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Abstract
In this paper we introduce the q-poly-tangent polynomials and numbers. We also
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1 Introduction
Many mathematicians have studied in the area of the Bernoulli numbers and polynomi-
als, Euler numbers and polynomials, Genocchi numbers and polynomials, tangent num-
bers and polynomials, poly-Bernoulli numbers and polynomials, poly-Euler numbers and
polynomials, and poly-tangent numbers and polynomials (see [–]). In this paper, we
define q-poly-tangent polynomials and numbers and study some properties of the q-poly-
tangent polynomials and numbers. Throughout this paper, we always make use of the fol-
lowing notations:N denotes the set of natural numbers andZ+ = N∪{}. We recall that the
classical Stirling numbers of the first kind S(n, k) and S(n, k) are defined by the relations
(see [])

(x)n =
n∑

k=

S(n, k)xk and xn =
n∑

k=

S(n, k)(x)k , (.)

respectively. Here (x)n = x(x – ) · · · (x – n + ) denotes the falling factorial polynomial of
order n. The numbers S(n, m) also admit a representation in terms of a generating func-
tion,

(
et – 

)m = m!
∞∑

n=m
S(n, m)

tn

n!
. (.)
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We also have

m!
∞∑

n=m
S(n, m)

tn

n!
=

(
log( + t)

)m. (.)

We also need the binomial theorem: for a variable x,


( – t)c =

∞∑

n=

(
c + n – 

n

)
tn. (.)

For  ≤ q < , the q-poly-Bernoulli numbers B(k)
n were introduced by Mansour [] by using

the following generating function:

Lik,q( – e–t)
 – e–t =

∞∑

n=

B(k)
n,q

tn

n!
(k ∈ Z), (.)

where

Lik,q(t) =
∞∑

n=

tn

[n]k
q

(.)

is the kth q-poly-logarithm function, and [n]q = –qn

–q is the q-integer (cf. []).
The q-poly-Euler polynomials E(k)

n,q(x) are defined by the generating function

Lik,q( – e–t)
et + 

ext =
∞∑

n=

E(k)
n,q(x)

tn

n!
(k ∈ Z). (.)

The familiar tangent polynomials Tn(x) are defined by the generating function [–]

(


et + 

)
ext =

∞∑

n=

Tn(x)
tn

n!
(|t| < π

)
. (.)

When x = , Tn() = Tn are called the tangent numbers. The tangent polynomials T(r)
n (x)

of order r are defined by

(


et + 

)r

ext =
∞∑

n=

T(r)
n (x)

tn

n!
(|t| < π

)
. (.)

It is clear that for r =  we recover the tangent polynomials Tn(x).
The Bernoulli polynomials B(r)

n (x) of order r are defined by the following generating
function:

(
t

et – 

)r

ext =
∞∑

n=

B(r)
n (x)

tn

n!
(|t| < π

)
. (.)

The Frobenius-Euler polynomials of order r, denoted by H(r)
n (u, x), are defined as

(
 – u
et – u

)r

ext =
∞∑

n=

H(r)
n (u, x)

tn

n!
. (.)



Ryoo and Agarwal Advances in Difference Equations  (2017) 2017:213 Page 3 of 14

The values at x =  are called Frobenius-Euler numbers of order r; when r = , the poly-
nomials or numbers are called ordinary Frobenius-Euler polynomials or numbers.

The poly-tangent polynomials T (k)
n,q(x) are defined by the generating function

Lik( – e–t)
et + 

ext =
∞∑

n=

T (k)
n (x)

tn

n!
(k ∈ Z), (.)

where Lik(t) =
∑∞

n=
tn

nk is the kth poly-logarithm function (see []).
Many kinds of generalizations of these polynomials and numbers have been presented

in the literature (see [–]). In the following section, we introduce the q-poly-tangent
polynomials and numbers. After that we will investigate some their properties. We also
give some relationships both between these polynomials and tangent polynomials and
between these polynomials and q-cauchy numbers. Finally, we investigate the zeros of the
q-poly-tangent polynomials by using a computer.

2 q-Poly-tangent numbers and polynomials
In this section, we define q-poly-tangent numbers and polynomials and provide some of
their relevant properties.

For  ≤ q < , the q-poly-tangent polynomials T (k)
n,q(x) are defined by the generating func-

tion:

 Lik,q( – e–t)
et + 

ext =
∞∑

n=

T (k)
n,q(x)

tn

n!
(k ∈ Z). (.)

