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Abstract
In this paper, we first prove some coupled fixed point theorems in partially ordered
�-orbitally complete normed linear spaces. And then apply the obtained fixed point
theorems to a class of semilinear evolution systems of fractional order for proving the
existence of coupled mild solutions under some weaker monotone conditions. An
example is given to illustrate the application of the abstract results.
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1 Introduction
Let E be a nonempty set, � : E → E a mapping. If for x ∈ E, one has �x = x, then x ∈ E
is called a fixed point of � in E. Fixed point theory plays an important role in nonlinear
functional analysis. Different types of fixed point theorems have been used to prove the
existence of solutions for differential and integral equations; see [–]. The Banach con-
traction principle is one of the most powerful fixed point theorems in nonlinear analysis
for proving the existence and uniqueness of fixed points in metric spaces. It is interesting
to improve and extend the conditions of the Banach contraction principle. Recently, by
weakening the requirement on the contraction in partially ordered metric spaces, a series
of fixed point theorems are established for monotone mappings by Agarwal et al. [], Har-
jani and Sadarangani [], Nieto and Rodriguez-López [, ], O’Regan and Petrusel []
and Ran and Reurings [].

We recall some definitions of the monotone mapping. A mapping � : E → E is mono-
tone means it is monotone nondecreasing or monotone nonincreasing. Assume that (E,≤)
is a partially ordered set and � : E → E. For x, y ∈ E, if x ≤ y implies �(x) ≤ �(y), � is
called a monotone nondecreasing mapping in E. Similarly, we can define a monotone non-
increasing mapping in E. If for x, x ∈ E, x ≤ x implies �(x, y) ≤ �(x, y) for all y ∈ E,
while for y, y ∈ E, y ≤ y implies �(x, y) ≥ �(x, y) for all x ∈ E, then we say that � is a
mixed monotone mapping in E.

The above mentioned fixed point theorems, see [, , –], are all for the monotone
mapping. In [], Bhaskar and Lakshmikantham extended the fixed point theorems ob-
tained in [, , –] to the mixed monotone mapping in partially ordered metric spaces.
At first, they introduced a definition of the coupled fixed point. And then some coupled
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fixed point theorems were proved in partially ordered metric spaces. Recently, these cou-
pled fixed point theorems were refined and improved by Lakshmikantham and Ćirić [],
Luong and Thuan [] and Samet [].

In the above mentioned results, the assumptions of mixed monotone property and con-
traction property of the mapping � are essential. The purpose of this paper is to delete or
weaken these conditions. In this paper, by utilizing a different technique, we prove some
coupled fixed point theorems in a partially ordered �-orbitally complete normed linear
space. In our results, we neither assume that the mapping � is mixed monotone, nor as-
sume that it is a contraction. We divide the mapping � into two parts, and assume that
every part satisfies some conditions, by using an existing Krasnoselskii-type fixed point
theorem, a coupled fixed point theorem for the mapping � is proved. As applications, we
apply the obtained coupled fixed point theorem to a certain abstract fractional evolution
systems for proving the existence of coupled mild solutions.

The rest of this paper is organized as follows. In Section , some definitions are recalled
and an existing Krasnoselskii-type fixed point theorem is introduced. In Section , coupled
fixed point theorems are proved. In Section , we apply the obtained coupled fixed point
theorem to a certain abstract fractional evolution systems. A specific example is given in
Section  to illustrate the abstract results.

2 Preliminaries
Let E be a partially ordered normed linear space with partial order ≤ and the norm ‖ · ‖E .
If two elements x, y ∈ E satisfy either x ≤ y or x ≥ y, we say that they are comparable. If E is
complete with respect to the norm ‖ · ‖E , we called it a partially ordered complete normed
linear space.

Definitions .-. can be found in [, ].

Definition . Let � : E → E be a mapping. For any x ∈ E, we define an orbit �(x;�) by

�(x;�) =
{

x,�x,�x, . . . ,�nx, . . .
}

.

If for any sequence {xn} ⊂ �(x;�), xn → x∗ implies �xn → �x∗ for each x ∈ E, � is said
to be �-orbitally continuous in E. A normed linear space (E,‖ · ‖E) is called �-orbitally
complete if every Cauchy sequence {xn} ⊂ �(x;�) converges to a point x∗ in E.

Definition . A function φ : R+ →R
+ is called a D-function if it is a monotone nonde-

creasing and upper semi-continuous function satisfying φ() = .

Definition . A mapping � : E → E is called partially nonlinear D-Lipschitz if for all
comparable elements x, y ∈ E, there is a D-function φ : R+ →R

+ such that

‖�x – �y‖E ≤ φ
(‖x – y‖E

)
.

Furthermore, if φ(r) < r for r > , � is called a partially nonlinear D-contraction in E.

