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Abstract
In this paper, we introduce the binomial sequence spaces br,s0 (∇ (m)), br,sc (∇ (m)) and
br,s∞(∇ (m)) by combining the binomial transformation andmth order difference
operator. We prove the BK-property and some inclusion relations. Also, we obtain the
Schauder bases and compute the α-, β- and γ -duals of these sequence spaces.
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1 Introduction and preliminaries
Let w denote the space of all sequences. By �∞, c and c, we denote the spaces of bounded,
convergent and null sequences, respectively. We write bs, cs and �p for the spaces of all
bounded, convergent and p-absolutely summable series, respectively;  ≤ p < ∞. A Ba-
nach sequence space Z is called a BK-space [] provided each of the maps pn : Z → C

defined by pn(x) = xn is continuous for all n ∈N, which is of great importance in the char-
acterization of matrix transformations between sequence spaces. It is well known that the
sequence spaces �∞, c and c are BK-spaces with their usual sup-norm.

Let Z be a sequence space, then Kizmaz [] introduced the following difference sequence
spaces:

Z(�) =
{

(xk) ∈ w : (�xk) ∈ Z
}

for Z ∈ {�∞, c, c}, where �xk = xk – xk+ for each k ∈ N. Et and Colak [] defined the
generalization of the difference sequence spaces

Z
(
�m)

=
{

(xk) ∈ w :
(
�mxk

) ∈ Z
}

for Z ∈ {�∞, c, c}, where m ∈ N, �xk = xk , �mxk = �m–xk – �m–xk+ for each k ∈ N,
which is equivalent to the binomial representation �mxk =

∑m
i=(–)i(m

i
)
xk+i. Since then,

many authors have studied further generalization of the difference sequence spaces [–].
Moreover, Altay and Polat [], Başarir [], Başarir, Kara and Konca [], Başarir and Kara
[–], Başarir, Öztürk and Kara [], Polat and Başarir [] and many others have studied
new sequence spaces from matrix point of view that represent difference operators.

For an infinite matrix A = (an,k) and x = (xk) ∈ w, the A-transform of x is defined by
(Ax)n =

∑∞
k= an,kxk and is supposed to be convergent for all n ∈ N. For two sequence
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spaces X, Y and an infinite matrix A = (an,k), the sequence space XA is defined by

XA =
{

x = (xk) ∈ w : Ax ∈ X
}

, (.)

which is called the domain of matrix A. By (X : Y ), we denote the class of all matrices such
that X ⊆ YA.

The Euler means Er of order r is defined by the matrix Er = (er
n,k), where  < r <  and

er
n,k =

⎧
⎨

⎩

(n
k
)
( – r)n–krk if  ≤ k ≤ n,

 if k > n.

The Euler sequence spaces er
, er

c and er∞ were defined by Altay and Başar [] and Altay,
Başar and Mursaleen [] as follows:

er
 =

{

x = (xk) ∈ w : lim
n→∞

n∑

k=

(
n
k

)
( – r)n–krkxk = 

}

,

er
c =

{

x = (xk) ∈ w : lim
n→∞

n∑

k=

(
n
k

)
( – r)n–krkxk exists

}

,

and

er
∞ =

{

x = (xk) ∈ w : sup
n∈N

∣∣∣∣∣

n∑

k=

(
n
k

)
( – r)n–krkxk

∣∣∣∣∣
< ∞

}

.

Altay and Polat [] defined further generalization of the Euler sequence spaces er
(∇), er

c(∇)
and er∞(∇) by

Z(∇) =
{

x = (xk) ∈ w : (∇xk) ∈ Z
}

for Z ∈ {er
, er

c, er∞}, where ∇xk = xk – xk– for each k ∈ N. Here any term with negative
subscript is equal to naught.

