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Abstract
We study a diffusive predator-prey system with a ratio-dependent functional
response when a prey population is infected under homogeneous Neumann
boundary condition. All non-negative and positive equilibria are investigated, and the
conditions that give rise to asymptotic behavior of these equilibria are examined. In
particular, we present a biological interpretation of disease-free and total extinction
states. A comparison principle and the stability analysis for the parabolic problem are
employed.
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1 Introduction
We focus on the diffusive predator-prey system with a ratio-dependent functional re-
sponse and disease in the prey; specifically,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ut – d�u = u[r – r
K u – αw

mw+u+v – bv],

vt – d�v = v[bu – d – βw
mw+u+v ],

wt – D�w = w[–d + cαu
mw+u+v + cβv

mw+u+v ] in (,∞) × �,
∂u
∂η

= ∂v
∂η

= ∂w
∂η

=  on (,∞) × ∂�,

u(, x) = u(x), v(, x) = v(x), w(, x) = w(x) in �,

(.)

where � ⊆ R
N is a bounded region with smooth boundary ∂�, and r, m, K , b, di, Di, c,

α, and β are positive constants; a, b, b, l and k are positive constants as well. The initial
functions u, v, and w are not identically zero in �; u, v, and w represent the densi-
ties of the susceptible prey, infected prey, and predator, respectively, and η is the outward
directional derivative normal to ∂�. Furthermore, α and β are the searching efficiency
constants of the predation rate for the susceptible and infective prey, respectively. α

m and
β

m are the maximum per capita capturing rates of the predator for the susceptible prey
and infected prey, respectively. m is the predation rate for the susceptible prey and in-
fected prey. Finally, b is the force of infection, d and d are the death rates of the infected
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prey and predator, respectively, and c is a conversion rate. The homogeneous Neumann
boundary condition describes an environment with no flux at the boundary of the region.

During the last three decades, various types of predator-prey models are studied exten-
sively by many researchers. Many models have a functional response in which ignoring
an effect of predator density, i.e., the function that describe a density of prey which is
consumed by its predator depends only on prey. However, there is explicit biological and
physiological evidence [–] that in many situations, when predator have to search for
food, a more suitable general predator-prey model in heterogeneous situations should be
had the ratio-dependent functional response, which the per capita predator growth rate
should be a function of the ratio of prey to predator abundance. Ratio-dependent mod-
els have been mathematically studied for both the spatially homogeneous case [–] and
the spatially inhomogeneous case [–]. In [, ], one examined the model of Arditi
and Ginzburg []. One showed that under some conditions, the whole population can be
extinct.

On the other hand, epidemic models have also received a lot of attention since Kermack-
McKendrick’s model. Among them, we are interested in eco-epidemiological systems with
predator-prey interactions. Considerable research has been done on the spatially homo-
geneous case [–].

In the real application, diffusive system in this study can be used to describe the in-
teraction between marine viruses in aquatic ecosystems and the species [, ], since
there is evidence that viral infection might accelerate the termination of phytoplankton
blooms []. In fact, in [], the authors showed experimentally that viral disease can
infect bacteria and phytoplankton in coastal water. In [, , ], they observed oscilla-
tions and waves in a phytoplankton-zooplankton system with Holling-type II and III graz-
ing under lysogenic viral infection and frequency-dependent transmission. Hilker []
also investigated the local dynamics of phytoplankton with lytic infection and frequency-
dependent transmission as well as zooplankton with Holling-type II grazing.

Arino et al. [] suggested the non-dimensionalized model, which is a non-spatial ver-
sion of (.). There, the authors obtained the conditions for which no trajectory can reach
the origin following any fixed direction or spirally. Also the criteria of persistence were
found. The above studies have been done mostly for the non-spatial case.

In this paper, we investigate the conditions of the asymptotic behavior of a unique pos-
itive constant solution and the non-negative equilibria of (.), which is a spatially depen-
dent model with diffusion.

Model (.) is based on the following assumptions:
(a) In the absence of disease, the prey population grows according to logistic law with

carrying capacity K >  and an intrinsic growth rate r > .
(b) In the presence of disease, the prey consists of two classes: susceptible prey and

infected prey.
(c) Only susceptible prey can reproduce themselves logistically and contribute to its

carrying capacity. Infected prey do not grow, recover, or reproduce.
(d) Disease can only be spread among the prey, and it is not inherited. Disease

transmission follows the simple law of mass action.
From the literature [], the assumption (c) can be justified in many cases: the experi-

ment on dinoflagellate Noctiluca scintillans in the German Bight by Uhlig and Sahling []
indicated that the cells become damaged, and they neither feed anymore nor reproduce.
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The model of Hamilton et al. [] showed that infected individuals do not contribute in
the reproduction process; infection reduces the remaining capacity due to the inability
to compete for resources. Thus, we may assume that the growth term of the susceptible
population follows only the law of logistic growth.

For additional background information pertaining to (.), we refer to [] and the ref-
erences therein.

The remainder of this paper is organized as follows. In Section , we investigate the
large time behavior of non-negative constant solutions and the asymptotic stability of a
positive constant solution. Finally, the results obtained are analyzed in terms of biological
interpretations in Section .

2 Asymptotical behavior of constant solutions
In this section, the asymptotic behavior of non-negative and positive constant solutions
to (.) is examined.

