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Abstract
In this article, we deduce a uniqueness result of entire functions that share a small
entire function with their two difference operators, generalizing some previous
theorems of (Farissi et al. in Complex Anal. Oper. Theory 10:1317-1327, 2015,
Theorem 1.1) and (Chen and Li in Adv. Differ. Equ. 2014:311, 2014, Theorem 1.1) by
omitting the assumption that the shared small entire function is periodic.
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1 Introduction and main result
Nevanlinna theory of value distributions is concerned with the density of points where a
meromorphic function takes a certain value in the complex plane. Nowadays, there has
been recent interest in connections between the Nevanlinna theory and the difference op-
erator. In addition, many papers have been devoted to the investigation of the uniqueness
problems related to meromorphic functions and their shifts or their difference operators
and one got a lot of results (see, e.g., [–]).

In order to state the main result, we give the following definition. For a meromorphic
function f (z), we define its shift by fc = f (z + c) and its difference operators by

�cf (z) = f (z + c) – f (z),

�n
c f (z) = �n–

c
(
�cf (z)

)
, n ∈ N, n ≥ .

A meromorphic function a(z) is said to be a small function with respect to f (z) if and only
if T(r, a) = S(r, f ), where S(r, f ) = o(T(r, f )), as r → ∞ outside of a possible exceptional set
of finite logarithmic measure. Denote the set of all the small functions of f (z) by S(f ). Let
f (z) and g(z) be two meromorphic functions and let a(z) be a small entire function of f (z)
and g(z). We say that f (z) and g(z) share a(z) IM, provided that f (z) – a(z) and g(z) – a(z)
have the same zeros ignoring multiplicities. Similarly, we say that f (z) and g(z) share a(z)
CM, provided that f (z) – a(z) and g(z) – a(z) have the same zeros counting multiplicities.

Recently, Chen et al. [, ] investigated two uniqueness problems on entire functions
that share a small periodic entire function with their two difference operators as follows.
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Theorem A (see [], Theorem .) Let f (z) be a nonconstant entire function of finite order,
let a(z)( �≡ ) ∈ S(f ) be a periodic entire function with period c. If f (z), �cf (z), �

c f (z) share
a(z) CM, then �

c f (z) ≡ �cf (z).

Theorem B (see [], Theorem .) Let f (z) be a nonconstant entire function of finite order.
If f (z), �cf (z), �

c f (z) share  CM, then �
c f (z) ≡ C�cf (z), where C is a nonzero constant.

In , El Farissi, Latreuch and Asiri further studied the above problem and obtained

Theorem C (see [], Theorem .) Let f (z) be a nonconstant entire function of finite order,
let a(z)( �≡ ) ∈ S(f ) be a periodic entire function with period c. If f (z), �cf (z), �

c f (z) share
a(z) CM, then f (z) ≡ �cf (z).

Remark  It is necessary to point out that Theorems A and B have been generalized from
�

c f (z) to �n
c f (z) by Chen, Chen and Li in []. There are also some interesting results

related the above theorems (see, e.g., [, ]).

In the previous results, we find that the shared small function a(z) is a periodic function
with period c. So, it is natural to ask what will happen if the periodic condition of a(z) is
omitted. In this paper, we focus on this problem and we obtain the following result.

Theorem  Let f (z) be a nonconstant entire function of finite order, and let a(z) ∈ S(f ) be
an entire function. If f (z), �cf (z), �

c f (z) share a(z) CM, then one of the following assertions
holds:

(i) If �ca(z) ≡ a(z), then �
c f (z) – a(z) = C(�cf (z) – a(z)), where C is a nonzero

constant.
(ii) If �ca(z) �≡ a(z), then �cf (z) = f (z) or �

c f (z) – a(z) = eγ (�cf (z) – a(z)), where γ is a
polynomial with degγ < ρ(a).

Remark  We point out that Theorem  is a generalization of the previous theorems.
If a(z) ≡ , then �ca(z) = a(z). Then it follows from (i) of Theorem  that �

c f (z) =
C�cf (z), where C is a nonzero constant.

If a(z) �≡  is a periodic function with period c, then �ca(z) �≡ a(z). It follows from (ii)
of Theorem  that �cf (z) = f (z) or �

c f (z) = �cf (z). Furthermore, by Theorem C we can
deduce that �cf (z) = f (z).

As an application of Theorem , we can obtain an interesting result, where a(z) is a slow
growth small function.

Theorem  Let f (z) be a nonconstant entire function of finite order, and let a(z)(�≡ ) ∈ S(f )
be an entire function with ρ(a) < . If f (z), �cf (z), �

c f (z) share a(z) CM, then �cf (z) = f (z).