Polat and Başar [] employed the technique matrix domain of triangle limitation
method for obtaining the following sequence spaces:

Z
(∇ (m)) =

{
x = (xk) ∈ w :

(∇ (m)xk
) ∈ Z

}

for Z ∈ {er
, er

c, er∞}, where ∇ (m) = (δ(m)
n,k ) is a triangle matrix defined by

δ
(m)
n,k =

⎧
⎨

⎩
(–)n–k( m

n–k
)

if max{, n – m} ≤ k ≤ n,

 if  ≤ k < max{, n – m} or k > n,

for all k, n, m ∈N.
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Recently Bişgin [, ] defined another generalization of the Euler sequence spaces and
introduced the binomial sequence spaces br,s

 , br,s
c , br,s∞ and br,s

p . Let r, s ∈ R and r + s �= .
Then the binomial matrix Br,s = (br,s

n,k) is defined by

br,s
n,k =

⎧
⎨

⎩


(s+r)n

(n
k
)
sn–krk if  ≤ k ≤ n,

 if k > n,

for all k, n ∈N. For sr >  we have
(i) ‖Br,s‖ < ∞,

(ii) limn→∞ br,s
n,k =  for each k ∈N,

(iii) limn→∞
∑

k br,s
n,k = .

Thus, the binomial matrix Br,s is regular for sr > . Unless stated otherwise, we assume that
sr > . If we take s + r = , we obtain the Euler matrix Er . So the binomial matrix generalizes
the Euler matrix. Bişgin defined the following spaces of binomial sequences:

br,s
 =

{

x = (xk) ∈ w : lim
n→∞


(s + r)n

n∑

k=

(
n
k

)
sn–krkxk = 

}

,

br,s
c =

{

x = (xk) ∈ w : lim
n→∞


(s + r)n

n∑

k=

(
n
k

)
sn–krkxk exists

}

,

and

br,s
∞ =

{

x = (xk) ∈ w : sup
n∈N

∣∣∣∣∣


(s + r)n

n∑

k=

(
n
k

)
sn–krkxk

∣∣∣∣∣
< ∞

}

.

The purpose of the present paper is to study the difference spaces br,s
 (∇ (m)), br,s

c (∇ (m))
and br,s∞(∇ (m)) of the binomial sequence whose Br,s(∇ (m))-transforms are in the spaces c,
c and �∞, respectively. These new sequence spaces are the generalization of the sequence
spaces defined in [, ] and []. Also, we give some inclusion relations and compute
the bases and α-, β- and γ -duals of these sequence spaces.

2 The binomial difference sequence spaces
In this section, we introduce the spaces br,s

 (∇ (m)), br,s
c (∇ (m)), br,s∞(∇ (m)) and prove the BK-

property and inclusion relations.
We first define the binomial difference sequence spaces br,s

 (∇ (m)), br,s
c (∇ (m)) and

br,s∞(∇ (m)) by

Z
(∇ (m)) =

{
x = (xk) ∈ w :

(∇ (m)xk
) ∈ Z

}

for Z ∈ {br,s
 , br,s

c , br,s∞}. By using the notion of (.), the sequence spaces br,s
 (∇ (m)), br,s

c (∇ (m))
and br,s∞(∇ (m)) can be redefined by

br,s


(∇ (m)) =
(
br,s


)
∇(m) , br,s

c
(∇ (m)) =

(
br,s

c
)
∇(m) , br,s

∞
(∇ (m)) =

(
br,s

∞
)
∇(m) . (.)

It is obvious that the sequence spaces br,s
 (∇ (m)), br,s

c (∇ (m)) and br,s∞(∇ (m)) may be reduced
to some sequence spaces in the special cases of s, r and m ∈N. For instance, we take m = ,
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then obtain the spaces br,s
 , br,s

c and br,s∞ defined by Bişgin [, ]. On taking s + r = , we
obtain the spaces er

(∇ (m)), er
c(∇ (m)) and er∞(∇ (m)) defined by Polat and Başar [].

Let us define the sequence y = (yn) as the Br,s(∇ (m))-transform of a sequence x = (xk) by

yn =
[
Br,s(∇ (m)xk

)]
n =


(s + r)n

n∑

k=

(
n
k

)
sn–krk(∇ (m)xk

)
(.)

for each n ∈ N, where

∇ (m)xk =
m∑

i=

(–)i
(

m
i

)
xk–i =

m∑

i=max{,k–m}
(–)k–i

(
m

k – i

)
xi.