For convenience, we denote the growth rate terms as follows:

f(u, v, w) := r –
r
K

u –
αw

mw + u + v
– bv,

f(u, v, w) := bu – d –
βw

mw + u + v
,

f(u, v, w) := –d +
cαu

mw + u + v
+

cβv
mw + u + v

.

Using the uniform bound of u, v and w, one can show that (uf, vf, wf) satisfies the
Lipschitz condition. Using the upper and lower solution method in [], it can also be
shown that (.) has a non-negative solution.

The next theorem states that the solution to (.) is uniformly bounded [].

Theorem . The solution (u, v, w) of (.) is uniformly bounded; specifically,

 ≤ u(t, x) ≤ B,  ≤ v(t, x) ≤ B,  ≤ w(t, x) ≤ B,

where Bi is defined by

B := max
{

K ,‖u‖∞
}

,

B := max

{

d

K
r

(
r + d



)

,‖u‖∞ + ‖v‖∞
}

,

B := max

{

‖w‖∞,
c(α + β) – d

dm
B

}

.

The dissipation and persistence of the parabolic system (.) can be found in [].

Theorem . For a solution u = (u(t, x), v(t, x), w(t, x)) to the parabolic system (.),

lim sup
t→∞

u ≤
(

K ,

d

K
r

(
r + d



)

,
c(α + β) – d

dm

d

K
r

(
r + d



))

if c(α + β) > d.
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Theorem . Assume that β ≥ α > d
c , r > min{ b

d
K
r ( r+d

 ) + α
m , 

b
r
K (d + β

m ) + α
m }. Then

lim inf
t→∞ u ≥ (�,�,�),

where � := (r – b
d

K
r ( r+d

 ) – α
m ) K

r , � := 
b (r – 

b
r
K (d + β

m ) – α
m ), and � := cα–d

dm � for
α

m�
≤ b.

2.1 Equilibria
System (.) has the following non-negative equilibria:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

e = (, , ),

e = (K , , ),

e = (K( – cα–d
cmr ), , cα–d

dm K( – cα–d
cmr )) if  < cα – d < cmr,

e = ( d
b , r

b ( – d
bK ), ) if bK > d.

(.)

Note that the given growth rates in (.) are not defined at (u, v, w) = (, , ). Since

lim
(u,v,w)→(,,)

uw
mw + u + v

= lim
(u,v,w)→(,,)

vw
mw + u + v

= ,

the domain of uw
mw+u+v and vw

mw+u+v may be extended to {(u, v, w) : u ≥ , v ≥ , w ≥ } so that
(, , ) becomes a trivial solution to (.) [].

Furthermore, if the following conditions are satisfied:

AS + BS + C <  and d < cβ , (.)

where

A = cmrβb,

B = –c
[
rβ(β + md) + mk(rβ + αd)b

]
– d

(
–rβ + Kb(β – α)

)
,

C = K(rβ + αd)
[
c(β + md) – d

]
,

S =
(rβ + αd)K

rβ + αbK
,

then there exists a unique positive equilibrium point u∗ = (u∗, v∗, w∗), where

u∗ =
–B –

√
B – AC
A

,

v∗ = –
(

r
bK

+
α

β

)

u∗ +
(

r
b

+
αd

bβ

)

,

w∗ =
(cα – d)u∗ + (cβ – d)v∗

dm
.

2.2 Asymptotic stability of equilibria
In this subsection, we investigate the non-negative equilibria e, e, e, and e defined in
(.) and the positive equilibrium point u∗.
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Figure 1 Local stability of e0 when the condition of Theorem 2.4 holds
(d = 0.01, D = 0.01, r = 0.05, b = 0.430, d1 = 0.03, d2 = 0.6, K = 1.0,α = 1.2,β = α, c = 1.0, m = 0.08).

.. Asymptotic stability of e

We investigate the stability at (, , ). For the stability of e, we assume d = D.
Figure  shows that under some conditions, all three species become extinct. We point

out that the corresponding non-spatial model had the same asymptotic behavior under
the same condition in the following theorem.

Theorem . Assume that mc ≤ , β ≥ α, min{cα – d, α
+m } ≥ r. If the initial data satisfies

w ≥ u + v, then limt→∞ u = e.

Proof Subtracting the first and second equations from the third equation in (.) yields

(w – u – v)t – d�(w – u – v) = wf – uf – vf

= (w – u – v)f + (f – f)v + (f – f)u. (.)

Also note that

f – f =
cαu + cβv + βw

mw + u + v
– d – bu + d

= cα
u + β

α
v + β

cα w
mw + u + v

– d – bu + d

≥ cα – d + d – bu,

f – f =
cαu + cβv + αw

mw + u + v
– d – r +

r
K

u + bv

= cα
u + β

α
v + 

c w
mw + u + v

– d – r +
r
K

u + bv

≥ cα – d – r +
r
K

u + bv
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hold under the assumptions that mc ≤  and β ≥ α. As a result, (f – f)v + (f – f)u ≥
(cα – d + d)v + (cα – d – r + r

K u)u ≥ , since cα – d ≥ r. Thus, applying the positivity
lemma [] to (.), w ≥ u + v holds if w ≥ u + v. In the light of these facts, the main
result is satisfied; specifically,

ut – d�u = u
[

r –
r
K

u –
αw

mw + u + v
– bv

]

≤ u
[

r –
r
K

u –
αw

mw + w

]

= u
[

r –
r
K

u –
α

m + 

]

≤ ,

since α
+m ≥ r. Thus, limt→∞ w =  on �. Consequently, limt→∞ u =  and limt→∞ v =  on

� since w ≥ u + v. �

Theorem .
(i) If there exists a positive constant θ such that

rm – α + dm ≤ (cα – r – d)θ ,

dm – dm – β ≤ (cβ + d – d)θ ,
(.)

holds, then the region 
 = {(u, v, w) : u, v, w ≥ , u + v ≤ θw} is an invariant set for
(.).