For convenience of the reader, we list here some notations. For a meromophic function
f , we use the basic notations of the Nevanlinna theory of meromorphic functions such as
T(r, f ), m(r, f ), N(r, f ) and N(r, f ) as explained in [–].



Lü et al. Advances in Difference Equations  (2017) 2017:216 Page 3 of 9

2 Some lemmas
In this section, we state some results that we employ in our proofs.

Lemma . ([], Theorem .) Let c ∈C, n ∈N, and let f be a meromorphic function with
a finite order. Then for all small periodic functions a(z) ∈ S(f )

m
(

r,
�n

c f (z)
f (z) – a(z)

)
= S(r, f ),

where S(r, f ) = o(T(r, f )) for all r outside of a possible exceptional set E with finite logarith-
mic measure.

Lemma . ([], Lemma .) Let g be a nonconstant meromorphic function in the plane
of order less than , and let h > . Then there exists a ε-set E such that

g(z + η)
g(z)

→ , as z → ∞ in C\E,

uniformly in η for |η| < h.

Lemma . plays an important role in the proof of Theorem .

3 Proof of Theorem 1
Note that f (z) is a nonconstant entire function of finite order. Then �cf (z) and �

c f (z) are
also two entire functions of finite order.

Set g(z) = f (z) – a(z). Then

�cg(z) = �cf (z) – �ca(z), �
c g(z) = �

c f (z) – �
c a(z).

Since f (z), �cf (z), �
c f (z) share a(z) CM, we have

�cf (z) – a(z)
f (z) – a(z)

=
�cg(z) + �ca(z) – a(z)

g(z)
= eP(z), ()

�
c f (z) – a(z)
f (z) – a(z)

=
�

c g(z) + �
c a(z) – a(z)

g(z)
= eQ(z), ()

where P(z) and Q(z) are two polynomials.
Suppose that �ca(z) ≡ a(z). Obviously, we can get �

c a(z) ≡ a(z). It is clear that g(z),
�cg(z), and �

c g(z) share  CM. By Theorem B, we can obtain �
c g(z) ≡ C�cg(z), where

C is a nonconstant. So �
c f (z) – �

c a(z) ≡ C(�cf (z) – �ca(z)). That is, �
c f (z) – a(z) ≡

C(�cf (z) – a(z)).
In the following, we assume that �ca(z) �≡ a(z). We consider into two cases.
Case . �

c a(z) �≡ a(z).
Set

ϕ(z) =
(�ca(z) – a(z))(�

c f (z) – �
c a(z)) – (�

c a(z) – a(z))(�cf (z) – �ca(z))
f (z) – a(z)

()

=
(�ca(z) – a(z))(�

c f (z) – a(z)) – (�
c a(z) – a(z))(�cf (z) – a(z))

f (z) – a(z)
. ()
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From () and (), we can rewrite the above function as

ϕ(z) =
(
�ca(z) – a(z)

)
eQ(z) –

(
�

c a(z) – a(z)
)
eP(z), ()

which implies that ϕ is an entire function.
By () and Lemma ., we deduce that ϕ(z) ∈ S(f ).
Subcase .. We assume that ϕ �≡ . Rewrite () as

 +
(�

c a(z) – a(z))eP(z)

ϕ(z)
=

(
�ca(z) – a(z)

) · eQ(z)

ϕ(z)
.

By the second main theorem, we deduce

T
(

r,
(
�

c a(z) – a(z)
)eP

ϕ

)

≤ N
(

r,


(�
c a(z) – a(z)) eP

ϕ

)
+ N

(
r,


(�

c a(z) – a(z)) eP
ϕ

+ 

)

+ N
(

r,
(
�

c a(z) – a(z)
)eP

ϕ

)
+ S(r, f )

≤ N
(

r,

eP
ϕ

)
+ N

(
r,


(�ca(z) – a(z)) · eQ

ϕ

)
+ N

(
r,

eP

ϕ

)
+ S(r, f )

≤ N(r,ϕ) + N
(

r,

ϕ

)
+ S(r, f )

= S(r, f ).

Hence

T
(
r, eP) ≤ T

(
r,

(
�

c a(z) – a(z)
)eP

ϕ

)
+ T

(
r,

ϕ

(�
c a(z) – a(z))

)
≤ S(r, f ).