Then the binomial difference sequence spaces br,s
 (∇ (m)), br,s

c (∇ (m)) and br,s∞(∇ (m)) can be
redefined by all sequences whose Br,s(∇ (m))-transforms are in the spaces c, c and �∞.

Theorem . Let Z ∈ {br,s
 , br,s

c , br,s∞}. Then Z(∇ (m)) is a BK-space with the norm ‖x‖Z(∇(m)) =
‖(∇ (m)xk)‖Z .

Proof The sequence spaces br,s
 , br,s

c and br,s∞ are BK-spaces (see [], Theorem . and [],
Theorem .). Moreover, ∇ (m) is a triangle matrix and (.) holds. By using Theorem ..
of Wilansky [], we deduce that the binomial sequence spaces br,s

 (∇ (m)), br,s
c (∇ (m)) and

br,s∞(∇ (m)) are BK-spaces. �

Theorem . The sequence spaces br,s
 (∇ (m)), br,s

c (∇ (m)) and br,s∞(∇ (m)) are linearly isomor-
phic to the spaces c, c and �∞, respectively.

Proof Similarly, we prove the theorem only for the space br,s
 (∇ (m)). To prove br,s

 (∇ (m)) ∼=
c, we must show the existence of a linear bijection between the spaces br,s

 (∇ (m)) and c.
Consider T : br,s

 (∇ (m)) → c by T(x) = Br,s(∇ (m)xk). The linearity of T is obvious and
x =  whenever T(x) = . Therefore, T is injective.

Let y = (yn) ∈ c and define the sequence x = (xk) by

xk =
k∑

i=

(s + r)i
k∑

j=i

(
m + k – j – 

k – j

)(
j
i

)
r–j(–s)j–iyi (.)

for each k ∈N. Then we have

lim
n→∞

[
Br,s(∇ (m)xk

)]
n = lim

n→∞


(s + r)n

n∑

k=

(
n
k

)
sn–krk(∇ (m)xk

)
= lim

n→∞ yn = ,

which implies that x ∈ br,s
 (∇ (m)) and T(x) = y. Consequently, T is surjective and is norm

preserving. Thus, br,s
 (∇ (m)) ∼= c. �

The following theorems give some inclusion relations for this class of sequence spaces.
We have the well-known inclusion c ⊆ c ⊆ �∞, then the corresponding extended versions
also preserve this inclusion.

Theorem . The inclusion br,s
 (∇ (m)) ⊆ br,s

c (∇ (m)) ⊆ br,s∞(∇ (m)) holds.
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Theorem . The inclusions br,s
 (∇ (m)) ⊆ br,s

 (∇ (m+)), br,s
c (∇ (m)) ⊆ br,s

c (∇ (m+)) and
br,s∞(∇ (m)) ⊆ br,s∞(∇ (m+)) hold.

Proof Let x = (xk) ∈ br,s
 (∇ (m)), then the inequality

∣∣[Br,s(∇ (m+)xk
)]

n

∣∣ =
∣∣[Br,s(∇ (m)(∇xk)

)]
n

∣∣

=
∣∣[Br,s(∇ (m)xk

)]
n –

[
Br,s(∇ (m)xk

)]
n–

∣∣

≤ ∣∣[Br,s(∇ (m)xk
)]

n

∣∣ +
∣∣[Br,s(∇ (m)xk

)]
n–

∣∣

holds and tends to  as n → ∞, which implies that x ∈ br,s
 (∇ (m+)). �

Theorem . The inclusions er
(∇ (m)) ⊆ br,s

 (∇ (m)), er
c(∇ (m)) ⊆ br,s

c (∇ (m)) and er∞(∇ (m)) ⊆
br,s∞(∇ (m)) strictly hold.