Definition . A mapping � : E → E is said to be partially compact if for all totally or-
dered sets or chains C ⊂ E, �(C) is a relatively compact subset of E.
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Definition . The norm ‖ · ‖E and the order relation ≤ on a partially ordered normed
linear space (E,≤,‖ · ‖E) are said to be compatible if for any monotone sequence {xn} in E,
subsequence {xnk } of {xn} converges to x∗ implies that the whole sequence {xn} converges
to x∗.

Remark . From Definition ., if the normed linear space (E,‖ · ‖E) is complete, then it
is �-orbitally complete. But the converse expression may not be true.

Remark . The D-functions and the partially nonlinear D-Lipschitz conditions are
much useful in research of solutions for nonlinear differential equations via fixed point
theorems; see [].

The following Krasnoselskii-type fixed point theorem was proved by Dhage in [].

Lemma . Let E be a partially ordered complete normed linear space with the partial
order ≤ and the norm ‖ · ‖E such that ≤ and ‖ · ‖E are compatible. Suppose that A, A :
E → E are two monotone nondecreasing mappings satisfying:

(a) A is continuous and a partially nonlinear D-contraction,
(b) A is continuous and partially compact,
(c) there is an element v ∈ E satisfying v ≤ Av + Ay for all y ∈ E, and
(d) every pair of elements has an upper and a lower bound in E.

Then x = Ax + Ax has a solution in E.

3 Fixed point theorems
Let (E,‖ · ‖E) be a �-orbitally complete normed linear space. Define a positive cone K in
E by

K = {x ∈ E : x ≥ }.

Then E becomes now a partially ordered �-orbitally complete normed linear space with
the partial order ≤ induced by K . It is well known that the partially order ≤ and the norm
‖ · ‖E are compatible if cone K is normal.

By Lemma ., we first prove the following fixed point theorem.

Theorem . Let E be a partially ordered �-orbitally complete normed linear space with
the norm ‖ · ‖E and the partial order ≤, whose positive cone K is normal, and let D be a
nonempty closed subset of E. Assume that A, A : D → D are two monotone nondecreasing
mappings satisfying:

(a)′ A is �-orbitally continuous and

‖Ax – Ay‖E < ‖x – y‖E

for all comparable elements x, y ∈ D with x 
≡ y,
(b)′ A is �-orbitally continuous and partially compact,
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(c) there exists an element v ∈ D such that v ≤ Av + Ay for all y ∈ D, and
(d) every pair of elements in D has an upper and a lower bound.

Then the equation x = Ax + Ax has a solution in D.

Proof By Remark . of [] and the proof of Lemma ., if the continuity of operators A

and A is replaced by the �-orbitally continuity in conditions (a) and (b) of Lemma .,
the conclusion of Lemma . is still true. On the other hand, since D is a nonempty closed
subset of E, it follows that D is �-orbitally complete and has partial order ≤. For any
comparable elements x, y ∈ D, x 
≡ y, by the condition (a)′, it follows that there is τ ∈ (, )
satisfying

‖Ax – Ay‖E ≤ τ‖x – y‖E < ‖x – y‖E .

Let φ(r) = τ r. Then φ is a D-function and φ(r) < r for any r > . This implies that the
condition (a) of Lemma . is satisfied. By Lemma ., we obtain the desired conclusion.

�

If the inequality given in assumption (c) of Lemma . is reverse, more precisely, the
condition (c) of Lemma . is replaced by

(c)′ there is v ∈ D satisfying v ≥ Av + Ay for all y ∈ D.

By Theorem . of [], the conclusion of Lemma . is still true. Hence we can obtain
the following fixed point theorem. Since the proof is similar to Theorem ., we omit the
details here.

Theorem . Let E be a partially ordered �-orbitally complete normed linear space with
the norm ‖ · ‖E and the partial order ≤, whose positive cone K is normal, and let D be a
nonempty closed subset of E. Assume that A, A : D → D are two monotone nondecreasing
mappings satisfying the conditions (a)′, (b)′, (c)′ and (d). Then x = Ax + Ax has a solution
in D.

Let Ê := E × E. Define a sum and a scalar multiplication in Ê by

w + v = (w, w) + (v, v) = (w + v, w + v),

λw = λ(w, w) = (λw,λw)

for all w = (w, w), v = (v, v) ∈ Ê and λ ∈ R. And define a positive cone and a norm in Ê
by

KÊ =
{

w = (w, w) ∈ Ê : w, w ∈ K
}

,

‖v‖Ê =
∥∥(v, v)

∥∥
Ê = ‖v‖E + ‖v‖E , v = (v, v) ∈ Ê.

Then (̂E,‖·‖Ê) is a partially ordered normed linear space with the order relation ≤ induced
by KÊ . Let D be a nonempty closed subset of E. Then D × D is a nonempty closed subset
of Ê. It is clear that cone KÊ is normal if K is normal.
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Let Q : Ê → E. A pair of elements (x, y) ∈ Ê is called a coupled fixed point of Q : Ê → E
if and only if it satisfies

x = Q(x, y), y = Q(y, x).

