.
In our first computation, we choose ε = , α = β = –, α = β = , h = π

 , k = . and
maximum absolute errors are computed at various time levels from t = . to .. The
corresponding results are tabulated in Table . In our second computation, the maximum
absolute errors are computed at t = . and t = . for a fixed λ = .

π , ε = , α = β = –,
α = β = . Numerical results are presented in Table .

Example  We consider the coupled Burgers equations (.), (.) with the following
initial and boundary conditions:

u(x, ) = v(x, ) = cos(πx),  ≤ x ≤  (.)
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Table 14 Example 7: Maximum absolute error at ε = 1, α1 = β1 = –2, α2 = β2 = 1, h = 2π /100,
k = 0.01

t Proposed method (4.28) Method discussed in [11]
u v u v

0.5 2.5045(–06) 2.5045(–06) 1.5168(–04) 1.5168(–04)
1.0 3.0373(–06) 3.0373(–06) 1.8397(–04) 1.8397(–04)
2.0 2.2330(–06) 2.2330(–06) 1.3525(–04) 1.3525(–04)
3.0 1.2296(–06) 1.2296(–06) 7.4601(–05) 7.4601(–05)

Table 15 Example 7: Maximum absolute errors,ε = 1, α1 = β1 = –2, α2 = β2 = 1, λ = 1.6/4π2

N + 1 Proposed method (4.28) Method given in [10]
t = 1.0 t = 2.0 t = 1.0 t = 2.0

8 u 5.7826(–04) 4.2579(–05) 7.4756(–04) 6.1386(–04)
v 5.7826(–04) 4.2579(–05) 7.4756(–04) 6.1386(–04)

16 u 3.5478(–05) 2.6105(–07) 5.1124(–05) 3.8618(–05)
v 3.5478(–05) 2.6105(–07) 5.1124(–05) 3.8618(–05)

32 u 2.2070(–06) 1.6238(–06) 3.3516(–06) 2.4173(–06)
v 2.2070(–06) 1.6238(–06) 3.3516(–06) 2.4173(–06)

64 u 1.3777(–07) 1.0137(–07) 2.2035(–07) 1.5114(–07)
v 1.3777(–07) 1.0137(–07) 2.2035(–07) 1.5114(–07)

128 u 8.6048(–09) 6.3339(–09) 1.3837(–08) 9.3878(–09)
v 8.6048(–09) 6.3339(–09) 1.3837(–08) 9.3878(–09)

Table 16 Example 8: Maximum absolute errors at t = 1, α1 = β1 = 2, α2 = β2 = –1, λ = 3.2

N + 1 Proposed method (4.28) Method given in [10]
Re = 100 Re = 200 Re = 250 Re = 100 Re = 200 Re = 250

8 u 6.3075(–06) 3.9152(–06) 3.2823(–06) 8.0563(–06) 4.3982(–06) 3.5838(–06)
v 6.3075(–06) 3.9152 (–06) 3.2837(–06) 8.0563(–06) 4.3982(–06) 3.5838(–06)

16 u 4.1145(–07) 2.4266(–07) 2.0268(–07) 5.0129(–07) 2.8249(–07) 2.2612(–07)
v 4.1145(–05) 2.4266(–07) 2.0268(–07) 5.0129(–07) 2.8249(–07) 2.2612(–07)

32 u 2.5696(–08) 1.5236(–08) 1.2647(–08) 3.1617(–08) 1.7629(–08) 1.4379(–08)
v 2.5696(–08) 1.5236(–08) 1.2647(–08) 3.1617(–08) 1.7629(–08) 1.4379(–08)

64 u 1.6133(–09) 9.5490(–10) 7.9187(–10) 1.9755(–09) 1.1015(–09) 8.9877(–10)
v 1.6133(–09) 9.5490(–10) 7.9187(–10) 1.9755(–09) 1.1015(–09) 8.9877(–10)

128 u 1.0082(–10) 5.9683(–11) 4.9531(–11) 1.2337(–10) 6.8803(–11) 5.6159(–11)
v 1.0082(–10) 5.9683(–11) 4.9531(–11) 1.2337(–10) 6.8803(–11) 5.6159(–11)

and

u(, t) = v(, t) = e–επt ,  ≤ t ≤ T , (.)

u(, t) = v(, t) = –e–επt ,  ≤ t ≤ T . (.)