Proof Similarly, we only prove the inclusion er
(∇ (m)) ⊆ br,s

 (∇ (m)). If r + s = , we have Er =
Br,s. So er

(∇ (m)) ⊆ br,s
 (∇ (m)) holds. Take  < r <  and s = . We define a sequence x = (xk)

by

xk =
k∑

j=

(
m + k – j – 

k – j

)(
–


r

)j

for all m, k ∈ N. It is clear that [Er(∇ (m)xk)]n = ((– – r)n) /∈ c and [Br,s(∇ (m)xk)]n =
(( 

+r )n) ∈ c. So, we have x ∈ br,s
 (∇ (m)) \ er

(∇ (m)). This shows that the inclusion er
(∇ (m)) ⊆

br,s
 (∇ (m)) strictly holds. �

3 The Schauder basis and α-, β- and γ -duals
For a normed space (X,‖ · ‖), a sequence {xk : xk ∈ X}k∈N is called a Schauder basis [] if
for every x ∈ X, there is an unique scalar sequence (λk) such that ‖x –

∑n
k= λkxk‖ → 

as n → ∞. We shall construct the Schauder bases for the sequence spaces br,s
 (∇ (m)) and

br,s
c (∇ (m)).
We define the sequence g(k)(r, s) = {g(k)

i (r, s)}i∈N by

g(k)
i (r, s) =

⎧
⎨

⎩
 if  ≤ i < k,

(s + r)k ∑i
j=k

(m+i–j–
i–j

)( j
k
)
r–j(–s)j–k if i ≥ k,

for each k ∈N.

Theorem . The sequence (g(k)(r, s))k∈N is a Schauder basis for the binomial sequence
space br,s

 (∇ (m)) and every x = (xi) ∈ br,s
 (∇ (m)) has an unique representation by

x =
∑

k

λk(r, s)g(k)(r, s), (.)

where λk(r, s) = [Br,s(∇ (m)xi)]k for each k ∈N.
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Proof Obviously, Br,s(∇ (m)g(k)
i (r, s)) = ek ∈ c, where ek is the sequence with  in the kth

place and zeros elsewhere for each k ∈ N. This implies that g(k)(r, s) ∈ br,s
 (∇ (m)) for each

k ∈N.
For x ∈ br,s

 (∇ (m)) and n ∈N, we put

x(n) =
n∑

k=

λk(r, s)g(k)(r, s).

By the linearity of Br,s(∇ (m)), we have

Br,s(∇ (m)x(n)
i

)
=

n∑

k=

λk(r, s)Br,s(∇ (m)g(k)
i (r, s)

)
=

n∑

k=

λk(r, s)ek

and

[
Br,s(∇ (m)(xi – x(n)

i
))]

k =

⎧
⎨

⎩
 if  ≤ k < n,

[Br,s(∇ (m)xi)]k if k ≥ n,

for each k ∈N.
For every ε > , there is a positive integer n such that

∣∣[Br,s(∇ (m)xi
)]

k

∣∣ <
ε



for all k ≥ n. Then we have

∥∥x – x(n)∥∥
br,s

 (∇(m)) = sup
k≥n

∣∣[Br,s(∇ (m)xi
)]

k

∣∣ ≤ sup
k≥n

∣∣[Br,s(∇ (m)xi
)]

k

∣∣ <
ε


< ε,

which implies x ∈ br,s
 (∇ (m)) is represented as in (.).

To show the uniqueness of this representation, we assume that

x =
∑

k

μk(r, s)g(k)(r, s).

Then we have

[
Br,s(∇ (m)xi

)]
k =

∑

k

μk(r, s)
[
Br,s(∇ (m)g(k)

i (r, s)
)]

k =
∑

k

μk(r, s)(ek)k = μk(r, s),

which is a contradiction with the assumption that λk(r, s) = [Br,s(∇ (m)xi)]k for each k ∈ N.
This shows the uniqueness of this representation. �

Theorem . We define g = (gn) by

gn =
n∑

k=

(s + r)k
n∑

j=k

(
m + n – j – 

n – j

)(
j
k

)
r–j(–s)j–k
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for all n ∈ N and limk→∞ λk(r, s) = l. The set {g, g()(r, s), g()(r, s), . . . , g(k)(r, s), . . .} is a
Schauder basis for the space br,s

c (∇ (m)) and every x ∈ br,s
c (∇ (m)) has an unique represen-

tation by

x = lg +
∑

k

[
λk(r, s) – l

]
g(k)(r, s). (.)