(ii) In addition to (.), if –m + α
r ≥ θ , limt→∞ u = e for the initial function

(u, v, w) ∈ 
.
(iii) In addition to (.), if c max{α,β} ≤ d, limt→∞ u = e for the initial function

(u, v, w) ∈ 
.
(iv) In addition to (.), if cβ ≥ cα > d and θ < dm

cα–d
, limt→∞ u = e for the initial

function (u, v, w) ∈ 
.

Proof (i) Let G(u, v, w) = u + v – θw. To achieve the desired result, Corollary . of [] is
used; in particular, we will show that (uf, vf, wf) points into 
 on ∂
. On the boundary
of 
 (except for the boundary u + v = θw), dG · (uf, vf, wf) ≤  can easily be verified.

It is straightforward to show that dG · (uf, vf, wf) ≤  on the boundary u + v = θw. In
fact,

dG · (uf, vf, wf)

= (, , –θ ) · (uf, vf, wf)

= uf + vf – θwf

= u
[

r –
r
K

u –
αw

mw + θw
– bv

]

+ v
[

bu – d –
βw

mw + θw

]

– θw
[

–d +
cαu

mw + θw
+

cβv
mw + θw

]
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= u
(

r –
α

m + θ

)

–
r
K

u + dθw – v
(

d +
β

m + θ

)

–
cαθu
m + θ

–
cβθv
m + θ

= u
(

r –
α

m + θ
+ d –

cαθ

m + θ

)

+ v
(

d – d –
β

m + θ
–

cβθ

m + θ

)

–
r
K

u

≤ .

The last inequality holds by assumption (.).
(ii) Since 
 is an invariant region under assumption (.), u + v ≤ θw holds for

(u, v, w) ∈ 
. Thus, the following inequality is satisfied if u + v ≤ θw and –m + α
r ≥ θ :

ut – d�u = u
[

r –
r
K

u –
αw

mw + u + v
– bv

]

≤ u
[

r –
r
K

u –
αw

mw + θw

]

= u
[

r –
r
K

u –
α

m + θ

]

≤ .

Therefore, limt→∞ u =  on �. Consequently, v and w go to zero as t → ∞.
(iii) By assumption, w goes to zero as t → ∞. Also, u and v go to zero as t → ∞ since

(u, v, w) is contained in 
.
(iv) Adding the first and second equations in (.) and using the facts that u + v ≤ θw and

β ≥ α imply

(u + v)t – d�(u + v) = uf(u, v, w) + vf(u, v, w)

≤ u
(

r –
r
K

u
)

–
α

m + θ
u –

β

m + θ
v – dv

≤ u
(

r + d –
r
K

u
)

–
(

α

m + θ
+ d

)

(u + v)

≤ K
r

(
r + d



)

–
(

α

m + θ
+ d

)

(u + v).

Thus, lim supt→∞(u + v) ≤ m+θ
d(m+θ )+α

K
r ( r+d

 ) := ρ , as in Theorem .. Hence, there exists a
T such that u(t, x) + v(t, x) ≤ ρ + ε on � for time t ≥ T.

Consider the third equation in (.):

wt – D�w = wf(u, v, w)

≤ w
[

cβ(u + v)
mw + u + v

– d

]

≤ w
[

(cβ – d)(ρ + ε) – dmw
mw + ρ + ε

]

. (.)

Then there exists a T ≥ T such that w(t, x) ≤ cβ–d
dm (ρ + ε) + ε on � for time t ≥ T. Since

u + v ≤ θw holds, u(t, x) + v(t, x) ≤ θ [ cβ–d
dm (ρ + ε) + ε] := ρ(ε) is satisfied on � for time

t ≥ T.
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Figure 2 Local stability of e1 when the condition of Theorem 2.6 holds
(d = 0.01, D = 0.01, r = 0.5, b = 0.430, d1 = 1.0, d2 = 2.0, K = 1.0,α = 1.2,β = α, c = 1.0, m = 10.0).

Let τ = 
 [ + θ

cβ–d
dm ]. Under the assumption that θ < dm

cα–d
, τ <  is satisfied. Since ρ() =

θ
cβ–d
dm ρ < τρ , if a sufficiently small ε >  is chosen such that ρ(ε) < τρ , u(t, x) + v(t, x) ≤

θ [ cβ–d
dm (ρ + ε) + ε] < τρ on � for t ≥ T.

Now, consider (.) under the restriction that u(t, x) + v(t, x) ≤ τρ . Then lim supt→∞ w
≤ cβ–d

dm τρ . Thus, there exists a T ≥ T such that w(t, x) ≤ cβ–d
dm τρ +ε on � for time t ≥ T.