When x = , T (k)
n,q() = T (k)

n,q(x) are called the q-poly-tangent numbers. Observe that
limq→ T (k)

n,q(x) = T (k)
n (x). By (.), we get

∞∑

n=

T (k)
n,q(x)

tn

n!
=

(
 Lik,q( – e–t)

et + 

)
ext

=
∞∑

n=

T (k)
n,q

tn

n!

∞∑

n=

xn tn

n!

=
∞∑

n=

( n∑

l=

(
n
l

)
T (k)

l,q xn–l

)
tn

n!
. (.)

By comparing the coefficients on both sides of (.), we have the following theorem.

Theorem . For n ∈ Z+, we have

T (k)
n,q(x) =

n∑

l=

(
n
l

)
T (k)

l,q xn–l.

The following elementary properties of the q-poly-tangent numbers T (k)
n,q and polynomi-

als T (k)
n,q(x) are readily derived form (.). We, therefore, choose to omit the details involved.
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Theorem . For k ∈ Z, we have

() T (k)
n,q(x + y) =

n∑

l=

(
n
l

)
T (k)

l,q (x)yn–l,

() T (k)
n,q( – x) =

n∑

l=

(–)l
(

n
l

)
T (k)

n–l,q()xl.

Theorem . For any positive integer n, we have

() T (k)
n,q(mx) =

n∑

l=

(
n
l

)
T (k)

l,q (x)(m – )n–lxn–l (m ≥ ),

() T (k)
n,q(x + ) – T (k)

n,q(x) =
n–∑

l=

(
n
l

)
T (k)

l,q (x),

()
d

dx
T (k)

n,q(x) = nT (k)
n–,q(x),

() T (k)
n,q(x) = T (k)

n,q + n
∫ x


T (k)

n–,q(t) dt.

(.)

From (.), (.), and (.), we get

∞∑

n=

T (k)
n,q(x)

tn

n!
=

(


Lik,q( – e–t)
et + 

)
ext =

∞∑

l=

( – e–t)l+

[l + ]k
q

ext

et + 

=
∞∑

l=


[l + ]k

q

l+∑

i=

(
l + 

i

)
(–)i e(x–i)t

et + 

=
∞∑

l=


[l + ]k

q

l+∑

i=

(
l + 

i

)
(–)i

∞∑

n=

Tn(x – i)
tn

n!

=
∞∑

n=

( ∞∑

l=


[l + ]k

q

l+∑

i=

(
l + 

i

)
(–)iTn(x – i)

)
tn

n!
. (.)

By comparing the coefficients on both sides of (.), we have the following theorem.

Theorem . For n ∈ Z+, we have

T (k)
n,q(x) =

∞∑

l=


[l + ]k

q

l+∑

j=

(
l + 

j

)
(–)jTn(x – j).

By using the definition of tangent polynomials and Theorem ., we have the following
corollary.

Corollary . For any positive integer n, we have

T (k)
n,q( – x) = (–)n

∞∑

l=


[l + ]k

q

l+∑

j=

(
l + 

j

)
(–)jTn(x + j).
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By (.), we note that

∞∑

n=

T (k)
n,q(x)

tn

n!
= 

∞∑

l=

(–)lelt
∞∑

l=

( – e–t)l+

[l + ]k
q

ext

=
∞∑

l=

l∑

i=

i+∑

j=

(–)l+j–i(i+
j
)

[i + ]k
q

e(l–i–j+x)t

=
∞∑

n=

( ∞∑

l=

l∑

i=

i+∑

j=

(–)l+j–i(i+
j
)
(l – i – j + x)n

[i + ]k
q

)
tn

n!
.

Comparing the coefficients on both sides, we have the following theorem.

Theorem . For n ∈ Z+, we have

T (k)
n,q(x) = 

∞∑

l=

l∑

i=

i+∑

j=

(–)l+j–i(i+
j
)

[i + ]k
q

(l – i – j + x)n.

By (.), (.), and (.) and by using the Cauchy product, we get

∞∑

n=

T (k)
n,q(x)

tn

n!
=




(
 Lik,q( – e–t)

et + 

)
(et + )
et + 

ext

=

( ∞∑

n=

E(k)
n,q(x)

tn

n!

)( ∞∑

n=

(
Tn() + Tn

) tn

n!