By Theorem ., the following coupled fixed point theorem is obtained.

Theorem . Let E be a partially ordered �-orbitally complete normed linear space with
the partial order ≤ and the norm ‖ · ‖E , whose positive cone K is normal, and let D be a
nonempty closed subset of E. Assume that A, A : D → D are two monotone nondecreasing
mappings satisfying

(i) A is �-orbitally continuous and a partially nonlinear D-contraction,
(ii) A is �-orbitally continuous and partially compact,
(iii) there is an element v ∈ D satisfying v ≤ Av + Ay for all y ∈ D, and
(iv) every pair of elements in D has an upper and a lower bound.

Then Q(x, y) = Ax + Ay has a coupled fixed point in Ê.

Proof Since (E,≤,‖ · ‖E) is a partially ordered �-orbitally complete normed linear space,
and positive cone K is normal, it follows that (̂E,≤,‖ · ‖Ê) is a partially ordered �-orbitally
complete normed linear space and positive cone KÊ is normal. Since D is a nonempty
closed subset of E, it follows that D × D is a nonempty closed subset of Ê.

Let D̂ = D × D. Define two operators Â, Â : D̂ → D̂ by

Âu = (Ax, Ay), Âu = (Ay, Ax), ∀u = (x, y) ∈ D̂.

If the operator equation u = Âu + Âu has a solution u = (x, y) ∈ D̂, namely,

(x, y) = u = Âu + Âu = Â(x, y) + Â(x, y),

then we obtain

(x, y) = Âu + Âu

= (Ax, Ay) + (Ay, Ax)

= (Ax + Ay, Ay + Ax)

=
(
Q(x, y), Q(y, x)

)
.

This implies that the operator Q(x, y) has a coupled fixed point in Ê. We will apply Theo-
rem . to prove that the operator equation u = Âu + Âu has a solution in Ê. The proof
will be given in several steps.

Step I. Â is �-orbitally continuous and

‖Âw – Âv‖Ê < ‖w – v‖Ê ,

for all comparable elements w, v ∈ D̂ with w 
≡ v.
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Since A is �-orbitally continuous, by the definition of Â, it is easy to see that Â is
�-orbitally continuous.

For all comparable elements w = (w, w), v = (v, v) ∈ D̂ with w 
≡ v, we have

‖Âw – Âv‖Ê =
∥∥(Aw, Aw) – (Av, Av)

∥∥
Ê

=
∥∥(Aw – Av), (Aw – Av)

∥∥
Ê

= ‖Aw – Av‖E + ‖Aw – Av‖E

≤ ϕ
(‖w – v‖E

)
+ ϕ

(‖w – v‖E
)

< ‖w – v‖E + ‖w – v‖E

=
∥∥(w – v, w – v)

∥∥
Ê

=
∥∥(w, w) – (v, v)

∥∥
Ê

= ‖w – v‖Ê .

Hence, we obtain

‖Âw – Âv‖Ê < ‖w – v‖Ê

for all comparable elements w, v ∈ D̂ with w 
≡ v.
Step II. Â is �-orbitally continuous and partially compact.
Since A is �-orbitally continuous, by the definition of Â, it is easy to see that Â is

�-orbitally continuous.
Let C ⊂ D be a bounded chain. Since A is partially compact in D, it follows that A(C) is

equi-continuous and uniformly bounded in D. Set Ĉ = C × C. Then Ĉ is a bounded chain
in D̂. Next, we claim that Â(Ĉ) is equi-continuous and uniformly bounded in D̂

Since A(C) ⊂ D is uniformly bounded, there is a constant M >  satisfying ‖Az‖E ≤ M
for any z ∈ C. For any Z ∈ Â(Ĉ), there are x, y ∈ C satisfying u = (x, y) ∈ Ĉ such that Z =
Âu. Thus,

‖Z‖Ê = ‖Âu‖Ê =
∥∥(Ay, Ax)

∥∥
Ê

= ‖Ay‖E + ‖Ax‖E

≤ M.

This implies that Â(Ĉ) is uniformly bounded in D̂.
Since A(C) is equi-continuous in D, for any z ∈ C and t > t, we have

∥∥(Az)(t) – (Az)(t)
∥∥

E → 

as t – t → . Hence for any Z = Âu = Â(x, y) ∈ Â(Ĉ), we have

∥∥Z(t) – Z(t)
∥∥

Ê =
∥∥(Âu)(t) – (Âu)(t)

∥∥
Ê

=
∥∥(

(Ay)(t), (Ax)(t)
)

–
(
(Ay)(t), (Ax)(t)

)∥∥
Ê

=
∥∥(Ay)(t) – (Ay)(t), (Ax)(t) – (Ax)(t)

∥∥
Ê
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=
∥∥(Ay)(t) – (Ay)(t)

∥∥
E +

∥∥(Ax)(t) – (Ax)(t)
∥∥

E

→ 

as t – t → . This implies that Â(Ĉ) is equi-continuous in D̂.
Therefore, by the Arzela-Ascoli theorem, Â(Ĉ) ⊂ D̂ is relatively compact. Conse-

quently, Â : D̂ → D̂ is partially compact.
Step III. There is an element u ∈ D̂ satisfying

u ≤ Âu + Âu

for all u ∈ D̂.
Let u = (v, v). For any u = (x, y) ∈ D̂, by the condition (iii), we have

Âu + Âu = (Av, Av) + (Ay, Ax)

= (Av + Ay, Av + Ax)

≥ (v, v)

= u.