Again, u(t, x) + v(t, x) ≤ θ [ cβ–d
dm (τρ) + ε] ≤ τ ρ on � for t ≥ T and for a sufficiently small

ε > .
Inductively, there exists a sequence Tn with Tn → ∞ such that u(t, x) + v(t, x) ≤ τ nρ on

� for t ≥ Tn. Moreover, since τ < , u + v →  uniformly on � as t → ∞. Consequently, w
goes to zero as t → ∞ as well. �

.. Asymptotic stability of e

In this subsection, we investigate the stability at (K , , ) under the following conditions:

d ≥ bK , d ≥ cα and r >
α

m
. (.)

The next result implies that only the susceptible prey can survives (Figure ).

Theorem . Under assumption (.), limt→∞ u = e uniformly on �.

Proof From Theorem ., we already know lim supt→∞ u ≤ K . Furthermore, since d ≥
bK , vt – d�v = vf(u, v, w) ≤  implies v →  uniformly on � as t → ∞. Thus there exists
a T >  such that v ≤ ε for an arbitrary ε >  and t ≥ T. Since ε is arbitrary, the assump-
tion that d ≥ cα and the comparison principle imply w →  uniformly on � as t → ∞.
Therefore, there exists T ≥ T such that w ≤ ε for t ≥ T.

Note that lim inft→∞ u ≥ (r – bε – α
m ) K

r := � can also be obtained using the methods
from Theorem .. Since uf(u, v, w) ≥ u[r – r

K u – αε
mε+u – bε] ≥ u[r – r

K u – αε
mε+�–ε

– bε]
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Figure 3 Local stability of e2 when the condition of Theorem 2.7 holds
(d = 0.01, D = 0.01, r = 0.5, b = 0.430, d1 = 1.0, d2 = 0.5, K = 1.0,α = 3.5,β = α, c = 1.0, m = 10.0).

for t ≥ T, lim inft→∞ u ≥ (r – bε – αε
(m–)ε+�

) K
r > � follows from the comparison principle.

Therefore, since ε is arbitrary, limt→∞ u = e uniformly on �. �

.. Asymptotic stability of e

We investigate the stability at (K( – cα–d
cmr ), , cα–d

dm K( – cα–d
cmr )) under the following con-

dition:

rmd ≤ (rm – α)(cα – d), bK < d and  < cα – d < cmr. (.)

For simplicity, let u∗
 = K( – cα–d

cmr ) and w∗
 = cα–d

dm u∗
.

The following theorem indicates that one can control the infected prey, namely, only the
infected prey can be removed out under some conditions (Figure ).

Theorem . Under assumption (.), limt→∞ u = e uniformly on �.

Proof We prove this theorem by induction. First, consider the following parabolic prob-
lem:

⎧
⎪⎪⎨

⎪⎪⎩

ut – d�u = u(r – r
K u) in (,∞) × �,

∂u
∂η

=  on (,∞) × ∂�,

u(, x) = u(x) in �.

Then there exists a T 
 >  such that u ≤ u∗

 (≡ K) + ε on � for t ≥ T 
 and a sufficiently

small ε such that d
b – K > ε > .
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Next, consider the following problem under the condition that bK < d:

⎧
⎪⎪⎨

⎪⎪⎩

vt – d�v = v(b(u∗
 + ε) – d) in (T 

 ,∞) × �,
∂v
∂η

=  on (T 
 ,∞) × ∂�,

v(, x) = v(T 
 , x) in �.

Then there exists a T 
 ≥ T 

 such that v ≤ ε on � for t ≥ T 
 .

Consider the following problem:

⎧
⎪⎪⎨

⎪⎪⎩

ut – d�u = u(r – α
m – bε – r

K u) in (T 
,∞) × �,

∂u
∂η

=  on (T 
,∞) × ∂�,

u(, x) = u(x) in �.

Then there exists a T 
 ≥ T 

 such that u ≥ u∗
 (≡ K

r (r – α
m )) – ( + K

r )ε on � for t ≥ T 
 . For

simplicity, and since the choice of ε does not affect our proof, redefine ( + K
r )ε by ε > .

Consider the following problem:

⎧
⎪⎪⎨

⎪⎪⎩

wt – D�w = w( cα(u∗
 –ε)

mw+u∗


– d) in (T 
,∞) × �,

∂w
∂η

=  on (T 
,∞) × ∂�,

w(, x) = w(T 
, x) in �.

Then there exists a T 
 ≥ T 

 such that w ≥ w∗
 (≡ cα–d

dm u∗
 ) – ε on � for t ≥ T 

 .
Consider the following problem:

⎧
⎪⎪⎨

⎪⎪⎩

wt – D�w = w( cα(u∗
 +ε)

mw+u∗
 +ε

– d + cβε

m(w∗
 –ε)+ε

) in (T 
,∞) × �,

∂w
∂η

=  on (T 
,∞) × ∂�,

w(, x) = w(T 
, x) in �.