)

=
∞∑

n=

(



n∑

l=

(
n
l

)(
Tn() + Tn

)
E(k)

n–l,q(x)

)
. (.)

By comparing the coefficients on both sides of (.), we have the following theorem related
the q-poly-Euler polynomials and tangent polynomials.

Theorem . For n ∈ Z+, we have

T (k)
n,q(x) =




n∑

l=

(
n
l

)(
Tn() + Tn

)
E(k)

n–l,q(x).

By (.), (.), and (.) and by using the Cauchy product, we have

∞∑

n=

T (k)
n,q(x)

tn

n!
=

(
Lik,q( – e–t)

 – e–t

)
( – e–t)

et + 
ext

=

( ∞∑

n=

B(k)
n,q

tn

n!

)( ∞∑

n=

(
Tn(x) – Tn(x – )

) tn

n!

)

=
∞∑

n=

( n∑

n=

(
n
l

)(
Tn(x) – Tn(x – )

)
B(k)

n–l,q

)
. (.)

By comparing the coefficients on both sides of (.), we have the following theorem related
the q-poly-Bernoulli polynomials and tangent polynomials.
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Theorem . For n ∈ Z+, we have

T (k)
n,q(x) =

n∑

l=

(
n
l

)(
Tn(x) – Tn(x – )

)
B(k)

n–l,q.

By (.), (.), (.), and Theorem ., we have the following corollary.

Corollary . For n ∈ Z+, we have

T (k)
n,q(x) =

n∑

l=

l∑

m=

(
n
l

)
(–)m+lm!S(l, m)

[m + ]k
q

(
Tn–l(x) – Tn–l(x – )

)
.

3 Some identities involving q-poly-tangent numbers and polynomials
In this section, we give several combinatorics identities involving q-poly-tangent numbers
and polynomials in terms of Stirling numbers, falling factorial functions, raising facto-
rial functions, Beta functions, Bernoulli polynomials of higher order, and Frobenius-Euler
functions of higher order.

By (.) and by using the Cauchy product, we get

∞∑

n=

T (k)
n,q(x)

tn

n!
=

(
 Lik,q( – e–t)

et + 

)(
 –

(
 – e–t))–x

=
 Lik,q( – e–t)

et + 

∞∑

l=

(
x + l – 

l

)(
 – e–t)l

=
∞∑

l=

〈x〉l
(et – )l

l!

(
 Lik,q( – e–t)

et + 
e–lt

)

=
∞∑

l=

〈x〉l

∞∑

n=

S(n, l)
tn

n!

∞∑

n=

T (k)
n,q(–l)

tn

n!

=
∞∑

n=

( ∞∑

l=

n∑

i=l

(
n
i

)
S(i, l)T (k)

n–i,q(–l)〈x〉l

)
tn

n!
, (.)

where 〈x〉l = x(x + ) · · · (x + l – ) (l ≥ ) with 〈x〉 = .
By comparing the coefficients on both sides of (.), we have the following theorem.

Theorem . For n ∈ Z+, we have

T (k)
n,q(x) =

∞∑

l=

n∑

i=l

(
n
i

)
〈x〉lS(i, l)T (k)

n–i,q(–l).

By using the Jackson q-integral (see []) and Theorem ., we get

∫ 


T (k)

n,q(x) dqx =
∫ 



n∑

l=

(
n
l

)
T (k)

l,q xn–l dqx

=
n∑

l=

(
n
l

)
T (k)

l,q


[n – l + ]q
. (.)

By (.) and Theorem ., we have the following theorem.
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Theorem . For any positive integer n, we have

n∑

l=

(
n
l

)
T (k)

l,q


[n – l + ]q
=

∞∑

l=

n∑

i=l

(
n
i

)
S(i, l)T (k)

n–i,q(–l)(–)l ĉl,q,

where ĉl,q are q-Cauchy numbers of the second kind (see []).

By (.) and by using the Cauchy product, we get

∞∑

n=

T (k)
n,q(x)

tn

n!
=

(
 Lik,q( – e–t)

et + 

)((
et – 

)
+ 

)x

=
 Lik,q( – e–t)

et + 

∞∑

l=

(
x
l

)(
et – 

)l

=
∞∑

l=

(x)l
(et – )l

l!

(
 Lik,q( – e–t)

et + 

)

=
∞∑

l=

(x)l

∞∑

n=

S(n, l)
tn

n!