Hence we obtain the desired conclusion.
Step IV. Every pair of elements in D̂ has an upper and a lower bound.
For every pair of elements w = (w, w), v = (v, v) ∈ D̂, by condition (iv), there exist

z, z, z, z ∈ D such that

z ≤ w, z ≤ v, z ≥ w, z ≥ v,

z ≤ w, z ≤ v, z ≥ w, z ≥ v.

Thus, we have

(z, z) ≤ (w, w) ≤ (z, z),

(z, z) ≤ (v, v) ≤ (z, z).

Consequently, every pair of elements w, v ∈ D̂ has an upper and a lower bound.
Therefore, by Theorem ., the operator equation u = Âu + Âu has a solution in Ê.

�

By Theorems . and ., the following coupled fixed point theorem is obtained. Because
its proof is similar to Theorem ., we omit the details.

Theorem . Let E be a partially ordered �-orbitally complete normed linear space with
the norm ‖·‖E and the order relation ≤, positive cone K be normal, and let D be a nonempty
closed subset of E. Assume that A, A : D → D are two monotone nondecreasing mappings
satisfying

(i) A is �-orbitally continuous and a partially nonlinear D-contraction,
(ii) A is �-orbitally continuous and partially compact,
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(iii)′ there is an element v ∈ D satisfying v ≥ Av + Ay for all y ∈ D, and
(iv) every pair of elements in D has an upper and a lower bound.

Then Q(x, y) = Ax + Ay has a coupled fixed point in Ê.

Remark . The hypothesis (iv) of Theorems . and . holds if the partially ordered
set E is a lattice. We known that the set C(J , X) is a lattice, where C(J , X) is the set of all
continuous X-valued functions on J ∈R, X is a partially ordered set. For any x, y ∈ C(J , X),
max{x, y} and min{x, y} are the upper and lower bounds, respectively.

Remark . The assumptions of mixed monotone property and contractive property of
the mapping Q are essential in [, , , ]. But in Theorems . and ., we neither assume
that the mapping Q is mixed monotone, nor assume that the mapping Q is a contraction.
We only suppose that the mapping Q is a nondecreasing mapping and a part of Q (namely,
the operator A) is a partially nonlinear D-contraction. Plus with other assumptions we
obtain the coupled fixed point theorems. Hence Theorems . and . extend the main
results of [, , , ].

4 Existence results for fractional evolution systems
Let (X,‖ · ‖) be a �-orbitally complete normed linear space. Define its positive cone as
K = {x ∈ X : x ≥ }. Then X becomes a partially ordered �-orbitally complete normed
linear space with the norm ‖ · ‖ and the partial order ≤ induced by the cone K . In this
section, we always assume that K is normal. Investigate the existence of coupled mild
solutions to the initial value problem of the fractional hybrid evolution system

⎧
⎪⎪⎨

⎪⎪⎩

CDσ
t x(t) + Ax(t) = f (t, x(t)) + h(t, y(t)),

CDσ
t y(t) + Ay(t) = f (t, y(t)) + h(t, x(t)), t ∈ J ,

x() = τ, y() = τ ∈ X,

(.)

where J = [, b], b >  is a constant, CDσ
t denotes the σ ∈ (, ) order Caputo fractional

derivative, –A generates a C-semigroup S(t) (t ≥ ) of uniformly bounded linear operator
in X, f and h are given functions.

For the C-semigroup S(t) (t ≥ ), if S(t)x ≥  for all x ≥ , it is called a positive C-
semigroup. Throughout this section, we always assume that –A generates a positive C-
semigroup S(t) (t ≥ ) of uniformly bounded linear operator in X. Namely, there is a con-
stant M >  such that ‖S(t)‖ ≤ M for all t ≥ .

Definitions . and . can be found in [, , ].

Definition . The fractional integral of order σ >  with the lower limits zero for a func-
tion f ∈ L(J , E) is defined by

Iσ f (t) =


	(σ )

∫ t



f (s)
(t – s)–σ

ds, t > ,

where 	 is the gamma function.
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Definition . The Riemann-Liouville derivative of order n –  < σ < n, n ∈ N with the
lower limits zero for a function f ∈ L(J , E) can be defined as

LDσ
t f (t) =


	(n – σ )

dn

dtn

∫ t



f (s)
(t – s)σ+–n ds, t > .