Then there exists a T 
 ≥ T 

 such that w ≤ w∗
 (≡ cα–d

dm u∗
 ) + ε on � for t ≥ T 

 .
Consequently, for t ≥ T  ≡ T 

 and x ∈ �, the relation

u∗
 – ε ≤ u ≤ u∗

 + ε,

 ≤ v ≤ ε,

w∗
 – ε ≤ w ≤ w∗

 + ε

are satisfied.
For induction, consider the following problems for Tn– ≤ Tn–

 ≤ Tn–
 ≤ Tn–

 ≤ Tn–


and n ≥ :

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

unt – d�un = un(r – α(w∗
n––ε)

m(w∗
n––ε)+u∗

n–+ε
– r

K un) in (Tn–,∞) × �,
∂un
∂η

=  on (Tn–,∞) × ∂�,

un(, x) = u(Tn–, x) in �,
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⎧
⎪⎪⎨

⎪⎪⎩

vnt – d�vn = vn(b(u∗
n + ε) – d) in (Tn–

 ,∞) × �,
∂vn
∂η

=  on (Tn–
 ,∞) × ∂�,

vn(, x) = v(Tn–
 , x) in �,

⎧
⎪⎪⎨

⎪⎪⎩

wnt – D�wn = wn( cα(u∗
n+ε)

mwn+u∗
n+ε

– d + cβε

m(w∗
 –ε)+ε

) in (Tn–
 ,∞) × �,

∂wn
∂η

=  on (Tn–
 ,∞) × ∂�,

wn(, x) = w(Tn–
 , x) in �,

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

unt – d�un = un(r – α(w∗
n+ε)

m(w∗
n+ε)+u∗

n–
– bε – r

K un) in (Tn–
 ,∞) × �,

∂un
∂η

=  on (Tn–
 ,∞) × ∂�,

un(, x) = u(Tn–
 , x) in �,

⎧
⎪⎪⎨

⎪⎪⎩

wnt – D�wn = wn( cα(u∗
n–ε)

mwn+(u∗
n–ε) – d) in (Tn–

 ,∞) × �,
∂w
∂η

=  on (Tn–
 ,∞) × ∂�,

w(, x) = w(Tn–
 , x) in �.

Therefore, for t ≥ Tn ≡ Tn–
 , n ≥  and x ∈ �,

u∗
n – ε ≤ u ≤ u∗

n + ε,

 ≤ v ≤ ε,

w∗
n – ε ≤ w ≤ w∗

n + ε,

where

u∗
n =

K
r

(

r –
αw∗

n–
mw∗

n– + u∗
n–

)

,

w∗
n =

cα – d

dm
u∗

n,

u∗
n =

K
r

(

r –
αw∗

n
mw∗

n + u∗
n–

)

,

w∗
n =

cα – d

dm
u∗

n.

Note that u∗
n, w∗

n, u∗
n, and w∗

n are all positive constants. Moreover, the following mono-
tonicity holds:

u∗
 ≤ u∗

 ≤ · · · ≤ u∗
n ≤ · · · ≤ u

∗ ≤ · · ·u∗
n ≤ · · ·u∗

 ≤ u∗
 ,

w∗
 ≤ w∗

 ≤ · · · ≤ w∗
n ≤ · · · ≤ w

∗ ≤ · · ·w∗
n ≤ · · ·w∗

 ≤ w∗
 ,

since αw∗
n

mw∗
n+u∗

n
≥ αw∗

n–
mw∗

n–+u∗
n–

and αw∗
n

mw∗
n+u∗

n–
≤ αw∗

n–
mw∗

n–+u∗
n–

for all n by induction. Also u∗
n ≤ u∗

 ≤
u∗

n holds for all n, since αw∗
n–

mw∗
n–+u∗

n–
≤ α

cα–d
dm

m cα–d
dm +

= cα–d
cm ≤ αw∗

n
mw∗

n+u∗
n–

for u∗
n

u∗
n–

≥  and by the

definitions of w∗
n and w∗

n. It follows that w∗
n ≤ w∗

 ≤ w∗
n for all n.

Thus, since the constant sequences {u∗
n} and {w∗

n} are monotone nonincreasing, and
bounded from below, and the sequences {u∗

n} and {w∗
n} are monotone nondecreasing, and
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bounded from above, the limits of these sequences exist. Denote these limits by u, w, u,
and w, respectively. Consequently, u ≤ u∗

 ≤ u and w ≤ w∗
 ≤ w. The following also holds:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

u = K
r (r – αw

mw+u ),

w = cα–d
dm u,

u = K
r (r – αw

mw+u ),

w = cα–d
dm u.

(.)

Suppose to the contrary that u �= u. The first and third equations in (.) can be rewritten
as

r –
r
K

u –
α

cα–d
dm u

m cα–d
dm u + u

= ,

r –
r
K

u –
α

cα–d
dm u

m cα–d
dm u + u

= ,

respectively. These two equations imply

⎧
⎨

⎩

(rm – α) cα–d
dm u + ru – r

K m cα–d
dm uu – r

K uu = ,

(rm – α) cα–d
dm u + ru – r

K m cα–d
dm uu – r

K uu = .
(.)

Subtracting the second equation from the first equation in (.) yields

(u – u)
(

r –
r
K

(u + u) – (rm – α)
cα – d

dm

)

= .