∞∑

n=

T (k)
n,q

tn

n!

=
∞∑

n=

( ∞∑

l=

n∑

i=l

(
n
i

)
(x)lS(i, l)T (k)

n–i,q

)
tn

n!
. (.)

By comparing the coefficients on both sides of (.), we have the following theorem.

Theorem . For n ∈ Z+ and  ≤ q < , we have

T (k)
n,q(x) =

∞∑

l=

n∑

i=l

(
n
i

)
(x)lS(i, l)T (k)

n–i,q.

By (.) and Theorem ., we have the following theorem.

Theorem . For any positive integer n, we have

n∑

l=

(
n
l

) T (k)
n–l,q

[l + ]q
=

∞∑

l=

n∑

i=l

(
n
i

)
S(i, l)T (k)

n–i,qcl,q,

where cl,q are q-Cauchy numbers of the first kind (see []).

By Theorem ., we note that

∫ 


ynT (k)

n,q(x + y) dy =
∫ 


yn

n∑

l=

(
n
l

)
T (k)

n–l,q(x)yl dy

=
n∑

l=

(
n
l

)
T (k)

n–l,q(x)
∫ 


yn+l dy

=
n∑

l=

(
n
l

)
T (k)

n–l,q(x)


n + l + 
. (.)
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From (.) and Theorem ., we note that

∫ 


ynT (k)

n,q(x + y) dy =
ynT (k)

n+,q(x + y)
n + 

∣∣∣∣



–

∫ 


nyn– T (k)

n+,q(x + y)
n + 

dy

=
T (k)

n+,q(x + )
n + 

–
n

n + 

∫ 


yn–T (k)

n+,q(x + y) dy

=
T (k)

n+,q(x + )
n + 

–
n

n + 

∫ 


yn–

n+∑

l=

(
n + 

l

)
T (k)

l,q (x)yn+–l dy

=
T (k)

n+,q(x + )
n + 

–
n

n + 

n+∑

l=

(
n + 

l

)
T (k)

l,q (x)


n – l + 
. (.)

Therefore, by (.) and (.), we obtain the following theorem.

Theorem . For n ∈ Z+, we have

T (k)
n+,q(x + ) =

n+∑

l=

(
n + 

l

)
T (k)

l,q (x)
n

n – l + 
+

n∑

l=

(
n
l

)
T (k)

n–l,q(x)
n + 

n + l + 
.

By (.), (.), (.), and by using the Cauchy product, we get

∞∑

n=

T (k)
n,q(x)

tn

n!
=

(
 Lik,q( – e–t)

et + 

)
ext

=
(et – )r

r!
r!
tr

(
t

et – 

)r

ext
∞∑

n=

T (k)
n,q

tn

n!

=
(et – )r

r!

( ∞∑

n=

B(r)
n (x)

tn

n!

)( ∞∑

n=

T (k)
n,q

tn

n!

)
r!
tr

=
∞∑

n=

( n∑

l=

(n
l
)

(l+r
r
)S(l + r, r)

n–l∑

i=

(
n – l

i

)
B(r)

i (x)T (k)
n–l–i,q

)
tn

n!
.

By comparing the coefficients on both sides, we have the following theorem.

Theorem . For n ∈ Z+ and r ∈N, we have

T (k)
n,q(x) =

n∑

l=

(n
l
)

(l+r
r
)S(l + r, r)

n–l∑

i=

(
n – l

i

)
T (k)

n–l–i,qB(r)
i (x).

From (.) and Theorem ., we note that

∫ 


ynT (k)

n,q(x + y) dy

=
ynT (k)

n+,q(x + y)
n + 

∣∣∣∣



–

∫ 



nyn–T (k)
n+,q(x + y)

n + 
dy

=
T (k)

n+,q(x + )
n + 

–
n

n + 

∫ 



∞∑

l=


[l + ]k

q

l+∑

i=

(
l + 

i

)
(–)iTn+(x + y – i)yn– dy
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=
T (k)

n+,q(x + )
n + 

–
n

n + 

∞∑

l=

l+∑

i=

n+∑

j=

(l+
i
)(n+

l
)

[l + ]k
q

(–)n++iTn+–j( – x + i)
∫ 


yn–( – y)j dy

=
T (k)

n+,q(x + )
n + 

–
n

n + 

∞∑

l=

l+∑

i=

n+∑

j=

(l+
i
)(n+

l
)

[l + ]k
q

(–)n++iTn+–j( – x + i)B(n, j + ), (.)

where B(n, j) is the beta integral (see []).
Therefore, by (.) and (.), we obtain the following theorem.