The Caputo fractional derivative of order  < σ <  with the lower limits zero for a func-
tion f ∈ L(J , E) can be defined as

CDσ
t f (t) =L Dσ

t
(
f (t) – f ()

)
, t > .

Define two operator families {Uσ (t)}t≥ and {Vσ (t)}t≥ as

Uσ (t)x =
∫ ∞


ζσ (τ )S

(
tσ τ

)
x dτ ,

Vσ (t)x = σ

∫ ∞


τζσ (τ )S

(
tσ τ

)
x dτ ,  < σ < ,

where

ζσ (τ ) =

σ

τ–– 
σ �σ

(
τ– 

σ
)
,

�σ (τ ) =

π

∞∑

n=

(–)n–τ–σn– 	(nσ + )
n!

sin(nπσ ), τ ∈ (,∞).

Lemma .

(i) For any x ∈ X and fixed t ≥ , one has

∥∥Uσ (t)x
∥∥ ≤ M‖x‖,

∥∥Vσ (t)x
∥∥ ≤ M

	(σ )
‖x‖.

(ii) If S(t) (t ≥ ) is an equi-continuous semigroup, Vσ (t) is equi-continuous in X for t > .
(iii) If S(t) (t ≥ ) is a positive C-semigroup, Uσ (t) and Vσ (t) are positive operators for all

t ≥ .

Proof (i) and (ii) can be found in reference [, ]. (iii) is easily seen from the definitions
of Uσ (t) and Vσ (t). So, we omit the details here. �

Let C(J , X) be a set of all continuous X-valued functions on the interval J and let

KC =
{

x ∈ C(J , X) : x(t) ∈ K , t ∈ J
}

.

Then C(J , X) is a partially ordered �-orbitally complete normed linear space with the
norm ‖x‖C := sup{‖x(t)‖ : t ≥ } and the partial order ≤ induced by KC . It is clear that
KC is normal because K is normal.

Let E = C(J , X) and K = KC . Define two operators A, A : E → E by

(Ax)(t) = Uσ (t)τ +
∫ t


(t – s)σ–Vσ (t – s)f

(
s, x(s)

)
ds, t ∈ J , (.)
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(Ax)(t) =
∫ t


(t – s)σ–Vσ (t – s)h

(
s, x(s)

)
ds, t ∈ J . (.)

Definition . An element (x, y) ∈ E × E is called a coupled mild solution of the system
(.) if and only if it satisfies the following system of operator equations:

⎧
⎨

⎩
x(t) = (Ax)(t) + (Ay)(t), t ∈ J ,

y(t) = (Ay)(t) + (Ax)(t), t ∈ J .
(.)

We shall use Theorem . to prove that (.) has a coupled fixed point in E × E. For this
purpose, we consider the following hypotheses:

(H) The positive C-semigroup S(t) (t ≥ ) is equi-continuous.
(H) The function f : J × X → X is continuous in x for all t ∈ J and there exist a constant

ρ ∈ R with  < ρ < 	(σ+)
Mbσ and a D-function φ : R+ → R

+ with φ(r) < r for any r > 
satisfying

 ≤ f (t, u) – f (t, v) ≤ ρφ
(‖u – v‖), ∀u, v ∈ X, u ≥ v

for all t ∈ J .
(H) The function h(t, x) : J × X → X is continuous, nondecreasing and bounded in x.
(H) There is an element x ∈ E satisfying

⎧
⎨

⎩

CDσ
t x(t) + Ax(t) ≤ f (t, x(t)) + h(t, y(t)), t ∈ J ,

x() ≤ τ ∈ X

for all y ∈ E.

Since, by (H), h(t, x) is bounded in x for all t ∈ J , there is a constant M̃ >  such that
‖h(t, x)‖ ≤ M̃ for all t ∈ J and x ∈ X. For

r∗ ≥ max

{
MM̃bσ

	(σ + )
,
(

 –
Mρbσ

	(σ + )

)–(
M‖τ‖ +

MF∗bσ

	(σ + )

)}
+ , (.)

where F∗ = supt∈J ‖f (t, )‖, we define an open ball B(x, r) in E by

B(x, r) =
{

x ∈ E : ‖x – x‖C < r
}

,

where r = ‖x‖C + r∗. Let D = B(x, r). Then D is a closed and bounded subset in E. By
virtue of the assumptions (H)-(H), we have the following lemmas.

Lemma . Assume that the hypothesis (H) holds. Then the operator A : D → D is �-
orbitally continuous, nondecreasing and a partially nonlinear D-contraction in E.

Proof By (H), (.) and (.), for any x ∈ E with ‖x‖C ≤ r∗, we have

∥∥(Ax)(t)
∥∥ ≤ M‖τ‖ +

M
	(σ )

∫ t


(t – s)σ–[∥∥f

(
s, x(s)

)
– f (s, )

∥∥ +
∥∥f (s, )

∥∥]
ds

≤ M‖τ‖ +
M

	(σ )

∫ t


(t – s)σ–[ρφ

(‖x‖C
)

+ F∗]ds
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≤ M‖τ‖ +
Mρbσ

	(σ + )
r∗ +

MF∗bσ

	(σ + )

≤ r∗.