By assumption, since u �= u (i.e., u > u), A := r – r
K (u + u) – (rm – α) cα–d

dm must be zero. But
A < r –(rm–α) cα–d

dm ≤  from (.). Hence, u = u = u∗
; likewise, w = w = w∗

. Consequently,
as time t goes to infinity (i.e., n → ∞),

u∗
 – ε ≤ u ≤ u∗

 + ε,

 ≤ v ≤ ε,

w∗
 – ε ≤ w ≤ w∗

 + ε,

are satisfied for an arbitrary ε > . Therefore, the desired result is achieved. �

In the following theorem, we modify the condition that bK < d in (.) by reversing the
inequality, i.e., bK > d, since bK < d causes v to converge to zero automatically.

Theorem . If the following conditions hold:

rmd ≤ (rm – α)(cα – d),

d < bK < d +
βσ

mσ + θ
,
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 < cα – d < cmr,

r >
α

m
+ bθ ,

where θ := 
d

K
r ( r+d

 ) and σ := cα–d
dm (r – α

m – bθ ) K
r , then limt→∞ u = e uniformly on �.

Proof First, note that there exists a T >  such that u ≤ K + ε and u + v ≤ θ + ε for t ≥ T

and x ∈ �, as in Theorem ..
Consider the following parabolic problem:

⎧
⎪⎪⎨

⎪⎪⎩

Ut – d�U = U(r – α
m – b(θ + ε) – r

K U) in (T,∞) × �,
∂U
∂η

=  on (T,∞) × ∂�,

U(, x) = u(T, x) in �.

Then there exists T ≥ T such that u ≥ (r – α
m – bθ ) K

r – ε on � for t ≥ T. It follows that
w ≥ σ –ε for t ≥ T and x ∈ � where T ≥ T. Now, we are ready to prove that limt→∞ v = 
uniformly on �.

Consider the following problem:

⎧
⎪⎪⎨

⎪⎪⎩

Vt – d�V = V (b(K + ε) – β(σ–ε)
m(σ–ε)+θ+ε

– d) in (T,∞) × �,
∂V
∂η

=  on (T,∞) × ∂�,

V (, x) = v(T, x) in �.

(.)

For a sufficiently small ε > , the right hand side of the first equation in (.) is negative
because bK < d + βσ

mσ+θ
.

Hence, similar to Theorem ., there exists T ≥ T such that  ≤ v ≤ ε for t ≥ T. The
remainder of this proof follows using the same argument as Theorem .. �

.. Asymptotic stability of e

In this subsection, we investigate the stability at ( d
b , 

b (r – r
K

d
b ), ). Before developing our

argument, we define the following notation, which is similar to the notation defined in
[, ].

Notation .
(i) μi: Eigenvalue of –� on � under Neumann boundary condition.

(ii) E(μi): The eigenspace corresponding to μi.
(iii) {ϕij : j = , . . . , dim E(μi)}: An orthonormal basis of E(μi).
(iv) Xij = {c · ϕij|c ∈R

}.
(v) X = {u = (u, v, w) ∈ [C(�)]| ∂u

∂η
= ∂v

∂η
= ∂w

∂η
=  on ∂�}.

The eigenvalues in (i) satisfy  = μ < μ < μ < · · · → ∞. Also, X =
⊕∞

i= Xi, where Xi =
⊕dim E(μi)

j= Xij. Now, we show the local stability at e.
The susceptible prey and the infected prey may survive together without the predator

(Figure ).

Theorem . If max{α,β} < d
c and d(r + bK) > bK > d

 , then equilibrium e of (.)
is locally asymptotically stable.
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Figure 4 Local stability of e3 when the condition of Theorem 2.10 holds
(d = 0.01, D = 0.01, r = 1.5, b = 0.5, d1 = 1.0, d2 = 2.0, K = 3.0,α = 1.5,β = α, c = 1.0, m = 10.0).

Proof First, note that the above assumptions guarantee the positiveness of e. For simplic-
ity, let u∗

 = d
b and v∗

 = 
b (r – r

K u∗
). The assumptions that max{α,β} < d

c and d(r + bK) >
bK also guarantee that the positivity of � := (d–cα)u∗

+(d–cβ)v∗


u∗
+v∗


and ( r

K )u∗
 – bv∗

.
The linearization of (.) is ut = (D� + Fu(e))u at the constant solution e, where u =

(u(t, x), v(t, x), w(t, x))T , F = (uf, vf, wf),

D =

⎛

⎜
⎝

d  
 d 
  D

⎞

⎟
⎠ and Fu(e) =

⎛

⎜
⎜
⎝

– r
K u∗

 –bu∗
 – αu∗


u∗

+v∗


bv∗
  – αu∗


u∗

+v∗


  –�

⎞

⎟
⎟
⎠.

For i ≥ , Xi is invariant under the operator D�+Fu(e). Note that λ is an eigenvalue of this
operator on Xi if and only if it is an eigenvalue of the matrix –μiD+Fu(e). The coefficients
of the characteristic polynomial det(λI + μiD – Fu(e)) are given by λ + Aiλ

 + Biλ + Ci,
where

Ai = (d + D)μi +
r
K

u∗
 + � > ,

Bi = (d + D)dμ
i +

((
r
K

u∗
 + �

)

d +
r
K

u∗
D

)

μi + bu∗
v∗

 +
r
K

u∗
� > ,

Ci = dDμ
i +

(
r
K

u∗
dD + d�

)

μ
i +

(

bu∗
v∗

D +
r
K

u∗
d�

)

μi + bu∗
v∗

� > .