In this example, we choose a uniform mesh size to compute the numerical solution for
different parameters α = β =  and α = β = –, the exact solutions of equations (.),
(.) are u(x, t) = e–επt cos(πx) and v(x, t) = e–επt cos(πx).

We computed the maximum absolute errors at time t =  for a fixed λ = . and the
parameters α = β = , α = β = – with the decreasing values of h and k, and different
values of Re = ε–. The numerical results are reported in Table . The graphs of numerical
and exact solutions at t =  are plotted in Figure (a)-(c).

Example  Equation (.) is solved, for which an exact solution is u(r, t) = e–t sinh r. In
this example, we choose uniform mesh to compute the maximum absolute errors at time
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(a) (b)

(c)

Figure 5 Example 8: The graphs of numerical and exact solutions for the values α1 = β1 = 2,
α2 = β2 = –1, Re = 200 at t = 1. (a) Numerical solution of u = v, (b) Exact solution of u = v, (c) Numerical and
exact solution for N + 1 = 16.

Table 17 Example 9: Maximum absolute errors at t = 1, k = 0.01

N + 1 p = 1 p = 2
Re = 10 Re = 100 Re = 10 Re = 100

50 1.6813(–06) 4.6778(–06) 1.5631(–06) 4.6698(–06)
60 1.4553(–06) 4.6745(–06) 1.3410(–06) 4.6676(–06)
70 1.2087(–06) 4.6677(–06) 1.1388(–06) 4.6634(–06)
80 9.1317(–07) 4.6789(–06) 8.5845(–07) 4.6621(–06)
90 6.1444(–07) 4.6794(–06) 5.4123(–07) 4.6623(–06)

t =  for a fixed k = ., p =  and  and for various values of Re = ε–. The corresponding
numerical results are reported in Table . The graphs of numerical and exact solutions at
t =  are plotted in Figure .

7 Final remarks
In this article, we have presented a new two-level implicit method based on spline in
compression approximations of accuracy O(khl + h

l ) for the numerical solution of quasi-
linear parabolic partial differential equation in one spatial dimension. Mathematical for-
mulation of the proposed scheme using three spatial grid points is discussed in detail.
We have extended the proposed scheme to the system of quasi-linear parabolic equa-
tions. The stability analysis of the present numerical approach for one-dimensional linear
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Figure 6 Example 9: The graph of numerical and
exact solution at Re = 10, p = 1, N + 1 = 50,
k = 0.01.

convection-diffusion equation and fourth-order parabolic equation is presented. We have
solved several benchmark problems using proposed method and it successfully provides
highly accurate solutions in different settings of parameters. For different values of the
parameters involved in GBFE, we have computed maximum absolute errors in Example 
and we observe that our method is giving more accurate results than the results obtained
by [, –]. In Examples  and , we have plotted the graphs (Figure (a)-(b) and Fig-
ure (a)-(f )) at different time levels and for different values of parameters in GBFE, which
exhibits that the numerical diffusion is dominated with the increasing diffusion coefficient
ε, whereas the reaction is gradually dominant with the increasing coefficient β . Similar
patterns of graphs have been presented in [, –]. We have compared the computed
numerical solutions with the exact solutions of GBHE in Example . Maximum absolute
errors have been tabulated. The results obtained are quite good and competent with exact
solution available in the literature. In Examples  and , we have plotted the graphs (Fig-
ure (a)-(c) and Figure (a)-(c)) at different time levels and different values of parameters
involved in GBHE which describes that solution curves decreases to zero as time increases
and for small value of ε, solution curves behave like a shocks waves. We have computed
maximum absolute errors for coupled viscous nonlinear Burgers’ equation in Examples 
and . On comparing the nature of computed solution with the computed solutions avail-
able in [, ], we obtained better results by our scheme. Also we have plotted graphs
(Figure (a)-(c)) of exact versus numerical solution t = . In Example , we have solved
singular parabolic partial differential equation in polar coordinates and obtained maxi-
mum absolute errors for cylindrical and spherical case. At t = , we have plotted graph
(Figure ) of numerical versus exact solution for Example . It can be observed that the
approximate solution computed with our scheme and exact solutions are identical.
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