This implies that ‖Ax‖C ≤ r∗ for any x ∈ E with ‖x‖C ≤ r∗. Moreover, we have

‖x – Ax‖C ≤ ‖x‖C + ‖Ax‖C ≤ ‖x‖C + r∗ = r.

This implies that A maps D into itself.
Since S(t) (t ≥ ) is a positive C-semigroup, by (H) and Lemma ., it follows that

A : D → D is nondecreasing. Take a sequence {xn} ⊂ �(x; A) for any x ∈ D with xn → x∗

as n → ∞. Since f is continuous in x for all t ∈ J , by assumption (H) and dominated
convergence theorem, we have

lim
n→∞(Axn)(t) = Uσ (t)τ +

∫ t


(t – s)σ–Vσ (t – s) lim

n→∞ f
(
s, xn(s)

)
ds

= Uσ (t)τ +
∫ t


(t – s)σ–Vσ (t – s)f

(
s, x∗(s)

)
ds

=
(
Ax∗)(t), t ∈ J .

This implies that A : D → D is �-orbitally continuous.
For any comparable elements x, y ∈ D, without loss of generality, we assume that x ≥ y.

By (H), for any t ∈ J , we have

∥∥(Ax)(t) – (Ay)(t)
∥∥ ≤

∫ t


(t – s)σ–∥∥Vσ (t – s)

[
f
(
s, x(s)

)
– f

(
s, y(s)

)]∥∥ds

≤ Mρ

	(σ )

∫ t


(t – s)σ–φ

(∥∥x(s) – y(s)
∥∥)

ds

≤ Mbσ ρ

	(σ + )
φ
(‖x – y‖C

)
.

This implies that

‖Ax – Ay‖C ≤ φ
(‖x – y‖C

)

because of  < ρ < 	(σ+)
Mbσ . Hence A : D → D is a partially nonlinear D-contraction in E.

�
Lemma . Let the hypotheses (H) and (H) hold. Then the operator A : D → D is �-
orbitally continuous, nondecreasing and partially compact in E.

Proof By the assumption (H), (.) and (.), for any x ∈ E with ‖x‖C ≤ r∗, we have

∥∥(Ax)(t)
∥∥ ≤ M

	(σ )

∫ t


(t – s)σ–∥∥h

(
s, x(s)

)∥∥ds ≤ MM̃bσ

	(σ + )
≤ r∗.

This follows that ‖Ax‖C ≤ r∗ for any x ∈ E with ‖x‖C ≤ r∗. Further, we have

‖x – Ax‖C ≤ ‖x‖C + ‖Ax‖C ≤ ‖x‖C + r∗ = r.

This implies that A maps D into itself.
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Since S(t) (t ≥ ) is a positive C-semigroup, by (H) and Lemma ., a similar proof as
in Lemma . shows that A : D → D is �-orbitally continuous and nondecreasing.

For any t, t ∈ J with t < t, denote

G =
∥∥∥∥

∫ t



[
(t – s)σ– – (t – s)σ–]Vσ (t – s)h

(
s, x(s)

)
ds

∥∥∥∥,

G =
∥∥∥∥

∫ t


(t – s)σ–[Vσ (t – s) – Vσ (t – s)

]
h
(
s, x(s)

)
ds

∥∥∥∥,

G =
∥∥∥∥

∫ t

t

(t – s)σ–Vσ (t – s)h
(
s, x(s)

)
ds

∥∥∥∥.

Then, by Lemma ., we have

G ≤ MM̃
	(σ )

∫ t



∣∣(t – s)σ– – (t – s)σ–∣∣ds,

G ≤ MM̃bσ

	(σ + )
(t – t)σ .

This implies that G →  and G →  as t – t → . If t ≡  and  < t ≤ b, it is clear that
G ≡ . For t >  and δ ∈ (, t) small enough, we have

G ≤
∥∥∥∥

∫ t–δ


(t – s)σ–[Vσ (t – s) – Vσ (t – s)

]
h
(
s, x(s)

)
ds

∥∥∥∥

+
∥∥∥∥

∫ t

t–δ

(t – s)σ–[Vσ (t – s) – Vσ (t – s)
]
h
(
s, x(s)

)
ds

∥∥∥∥

≤ M̃(tσ
 – δσ )
σ

sup
s∈[,t–δ]

∥∥Vσ (t – s) – Vσ (t – s)
∥∥

+
MM̃δσ

	(σ + )
.