It is easy to verify that Ai, Bi and Ci are all positive.
Finally, we obtain AiBi – Ci = τ 

i μ
i + τ 

i μ
i + τ 

i μi + τ 
i , where

τ 
i = (d + D)

(
d + dD

)
– dD = d(d + D) > ,

τ 
i = (d + D)

((
r
K

u∗
 + �

)

d +
r
K

u∗
D

)

+ d r
K

u∗
 + dD

(
r
K

u∗
 + �

)

> ,
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Figure 5 Local stability of u∗ when the condition of Theorem 2.11 holds
(d = 0.01, D = 0.01, r = 0.3699, b = 0.430, d1 = 0.0291, d2 = 0.0069, K = 0.9299,α = 0.0122,β = α,
c = 8.0999, m = 50.3).

τ 
i = bu∗

v∗
d +

r
K

u∗
d� + 

r
K

u∗
�D

+
(

r
K

u∗
 + �

)(
r
K

+ �

)

d +
((

r
K

)

u∗
u∗

 – bu∗
v∗



)

D > ,

τ 
i =

r
K

bu∗
v∗

 +
r
K

u∗
�

 +
((

r
K

)

u∗
u∗

 – bu∗
v∗



)

� > .

Hence, AiBi – Ci >  for all i ≥ . From the Routh-Hurwitz criterion for each i, the three
roots of λ + Aiλ

 + Biλ + Ci =  have negative real parts since Ai, Ci, and AiBi – Ci > .
The remainder of this proof follows from Theorem .. in []. �

.. Asymptotic stability of u∗
We investigate the asymptotic stability of the positive equilibrium point under (.) and
the following conditions:

⎧
⎪⎪⎨

⎪⎪⎩

mc ≥ , α = β ,

d < cα,

max{ db
cα ,α cα–d

dm
b
d

} ≤ r
K ≤ bd

α

dm
cα–d

.

(.)

Here, we can choose numerical values that satisfy condition (.) and (.), for example,
r = ., b = ., d = ., K = ., α = β = ., m = ., c = ., and
d = ..

The final result says that all three species can survives together under specific conditions
(Figure ).

Theorem . If (.) and (.) hold, then the equilibrium solution u∗ of (.) is locally
asymptotically stable.
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Proof The linearization of (.) is ut = (D� + Fu(u∗))u at the constant solution u∗, where
u = (u(t, x), v(t, x), w(t, x))T , F = (uf, vf, wf),

D =

⎛

⎜
⎝

d  
 d 
  D

⎞

⎟
⎠

and

Fu(u∗) =

⎛

⎜
⎝

u∗(– r
K + αw∗

(mw∗+u∗+v∗) ) u∗( αw∗
(mw∗+u∗+v∗) – b) –αu∗( u∗+v∗

(mw∗+u∗+v∗) )
v∗( βw∗

(mw∗+u∗+v∗) + b) ( βv∗w∗
(mw∗+u∗+v∗) ) –βv∗( u∗+v∗

(mw∗+u∗+v∗) )
w∗( cαmw∗+c(α–β)v∗

(mw∗+u∗+v∗) ) w∗( cβmw∗+c(β–α)u∗
(mw∗+u∗+v∗) ) –mw∗( c(αu∗+βv∗)

(mw∗+u∗+v∗) )

⎞

⎟
⎠ .

The following notation is adopted for simplicity:

Fu(u∗) =

⎛

⎜
⎝

L L L

L L L

L L L

⎞

⎟
⎠. (.)

For i ≥ , Xi is invariant under the operator D� + Fu(u∗), and λ is an eigenvalue of
this operator on Xi, if and only if it is an eigenvalue of the matrix –μiD + Fu(u∗). The
coefficients of the characteristic polynomial det(λI +μiD – Fu(u∗)) are given by λ + Aiλ

 +
Biλ + Ci, where

Ai = (d + D)μi – L – L – L,

Bi = d(d + D)μ
i +

(
–(L + L + L)d – (L + L)D

)
μi + LL

+ LL + LL – LL – LL – LL,

Ci = dDμ
i +

(
–(L + L)dD – dL

)
μ

i +
(
(LL + LL – LL – LL)d

+ (LL – LL)D
)
μi – LLL – LLL – LLL + LLL

+ LLL + LLL – LLL + LLL + LLL.

We now verify that the coefficients Ai, Bi and Ci are positive under assumption (.). In
particular,

–L – L – L =
r
K

u∗ +
(mc – )αw∗(u∗ + v∗)

(mw∗ + u∗ + v∗) > ,

–L – L =
r
K

u∗ –
αu∗w∗

(mw∗ + u∗ + v∗) –
βv∗w∗

(mw∗ + u∗ + v∗)

=
r
K

u∗ –
α(u∗ + v∗)

mw∗ + u∗ + v∗
w∗

mw∗ + u∗ + v∗

=
r
K

u∗ –
d

c
bu∗ – d

α

=
(

r
K

–
db
cα

)

u∗ +
dd

cα
> ,

since α(u∗+v∗)
mw∗+u∗+v∗ = d

c and w∗
mw∗+u∗+v∗ = bu∗–d

α
. Also, –L – L – L >  since L < .
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Since w∗ = cα–d
dm (u∗ + v∗), b(u∗ + v∗) = r – r