Proof Obviously, Br,s(∇ (m)gk
i (r, s)) = ek ∈ c ⊆ c and g ∈ br,s

c (∇ (m)). For x ∈ br,s
c (∇ (m)), we put

y = x – lg and we have y ∈ br,s
 (∇ (m)). Hence, we deduce that y has an unique representation

by (.), which implies that x has an unique representation by (.). Thus, we complete the
proof. �

From Theorem ., we know that br,s
 (∇ (m)) and br,s

c (∇ (m)) are Banach spaces. By com-
bining this fact with Theorem . and Theorem ., we can give the following corollary.

Corollary . The sequence spaces br,s
 (∇ (m)) and br,s

c (∇ (m)) are separable.

Köthe and Toeplitz [] first computed the dual whose elements can be represented as
sequences and defined the α-dual (or Köthe-Toeplitz dual). Chandra and Tripathy []
generalized the notion of Köthe-Toeplitz dual of sequence spaces. Next, we compute the
α-, β- and γ -duals of the sequence spaces br,s

 (∇ (m)), br,s
c (∇ (m)) and br,s∞(∇ (m)).

For the sequence spaces X and Y , define multiplier space M(X, Y ) by

M(X, Y ) =
{

u = (uk) ∈ w : ux = (ukxk) ∈ Y for all x = (xk) ∈ X
}

.

Then the α-, β- and γ -duals of a sequence space X are defined by

Xα = M(X,�), Xβ = M(X, cs) and Xγ = M(X, bs),

respectively.
Let us give the following properties:

sup
K∈


∑

n

∣∣∣∣
∑

k∈K

an,k

∣∣∣∣ < ∞, (.)

sup
n∈N

∑

k

|an,k| < ∞, (.)

lim
n→∞ an,k = ak for each k ∈N, (.)

lim
n→∞

∑

k

an,k = a, (.)

lim
n→∞

∑

k

|an,k| =
∑

k

∣∣∣ lim
n→∞ an,k

∣∣∣, (.)

where 
 is the collection of all finite subsets of N.

Lemma . ([]) Let A = (an,k) be an infinite matrix, then:
(i) A ∈ (c : �) = (c : �) = (�∞ : �) if and only if (.) holds.

(ii) A ∈ (c : c) if and only if (.) and (.) hold.
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(iii) A ∈ (c : c) if and only if (.), (.) and (.) hold.
(iv) A ∈ (�∞ : c) if and only if (.) and (.) hold.
(v) A ∈ (c : �∞) = (c : �∞) = (�∞ : �∞) if and only if (.) holds.

Theorem . The α-dual of the spaces br,s
 (∇ (m)), br,s

c (∇ (m)) and br,s∞(∇ (m)) is the set

Ur,s
 =

{

u = (uk) ∈ w : sup
K∈


∑

k

∣∣∣∣∣

∑

i∈K

(s + r)i
k∑

j=i

(
m + k – j – 

k – j

)(
j
i

)
r–j(–s)j–iuk

∣∣∣∣∣
< ∞

}

.

Proof Let u = (uk) ∈ w and x = (xk) be defined by (.), then we have

ukxk =
k∑

i=

(s + r)i
k∑

j=i

(
m + k – j – 

k – j

)(
j
i

)
r–j(–s)j–iukyi =

(
Gr,sy

)
k

for each k ∈N, where Gr,s = (gr,s
k,i) is defined by

gr,s
k,i =

⎧
⎨

⎩
(s + r)i ∑k

j=i
(m+k–j–

k–j
)(j

i
)
r–j(–s)j–iuk if  ≤ i ≤ k,

 if i > k.