Similarly, we get T(r, eQ) = S(r, f ).
Rewrite equation () as

�cf (z) – a(z) =
(
f (z) – a(z)

)
eP(z) = f (z + c) – f (z) – a(z), ()

which implies that f (z + c) = f (z)(eP(z) + ) + a(z)( – eP(z)). Then we deduce

�
c f (z) = f (z + c) – f (z + c) + f (z)

= f (z)
[(

 + eP(z+c))( + eP(z)) – 
(
 + eP(z)) + 

]
+ a(z + c)

(
 – eP(z+c))

+ a(z)
[(

 + eP(z+c))( – eP(z)) – 
(
 – eP(z))]. ()

By (), we have

�
c f (z) = f (z)eQ(z) + a(z)

(
 – eQ(z)). ()
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Combining equations () and () yields

f (z)
[(

 + eP(z+c))( + eP(z)) – 
(
 + eP(z)) + 

]
= f (z)eQ(z), ()

a(z + c)
(
 – eP(z+c)) + a(z)

[(
 + eP(z+c))( – eP(z)) – 

(
 – eP(z))] = a(z)

(
 – eQ(z)). ()

From (), we have

eP(z)(eP(z+c) + eP(z+c)–P(z) – 
)

= eQ(z). ()

Suppose that eP(z) is a nonconstant function. Denote η = eP(z+c)–P(z) – . Obviously, η is a
small function of eP(z). It follows from () that eP(z+c) + η have no zeros. Note that eP(z+c)

has only one Picard value, say . Then η ≡ , which implies eP(z+c)–P(z) = . Again by (),
we have

(
eP(z)) = eQ(z).

If eP(z) is a constant, then eP(z+c) = eP(z). By () we also get (eP(z)) = eQ(z).
Furthermore, it follows from (), eP(z+c) = eP(z) and (eP(z)) = eQ(z) that

(
a(z + c) – a(z)

)(
 – eP(z)) = ,

(
�ca(z) – a(z)

)(
 – eP(z)) = .

Note that a(z) �= �ca(z), then eP(z) ≡ , so eQ(z) ≡ . Hence, we obtain �cf (z) = f (z).
Subcase .. We assume that ϕ(z) ≡ . Then it follows from () and () that

�
c f (z) – �

c a(z)
�cf (z) – �ca(z)

=
�

c a(z) – a(z)
�ca(z) – a(z)

= eQ–P = eγ ,

where γ = Q – P is a polynomial and degγ < ρ(a). From this, we also have �
c f (z) – a(z) =

eγ (�cf (z) – a(z)).
Case . �

c a(z) ≡ a(z).
By () and Lemma ., we get eQ ∈ S(f ).
Rewrite () and () as

�cg(z) = g(z)eP(z) + a(z) – �ca(z), ()

�
c g(z) = g(z)eQ(z). ()

Then

eQ(z)g(z) = eP(z+c)g(z + c) – eP(z)g(z) + �ca(z) – a(z). ()

Rewrite () as g(z + c) = g(z)[ + eP(z)] + a(z) – �ca(z).
Now, substitute the form of g(z + c) into () yields

(
eP(z+c)eP(z) + eP(z+c) – eP(z) – eQ(z))g(z) =

(
�a(z) – a(z)

)(
eP(z+c) – 

)
. ()
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Suppose that n = deg P ≤ deg Q. Since eQ ∈ S(f ), we have eP ∈ S(f ).
Similar to the discussion of Subcase ., we obtain �cf (z) = f (z).
Now, we assume that deg P > deg Q. Suppose that

P(z) = anzn + an–zn– + · · · + a, an �= .

Set h = eanzn . Then eP(z) = βh, eP(z+c) = βh, where β, β are two small functions of h.
Note that deg P > deg Q, so eQ is also a small function of h.
From (), we have

�ca(z) – a(z)
g(z)

=
eP(z)eP(z+c) + eP(z+c) – eP(z) – eQ(z)

eP(z+c) – 
. ()

We claim that

eP(z)eP(z+c) + eP(z+c) – eP(z) – eQ(z)

eP(z+c) – 

is irreducible except the factor which is a small function of h.
Suppose that z is a common zero of eP(z+c) –  and eP(z)eP(z+c) + eP(z+c) – eP(z) – eQ(z). It is

easy to deduce that eQ(z) = . Note that eQ(z) –  ∈ S(h). Thus, the claim holds.
Rewrite () as

�ca(z) – a(z)
g(z)

=
ββh + (β – β)h – eQ(z)

βh – 
. ()

Denote H = ββh + (β – β)h – eQ(z) = αh + αh + α, where αj ∈ S(h), j = , , . By the
above equation, we see that T(r, g) = O(T(r, h)), which implies that a ∈ S(h). Next we can
prove that

N
(

r,

H

)
≤ N

(
r,


�ca(z) – a(z)

)
+ S(r, h).

In fact, from () we have

H =
�ca(z) – a(z)

g(z)
(
eP(z+c) – 

)
.