Hence G →  as t – t →  and δ →  because of (H).
Let C ⊂ D be an arbitrary chain. For any Z ∈ A(C), there is x ∈ C such that Z(t) =

(Ax)(t) for all t ∈ J . So, for any t, t ∈ J with t < t, by the definition of the operator A,
the inequality

∥∥Z(t) – Z(t)
∥∥ =

∥∥(Ax)(t) – (Ax)(t)
∥∥ ≤ G + G + G

implies that

∥∥Z(t) – Z(t)
∥∥ → 

as t – t → . This further implies that A(C) is equi-continuous on J .
On the other hand, by (H), we have

∥∥Z(t)
∥∥ =

∥∥(Ax)(t)
∥
∥ ≤

∫ t


(t – s)σ–∥∥Vσ (t – s)h

(
s, x(s)

)∥∥ds ≤ MM̃bσ

	(σ + )
, ∀t ∈ J .
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It follows that ‖Z‖C ≤ MM̃bσ

	(σ+) . Hence A(C) is uniformly bounded in E. By the Arzela-Ascoli
theorem, A : D → D is partially compact. �

Theorem . Let the hypotheses (H)-(H) hold. Then the fractional evolution system (.)
has a coupled mild solution on J .

Proof Define two operators A and A as in (.) and (.). By Lemmas . and ., we
deduce that A : D → D is �-orbitally continuous, nondecreasing and a partially nonlin-
ear D-contraction as well as A : D → D is �-orbitally continuous, nondecreasing and
partially compact.

To apply Theorem ., it remains to prove that there is an element x ∈ D satisfying x ≤
Ax + Ay for all y ∈ D. By (H), there is an elements x ∈ D satisfying

⎧
⎨

⎩

CDσ
t x(t) + Ax(t) ≤ f (t, x(t)) + h(t, y(t)), t ∈ J ,

x() ≤ τ ∈ X,

for all y ∈ D. Let F(t) = Dσ x(t) + Ax(t), t ∈ J . Then we have

x(t) = Uσ (t)x() +
∫ t


(t – s)σ–Vσ (t – s)F(s) ds

≤ Uσ (t)τ +
∫ t


(t – s)σ–Vσ (t – s)

[
f
(
t, x(t)

)
+ h

(
t, y(t)

)]
ds

= (Ax)(t) + (Ay)(t)

for all y ∈ D and t ∈ J . Hence all the conditions of Theorem . are satisfied. By Theo-
rem ., the system (.) has a coupled fixed point in Ê. Therefore, the fractional evolution
system (.) has a coupled mild solution in Ê. �

By Theorem ., we can obtain the following corollaries easily.

Corollary . Let the hypotheses (H), (H) and (H) hold. In addition, the following con-
dition is satisfied:

(H)′ The function f : J × X → X is continuous in x for all t ∈ J and there is a constant
β ∈ (, 	(σ+)

Mbσ ) such that

 ≤ f (t, u) – f (t, v) ≤ β(u – v), ∀u ≥ v, t ∈ J .

Then the fractional evolution system (.) has a coupled mild solution on J .

Corollary . Let the hypotheses (H), (H) and (H) hold. In addition, the following con-
dition is satisfied:

(H)′′ The function f : J × X → X is continuous in x for all t ∈ J and there is a constant
γ ∈ (, 	(σ+)

Mbσ ) such that

 ≤ f (t, u) – f (t, v) ≤ γ ‖u – v‖
 + ‖u – v‖ , ∀u ≥ v, t ∈ J .

Then the fractional evolution system (.) has a coupled mild solution on J .
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5 Applications
In this section, we apply the obtained abstract results to the following fractional hybrid
dynamic system:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

CD


t x(z, t) + ∂x(z,t)

∂z = f (z, t, x(z, t)) + h(z, t, y(z, t)), (z, t) ∈ I × I,
CD



t y(z, t) + ∂y(z,t)

∂z = f (z, t, y(z, t)) + h(z, t, x(z, t)), (z, t) ∈ I × I,

x(, t) = x(, t) = , y(, t) = y(, t) = , t ∈ I,

x(z, ) = y(z, ) = τ(z), z ∈ (, ),

(.)

where I = [, ], h : I × I ×R →R is defined by

h(z, t, u) =

⎧
⎪⎪⎨

⎪⎪⎩

, u ≤ ,

 + u
+u ,  < u < ,

, u ≥ .

It is clear that h : I × I ×R →R is continuous, nondecreasing and

∣∣h(z, t, u)
∣∣ ≤ .

This implies that the condition (H) holds.

Theorem . Suppose that the following conditions are satisfied:

(P) The function f : I × I × R → R is continuous and there exist a constant ρ ∈ (,
√

π

 )
and a D-function φ : R+ →R

+ with φ(r) < r for r >  such that

 ≤ f
(
z, t, u(z, t)

)
– f

(
z, t, v(z, t)

) ≤ ρφ
(∣∣u(z, t) – v(z, t)

∣∣)

for all (z, t) ∈ I × I and u, v ∈ C(I × I,R) with u ≥ v.
(P) There exists a function x̂ ∈ C(I × I,R) such that

⎧
⎨

⎩

CD


t x̂(z, t) + ∂ x̂(z,t)

∂z ≤ f (z, t, x̂(z, t)) + h(z, t, y(z, t)), (z, t) ∈ I × I,

x̂(z, ) ≤ τ(z), z ∈ (, ),

for any y ∈ C(I × I,R).