Theorem . For n ∈ Z+, we have

n+∑

l=

(
n + 

l

) T (k)
l,q (x)

n – l + 
=

∞∑

l=

l+∑

i=

n+∑

j=

(l+
i
)(n+

l
)

[l + ]k
q

(–)n++iTn+–j( – x + i)B(n, j + ).

By (.), (.), (.), and by using the Cauchy product, we get

∞∑

n=

T (k)
n,q(x)

tn

n!
=

(
 Lik,q( – e–t)

et + 

)
ext

=
(et – u)r

( – u)r

(
 – u
et – u

)r

ext  Lik,q( – e–t)
et + 

=
∞∑

n=

H(r)
n (u, x)

tn

n!

r∑

i=

(
r
i

)
eit(–u)r–i 

( – u)r
 Lik,q( – e–t)

et + 

=


( – u)r

r∑

i=

(
r
i

)
(–u)r–i

∞∑

n=

H(r)
n (u, x)

tn

n!

∞∑

n=

T (k)
n,q(i)

tn

n!

=
∞∑

n=

(


( – u)r

r∑

i=

(
r
i

)
(–u)r–i

n∑

l=

(
n
l

)
H(r)

l (u, x)T (k)
n–l(i)

)
tn

n!
.

By comparing the coefficients on both sides, we have the following theorem.

Theorem . For n ∈ Z+ and r ∈N, we have

T (k)
n,q(x) =


( – u)r

r∑

i=

n∑

l=

(
r
i

)(
n
l

)
(–u)r–iH(r)

l (u, x)T (k)
n–l,q(i).

For n ∈N with n ≥ , we obtain

∫ 


ynT (k)

n,q(x + y) dy = yn+ T (k)
n,q(x + y)
n + 

∣∣∣∣



–

∫ 


nyn+ T (k)

n–,q(x + y)
n + 

dy

=
T (k)

n,q(x + )
n + 

–
n, q

n + 

∫ 


yn+T (k)

n–,q(x + y) dy
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=
T (k)

n,q(x + )
n + 

–
nT (k)

n–,q(x + )
(n + )(n + )

+ (–) n
n + 

n – 
n + 

∫ 


yn+T (k)

n–,q(x + y) dy

=
T (k)

n,q(x + )
n + 

+ (–)
nT (k)

n–,q(x + )
(n + )(n + )

+ (–) n
n + 

n – 
n + 

T (k)
n–,q(x + )

n + 

+ (–) n
n + 

n – 
n + 

n – 
n + 

T (k)
n–,q(x + )

n + 

+ (–) n
n + 

n – 
n + 

n – 
n + 

n – 
n + 

∫ 


yn+T (k)

n–,q(x + y) dy.

Continuing this process, we obtain

∫ 


ynT (k)

n,q(x + y) dy =
Tn,q(x + )

n + 

+
n∑

l=

n(n – ) · · · (n – l + )(–)l–

(n + )(n + ) · · · (n + l)
T (k)

n–l+,q(x + )

+ (–)n n!
(n + )(n + ) · · · (n)

∫ 


ynT (k)

,q(x + y) dy. (.)

Hence, by (.) and (.), we have the following theorem.

Theorem . For n ∈ N with n ≥ , we have

n∑

l=

(
n
l

)
T (k)

n–l,q(x)


n + l + 

=
T (k)

n,q(x + )
n + 

+
n∑

l=

n(n – ) · · · (n – l + )(–)l–

(n + )(n + ) · · · (n + l)
T (k)

n–l+,q(x + ).

4 Zeros of the q-poly-tangent polynomials
This section aims to demonstrate the benefit of using a numerical investigation to support
theoretical prediction and to discover new interesting pattern of the zeros of the poly-
tangent polynomials T (k)

n,q(x). The q-poly-tangent polynomials T (k)
n,q(x) can be determined

explicitly. A few of them are

T (k)
,q(x) = ,

T (k)
,q (x) = ,

T (k)
,q(x) = – +


[]k

q
+ x,

T (k)
,q(x) =  –


[]k

q
+


[]k

q
–

(
 –


[]k

q

)
x + x,



Ryoo and Agarwal Advances in Difference Equations  (2017) 2017:213 Page 11 of 14

T (k)
,q(x) =  +


[]k

q
–


[]k

q
+


[]k

q
+

(
 –


[]k

q
+


[]k

q

)
x

–
(

 –


[]k
q

)
x + x,

T (k)
,q(x) = – –


[]k

q
+


[]k

q
–


[]k

q
+


[]k

q
+

(
 +


[]k

q
–


[]k

q
+


[]k

q

)
x

+
(

 –

[]k

q
+


[]k

q

)
x –

(
 +


[]k

q

)
x + x.