K u∗ + d and r – r
K u∗ > ,

LL + LL + LL – LL – LL – LL

= bu∗v∗ +
r
K

α
u∗w∗

(mw∗ + u∗ + v∗)

(
mcw∗ + (mc – )v∗

)
> ,

LL + LL – LL – LL =
r
K

mcu∗α
(u∗ + v∗)w∗

(mw∗ + u∗ + v∗) > ,

LL – LL

= u∗v∗
(

–α
r
K

w∗
(mw∗ + u∗ + v∗) + b

)

= u∗v∗
(

–α
r
K

cα – d

dm
u∗ + v∗

(mw∗ + u∗ + v∗) + b
)

≥ u∗v∗
(

–α
r
K

cα – d

dm


u∗ + v∗
+ b

)

= u∗v∗
(

–α
r
K

cα – d

dm
b

r – r
K u∗ + d

+ b
)

> u∗v∗b
(

–α
r
K

cα – d

dm

d

+ b
)

> 

and

–LLL – LLL – LLL + LLL + LLL + LLL

= cαbmu∗v∗w∗
u∗ + v∗

(mw∗ + u∗ + v∗) > .

It follows that AiBi – Ci = τ 
i μ

i + τ 
i μ

i + τ 
i μi + τ 

i , where

τ 
i = d

(
(d + D)D + d),

τ 
i = d(–L – L – L) + D(–L – L) + dD(–L – L – L) > ,

τ 
i = d

[
(LL + LL + LL – LL – LL – LL) + (LL – LL)

]

+ d(–L – L – L)(–L – L – L) + D(–L – L – L)(–L – L)

+ D
[
(–L – L)(–L) + (–LL) + (–LL)

]
> ,

τ 
i = – LLL – LLL + LLL + LLL – LLL – LLL

– LLL + LLL + LLL – LLL – LLL + LLL

+ LLL – LLL + LLL + LLL.

The positivity of τ 
i and τ 

i follows directly from the above calculations. Now, we investi-
gate the sign of τ 

i for LL = LL. Note that

–L = u∗
(

r
K

–
αw∗

(mw∗ + u∗ + v∗)

)

= u∗
(

r
K

– α
cα – d

dm
u∗ + v∗

(mw∗ + u∗ + v∗)

)



Ko et al. Advances in Difference Equations  (2017) 2017:227 Page 18 of 20

> u∗
(

r
K

– α
cα – d

dm


u∗ + v∗

)

= u∗
(

r
K

– α
cα – d

dm
b

r – r
K u∗ + d

)

> u∗
(

r
K

– α
cα – d

dm
b
d

)

≥ ,

since w∗ = cα–d
dm (u∗ + v∗), b(u∗ + v∗) = r – r

K u∗ + d, and r – r
K u∗ > . Finally, since L = L,

we obtain the positivity of

τ 
i = (–L – L)(LL – LL) + (–L)(–L)(–L – L)

+ (–L)L(–L – L) + ϒ > ,

where

ϒ = LLL + LLL + LLL + LLL

= L

(

(mc – )α(u∗ + v∗)
u∗v∗w∗

(mw∗ + u∗ + v∗) + (mc – )α(u∗ + v∗)
u∗w∗

(mw∗ + u∗ + v∗)

+
α(u∗ + v∗)

(mw∗ + u∗ + v∗) (–L)
)

> .

Hence, AiBi – Ci >  for all i ≥ . From the Routh-Hurwitz criterion for each i, the three
roots of λ + Aiλ

 + Biλ + Ci =  have negative real parts since Ai, Ci, and AiBi – Ci > .
The remainder of this proof follows from Theorem .. in []. �

3 Conclusion
A diffusive predator-prey model with a ratio-dependent functional response and infected
prey population was investigated under homogeneous Neumann boundary conditions.
We showed that depending on initial data, all species can become extinct if the predation
rate is small and the searching efficiency constant of the predation rate of the predator for
the susceptible prey is large; in other words, the predator overeats the susceptible prey. On
the other hand, we showed that the infected prey becomes extinct if the death rate of the
infected prey is sufficiently large without respect to the initial data. Furthermore, the same
conclusion holds even if the death rate of the infected prey is relatively small. In [], the
authors proposed a model by considering that the encounter infection rate is meaningful
only in the case that it follows the law of ratio-dependence and not the law of simple mass
action. They showed that the model exhibits parasite-induced host extinction. Such an ex-
tinction is similar to that induced by a ratio-dependent predator-prey functional response.
The stability of the disease-free equilibrium e implies that under certain conditions, total
extinction is not possible and the introduction of infected prey into the system may act as
a biological control to save the ecosystem from extinction.

In the case that the searching efficiency constants of the predation rate for the suscepti-
ble and infected prey are the same, if the maximum per capita capturing rate of the preda-
tor for the susceptible prey is small, i.e., the predation rate is sufficiently large, then the
positive equilibrium point is locally asymptotically stable.
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As regards application, the model with ratio-dependent functional response in this study
can be used and improved to describe the interaction among the diseased-species in
ecosystems, the susceptible species, and additional species with a certain biological prop-
erty.
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