Note that g(z) is an entire function. All the zeros of H come from the zeros of �ca(z) – a(z)
and eP(z+c) – . By νF (z) we denote the multiplicity of the zero of meromorphic function F
at the point z.

Suppose that z is a zero of H . We claim νH (z) ≤ ν�ca–a(z) + deg P · νeQ–(z). Now we
split into two cases.

Case A. z is not a zero of eP(z+c) – . Then z must be a zero of �ca – a. Hence νH (z) ≤
ν�ca–a(z).

Case B. z is a zero of eP(z+c) – . Set P(z) = P(z + c). Obviously, νeP –(z) ≤ deg P. Then
H(z) =  and eP(z+c) –  = , which leads to eQ(z) = .

Assume that eQ ≡ . Then we can rewrite () as

�ca(z) – a(z)
g(z)

=
eP(z)eP(z+c) + eP(z+c) – eP(z) – 

eP(z+c) – 
= eP(z) + . ()
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Further,

g(z) =
�ca(z) – a(z)

eP(z) + 
, ()

we know �ca(z) – a(z) is a small function of eP(z) and

N
(

r,


eP(z) + 

)
= T

(
r, eP(z)) + S

(
r, eP(z)).

Thus, it follows from () that g(z) is not an entire function, a contradiction. So eQ(z) �≡ .
The above discussion yields

νH (z) ≤ ν�ca–a(z) + νeP –(z)

≤ ν�ca–a(z) + deg P

≤ ν�ca–a(z) + deg P · νeQ–(z).

Thus the claim holds.
By the claim and T(r, eQ) = S(r, h), we get

N
(

r,

H

)
≤ N

(
r,


�ca(z) – a(z)

)
+ deg P · N

(
r,


eQ – 

)

≤ T(r,�ca – a) + deg P · T
(
r, eQ)

= S(r, h).

On the other hand, we have

T(r, h) = T(r, H) + S(r, h)

≤ N
(

r,

H

)
+ N(r, H) + N

(
r,


H – α

)
+ S(r, h)

≤ N
(

r,


αh + αh

)
+ S(r, h)

≤ T(r, h) + S(r, h),

a contradiction. Thus, the case cannot occur.
Hence, we finish the proof of Theorem .

4 Proof of Theorem 2
If a(z) is a constant, then it follows from Theorem C that f (z) ≡ �cf (z). In the following,
we assume that a(z) is a nonconstant entire function.

Suppose that �ca(z) ≡ a(z). Then we have

a(z + c)
a(z)

= .

Note that ρ(a) < . Now, we apply Lemma . to this case.
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Then there exists a ε-set E of finite logarithmic measure, so that

a(z + c)
a(z)

→ ,

for all z → ∞ in C\E. It is absurd. Thus, �ca(z) �≡ a(z). It follows from (ii) of Theorem 
that �cf (z) = f (z) or

�
c f (z) – �

c a(z)
�cf (z) – �ca(z)

=
�

c a(z) – a(z)
�ca(z) – a(z)

= eγ ,

where γ is a polynomial.
Suppose that

�
c f (z) – �

c a(z)
�cf (z) – �ca(z)

=
�

c a(z) – a(z)
�ca(z) – a(z)

= eγ .

Note that ρ(a) < . We get

ρ
(
eγ

) ≤ ρ

(
�

c a(z) – a(z)
�ca(z) – a(z)

)
≤ ρ(a) < ,

which implies that eγ is a nonzero constant, say C. Furthermore, we get

�
c a(z) – a(z) = C

(
�ca(z) – a(z)

)
.

Rewrite it as

a(z + c) – ( + C)a(z + c) + Ca(z) = .

Applying Lemma . again, we deduce that  – ( + C) + C = , which implies that C = .
Then the above difference equation reduces to

a(z + c) – a(z + c) + a(z) = .

Set b(z) = a(z + c) – a(z). Then the above equation can be rewritten as

b(z + ) = b(z),

which implies that b(z) is a periodic function. If b(z) is a nonconstant function, then
ρ(b) ≥ . It contradicts ρ(b) ≤ ρ(a) < . Thus, b is a constant. Hence

a(z + c) – a(z) = b. ()

Then applying Lemma . again, there exists a ε-set E of finite logarithmic measure, so
that

a(z + c)
a(z)

→ ,
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for all z → ∞ in C\E. Rewrite () as

a(z + c)
a(z)

–  =
b

a(z)
.

Then choose a sequence {zk} such that |zk| = rk , zk /∈ E and |a(zk)| = M(rk , a), rk → ∞
as k → ∞. Substituting zk into the above function yields a contradiction by Lemma ..
Thus, this case cannot occur. Then we deduce the desired result.

Hence, we finish the proof of Theorem .
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