We investigate the beautiful zeros of the q-poly-tangent polynomials T (k)
n,q(x) by using

a computer. We plot the zeros of the q-poly-tangent polynomials T (k)
n,q(x) for n = , q =

/, –/, k = –,  and x ∈C (Figure ). In Figure  (top-left), we choose n = , q = /, and
k = . In Figure  (top-right), we choose n = , q = –/, and k = . In Figure  (bottom-
left), we choose n = , q = /, and k = –. In Figure  (bottom-right), we choose n = ,
q = –/, and k = –.

Stacks of zeros of T (k)
n,q(x) for  ≤ n ≤  from a -D structure are presented (Figure ).

In Figure , we choose k = , q = /. Our numerical results for approximate solutions of
real zeros of T (k)

n,q(x) are displayed (Tables , ).

Figure 1 Zeros of T (k)
n,q(x).
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Figure 2 Stacks of zeros of T (k)
n,q(x) for 2 ≤ n ≤ 40.

Table 1 Numbers of real and complex zeros of T (k)
n,q(x)

Degree n k = 3, q = 1/2 k = –3, q = –1/2

Real zeros Complex zeros Real zeros Complex zeros

2 1 0 1 0
3 2 0 2 0
4 3 0 1 2
5 4 0 0 4
6 1 4 1 4
7 2 4 0 6
8 3 4 1 6
9 4 4 2 6
10 5 4 1 8
11 4 6 0 10
12 3 8 1 10

Table 2 Approximate solutions of T (k)
n,q(x) = 0, k = 3, q = 1/2

Degree n x

2 1.2037
3 0.24060, 2.1668
4 –0.47700, 1.2291, 2.8590
5 –0.96664, 0.23158, 2.2563, 3.2936
6 1.2308
7 0.23043, 2.2296

The plot of real zeros of T (k)
n,q(x) for the  ≤ n ≤  structure is presented (Figure ). In

Figure , we choose k = .
We observe a remarkable regular structure of the real roots of the q-poly-tangent poly-

nomials T (k)
n,q(x). We also hope to verify a remarkable regular structure of the real roots of

the q-poly-tangent polynomials T (k)
n,q(x) (Table ).

Next, we calculated an approximate solution satisfying q-poly-tangent polynomials
T (k)

n,q(x) =  for x ∈R. The results are given in Table  and Table .
By numerical computations, we will present a series of conjectures.
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Figure 3 Real zeros of T (k)
n,q(x) for 2 ≤ n ≤ 40.

Table 3 Approximate solutions of T (k)
n,q(x) = 0, k = –3, q = –1/2

Degree n x

2 1.3750
3 0.91289, 1.8371
4 2.6383
5 -
6 1.8993
7 -

Conjecture . Prove that T (k)
n,q(x), x ∈C, has Im(x) =  reflection symmetry analytic com-

plex functions. However, T (k)
n,q(x) has no Re(x) = a reflection symmetry for a ∈ R.

Using computers, many more values of n have been checked. It still remains unknown
if the conjecture fails or holds for any value n (see Figures , , ).

We are able to decide if T (k)
n,q(x) =  has n –  distinct solutions (see Tables , , ).

Conjecture . Prove that T (k)
n,q(x) =  has n –  distinct solutions.

Since n –  is the degree of the polynomial T (k)
n,q(x), the number of real zeros RT (k)

n,q(x) lying
on the real plane Im(x) =  is RT (k)

n,q(x) = n – CT (k)
n,q(x), where CT (k)

n,q(x) denotes complex zeros.
See Table  for tabulated values of RT (k)

n,q(x) and CT (k)
n,q(x). The authors have no doubt that

investigations along these lines will lead to a new approach employing numerical method
in the research field of the poly-tangent polynomials T (k)

n,q(x), which appear in mathematics
and physics.
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