Therefore, we deduce that ux = (ukxk) ∈ � whenever x ∈ br,s
 (∇ (m)), br,s

c (∇ (m)) or br,s∞(∇ (m))
if and only if Gr,sy ∈ � whenever y ∈ c, c or �∞, which implies that u = (uk) ∈ [br,s

 (∇ (m))]α ,
[br,s

c (∇ (m))]α or [br,s∞(∇ (m))]α if and only if Gr,s ∈ (c : �) = (c : �) = (�∞ : �). By Lem-
ma .(i), we obtain

u = (uk) ∈ [
br,s


(∇ (m))]α =

[
br,s

c
(∇ (m))]α =

[
br,s

∞
(∇ (m))]α

if and only if

sup
K∈


∑

k

∣∣∣∣
∣

∑

i∈K

(s + r)i
k∑

j=i

(
m + k – j – 

k – j

)(
j
i

)
r–j(–s)j–iuk

∣∣∣∣
∣

< ∞.

Thus, we have [br,s
 (∇ (m))]α = [br,s

c (∇ (m))]α = [br,s∞(∇ (m))]α = Ur,s
 . �

Now, we define the sets Ur,s
 , Ur,s

 , Ur,s
 and Ur,s

 by

Ur,s
 =

{
u = (uk) ∈ w : sup

n∈N

∑

k

|un,k| < ∞
}

,

Ur,s
 =

{
u = (uk) ∈ w : lim

n→∞ un,k exists for each k ∈N

}
,

Ur,s
 =

{
u = (uk) ∈ w : lim

n→∞
∑

k

|un,k| =
∑

k

∣∣∣ lim
n→∞ un,k

∣∣∣
}

,

and

Ur,s
 =

{
u = (uk) ∈ w : lim

n→∞
∑

k

un,k exists
}

,
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where

un,k = (s + r)k
n∑

i=k

i∑

j=k

(
m + i – j – 

i – j

)(
j
k

)
r–j(–s)j–kui.

Theorem . The following equations hold:
(i) [br,s

 (∇ (m))]β = Ur,s
 ∩ Ur,s

 ,
(ii) [br,s

c (∇ (m))]β = Ur,s
 ∩ Ur,s

 ∩ Ur,s
 ,

(iii) [br,s∞(∇ (m))]β = Ur,s
 ∩ Ur,s

 .

Proof Since the proof may be obtained in the same way for (ii) and (iii), we only prove (i).
Let u = (uk) ∈ w and x = (xk) be defined by (.), then we consider the following equation:

n∑

k=

ukxk =
n∑

k=

uk

[ k∑

i=

(s + r)i
k∑

j=i

(
m + k – j – 

k – j

)(
j
i

)
r–j(–s)j–iyi

]

=
n∑

k=

[

(s + r)k
n∑

i=k

i∑

j=k

(
m + i – j – 

i – j

)(
j
k

)
r–j(–s)j–kui

]

yk

=
(
Ur,sy

)
n,

where Ur,s = (ur,s
n,k) is defined by

un,k =

⎧
⎨

⎩
(s + r)k ∑n

i=k
∑i

j=k
(m+i–j–

i–j
)( j

k
)
r–j(–s)j–kui if  ≤ k ≤ n,

 if k > n.

Therefore, we deduce that ux = (ukxk) ∈ cs whenever x ∈ br,s
 (∇ (m)) if and only if Ur,sy ∈ c

whenever y ∈ c, which implies that u = (uk) ∈ [br,s
 (∇ (m))]β if and only if Ur,s ∈ (c : c). By

Lemma .(ii), we obtain [br,s
 (∇ (m))]β = Ur,s

 ∩ Ur,s
 . �

Theorem . The γ -dual of the spaces br,s
 (∇ (m)), br,s

c (∇ (m)) and br,s∞(∇ (m)) is the set Ur,s
 .

Proof Using Lemma .(v) instead of (ii), the proof can be given in a similar way. So, we
omit the details. �

4 Conclusion
By considering the definitions of the binomial matrix Br,s = (br,s

n,k) and mth order differ-
ence operator, we introduce the sequence spaces br,s

 (∇ (m)), br,s
c (∇ (m)) and br,s∞(∇ (m)). These

spaces are the natural continuation of [, , , ]. Our results are the generalization of
the matrix domain of the Euler matrix of order r.
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