Then the fractional hybrid dynamic system (.) has a coupled mild solution.

Proof Let X = C(I,R). Then X is a �-orbitally complete normed linear space with the
norm ‖x(t)‖C = maxt∈I |x(t)|. Define a positive cone in X by K = {x ∈ X : x ≥ }. Then K is
a closed convex cone in X, which is normal. Define an operator A : D(A) ⊂ X → X by

Au = u′, u ∈ D(A) :=
{

u ∈ X : u′ ∈ X, u() = u() = 
}

.

It is well known that A generates a C-semigroup S(t) (t ≥ ) given by

S(t)u(z) = u(t + z), t ≥ , u ∈ X.
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Then S(t) (t ≥ ) is an equi-continuous C-semigroup, but it is not compact, and
supt∈I ‖S(t)‖ ≤ . This implies that the condition (H) holds.

Let

x(t)(z) = x(z, t),

y(t)(z) = y(z, t),

f
(
t, x(t)

)
(z) = f

(
z, t, x(z, t)

)
,

h
(
t, x(t)

)
(z) = h

(
z, t, x(z, t)

)
.

Then the fractional hybrid dynamic system (.) can be rewritten into the abstract frac-
tional evolution system (.).

By the assumptions (P) and (P), the conditions (H) and (H) hold. Hence by Theo-
rem ., the abstract fractional evolution system (.) has a coupled mild solution, which
is also the coupled mild solution of the fractional hybrid dynamic system (.). �

Similarly, using Corollaries . and ., we can obtain the following theorems.

Theorem . Assume that the condition (P) and the following condition are satisfied:

(P) The function f : I × I × R → R is continuous and there exist a constant β ∈ (,
√

π

 )
such that

 ≤ f
(
z, t, u(z, t)

)
– f

(
z, t, v(z, t)

) ≤ β
(
u(z, t) – v(z, t)

)

for all (z, t) ∈ I × I and u, v ∈ C(I × I,R) with u ≥ v.

Then the fractional hybrid dynamic system (.) has a coupled mild solution.

Theorem . Let the condition (P) and the following condition hold:

(P) The function f : I × I × R → R is continuous and there exist a constant γ ∈ (,
√

π

 )
such that

 ≤ f
(
z, t, u(z, t)

)
– f

(
z, t, v(z, t)

) ≤ γ ‖u – v‖C

 + ‖u – v‖C

for all (z, t) ∈ I × I and u, v ∈ C(I × I,R) with u ≥ v.

Then the fractional hybrid dynamic system (.) has a coupled mild solution.

Acknowledgements
The first author is thankful to the NSF (No. 11661071) and the third author is thankful to the United States-India Education
Foundation, New Delhi, India and IIE/CIES, Washington, DC, USA for Fulbright-Nehru PDF Award (No. 2052/FNPDR/2015).

Competing interests
None of the authors have any competing interests in the manuscript.

Authors’ contributions
All authors contributed equally in writing this paper. All authors read and approved the final manuscript.

Author details
1College of Mathematics and Statistics, Northwest Normal University, Lanzhou, 730070, P.R. China. 2Department of
Mathematics, Texas A&M University-Kingsville, Kingsville, TX 78363, USA.



Yang et al. Advances in Difference Equations  (2017) 2017:239 Page 16 of 16

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 24 January 2017 Accepted: 13 July 2017

References
1. Agarwal, R, El-Gebeily, M, O’Regan, D: Generalized contractions in partially ordered metric spaces. Appl. Anal. 87,

109-116 (2008)
2. Bhaskar, T, Lakshmikantham, V: Fixed point theorems in partially ordered metric spaces and applications. Nonlinear

Anal. TMA 65, 1379-1393 (2006)
3. Dhage, B: A nonlinear alternative with applications to nonlinear perturbed differential equations. Nonlinear Stud. 13,

343-354 (2006)
4. Dhage, B: Hybrid fixed point theory in partially ordered normed linear spaces and applications to fractional integral

equations. J. Differ. Equ. Appl. 2, 155-184 (2013)
5. Dhage, B: Partially continuous mappings in partially ordered normed linear spaces and applications to functional

integral equations. Tamkang J. Math. 45, 397-426 (2014)
6. Granas, A, Dugundji, J: Fixed Point Theory. Springer, New York (2003)
7. Harjani, J, Sadarangani, K: Generalized contractions in partially ordered metric spaces and applications to ordinary

differential equations. Nonlinear Anal. TMA 72, 1188-1197 (2010)
8. Kilbas, A, Srivastava, H, Trujillo, J: Theory and Applications of Fractional Differential Equations. North Holland

Mathematics Studies, vol. 204. Elsevier, Amsterdam (2006)
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