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Abstract

In this paper, a mathematical model describing tuberculosis transmission with
incomplete treatment and continuous age structure for latently infected and
infectious individuals is investigated. It is assumed in the model that the treated
individuals may enter either the latent compartment due to the remainder of
Mycobacterium tuberculosis or the infectious compartment due to the treatment
failure. It is shown that the global transmission dynamics of the disease is fully
determined by the basic reproduction number. The asymptotic smoothness of the
semi-flow generated by the system is established. By analyzing the corresponding
characteristic equations, the local stability of a disease-free steady state and an
endemic steady state of the model is established. By using the persistence theory for
infinite dimensional system, the uniform persistence of the system is established
when the basic reproduction number is greater than unity. By means of suitable
Lyapunov functionals and LaSalle’s invariance principle, it is proven that if the basic
reproduction number is less than unity, the disease-free steady state is globally
asymptotically stable; if the basic reproduction number is greater than unity, the
endemic steady state is globally asymptotically stable.
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1 Introduction

Tuberculosis (TB) is a bacterial disease caused by Mycobacterium tuberculosis, and is
usually acquired through airborne infection from active TB cases [1]. According to the
World Health Organization, one third of the world’s population is infected, either latently
or actively, with tuberculosis. Tuberculosis infection remains a leading cause of death from
an infectious disease [2].

It is well known that, for tuberculosis, recovered individuals may relapse with reactiva-
tion of latent infection and revert back to the infective class. This recurrence of disease
is an important feature of tuberculosis, including human and bovine [3, 4], and herpes
[3, 5]. For human tuberculosis, incomplete treatment can lead to relapse, but relapse can
also occur in patients who took a full course of treatment and were declared cured [6].
Mathematical models of tuberculosis have contributed to the understanding of tubercu-
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losis epidemics and the potential impact of control strategies (see, for example, [7-23]).

In [23], Yang et al. considered the following tuberculosis model:

S(t) = A - puS(t) - BSWOI(®),

L(t) = BS@)I(t) - (u + VL) + (1 — k)ST(¢), W
11
1() = vL() + kST () — (1 + y + ur)I(E),

T(@) = yI(t) - (u +8)T ().

In (1.1), S(¢) represents the number of individuals who are not previously exposed to the
Mycobacterium tuberculosis at time ¢, L(£) represents the number of latently infected in-
dividuals who have been infected with Mycobacterium tuberculosis at time ¢, but have no
clinical illness and noninfectious, I(£) represents the number of active infectious tubercu-
losis cases at time ¢, T(¢) is the number of individuals who are being treated at time ¢.

The assumptions of model (1.1) are made as follows [23].

(A1) A isthe constant rate of recruitment into the susceptible population. 8 is the rate
that an infectious case will successfully transmit the infection to a susceptible
individual. BI(t) represents the per-capita force of infection at time ¢ being defined
as the per-susceptible risk of becoming infected with Mycobacterium tuberculosis.

(A2) Latently infected individuals either develop tuberculosis slowly at an average rate
v or die at a natural death rate  before developing tuberculosis.

(A3) Active infectious tuberculosis die, either because of tuberculosis at average rate
ur, or because of natural death at an average rate u. y is the per-capita treatment
rate for the infectious individuals.

(A4) § is the rate coefficient at which a treated individual leaves treated compartment.
k(0 < k <1) is the fraction of the drug-resistant individuals in the treated
compartment. Here, k reflects the failure of treatment, k = 0 means that all the
treated individuals will become latent, and k = 1 means that the treatment fails and
all the treated individuals will still be infectious.

We note that system (1.1) is formulated as ordinary differential equations with distinct
variables to describe the population size of compartments such as susceptible, exposed,
infectious and treated. It is assumed that all individuals within a compartment behave
identically, regardless of how much time they have spent in the compartment. For instance,
infectious individuals are assumed to be equally infectious during their periodic infectivity
and the waiting times in each compartment are assumed to be exponentially distributed
[24]. However, laboratory studies suggest that the infectivity of infectious individuals be
different at the differential age of infection [25]. For TB infection, the TB bacteria need
to develop in the lung to be transmissible through coughing, and their transmissibility
depends on their progression in the lung as well as the strength of a host’s immune system.
Active TB has the highest possibility of developing within the first 2-5 years of infection,
while most TB infections remain latent for a long period of time until immune compromise
occurs due to aging or co-infection with other illnesses such as HIV (see, for example, [26—
28]).

In [24], by including the duration that an individual has spent in the exposed and in-

fectious compartments as variables, McCluskey considered the following epidemiological
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model with continuous age structure for both the exposed and the infectious classes:

8(0) = A - usS(E) - S(0) /0 B@ila,)da,

de(a,t) .\ de(a,t)
ot da
di(a,t) 0i(a,t)

+
ot da

~(u(a) + y(a))e(a, 1), (1.2)

= —v(a)i(a,t),

with boundary conditions

e(0,1) = S(t)/oo,B(a)i(a, t)da,
0
o0 (1.3)
(0,¢) = ,t)da.
i(0,2) /0 y(a)e(a,t)da

In (1.2), e(a,t) and i(a, t) represent the numbers of the exposed and infectious popula-
tions at time ¢, respectively, where a is the duration for which individuals have been in
the exposed and infectious compartments, respectively. Individuals who have been in the
exposed compartment for duration 4, progress to the infectious compartment at rate y (a)
and are removed from the infectious compartment at rate i (a). Individuals who have been
in the infectious compartment for duration a are removed at rate v(a), and infect sus-
ceptible individuals at transmission rate $(a). Recently, interest has been growing in the
modeling and analysis on infectious disease dynamics with class age structure (see, for
example, [18, 29-35]).

Motivated by the work of Yang et al. [23] and McCluskey [24], in the present paper,
we are concerned with the effects of incomplete treatment and age structure for latently
infected and infectious individuals on the transmission dynamics of tuberculosis. To this

end, we consider the following differential equation system:

8(0) = A - uS() - S(t) /0 " B@ia, ) da,

de(0,t) de(d,t)

o + YR —(u + v(@))e(@,t), 0 >0, w
8i(aat, ) + Bif;;, D _ —(m(@) +y(a))i(a,t), a>0,
10= [ y@iatda- e+ 910
with boundary conditions
e(0,t) = S(¢¥) /00 Bla)i(a,t)da + (1 - p)ST(¢),
0 (1.5)

oo
i(0,¢t) :/ v(0)e(0,t)do + pdT(t),
0
and initial condition

Xo := (S(0),e(-,0),i(-,0), T(0)) = (5% eo ("), i0(-), T°) € 2, (1.6)

Page 3 of 34
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Table 1 The definition of the parameters in system (1.4)

Parameters Description

A The recruitment rate of individuals into the community by birth or immigration

" Per capita natural death rate of the population

0 The duration for which individuals have been in the latent compartment

a Age of infection, i.e, the time that has lapsed since the individual became infectious

wi(a) The rate at which individuals are removed from the infectious compartment

Bla) The transmission rate of the infectious individuals at age of infection a

y(a) The rate that an infectious individual with age of infection a recovers from the disease

v(@) The rate at which individuals who have been in the exposed compartment for duration 8, progress
to the infectious compartment

$ The rate at which a treated individual leaves the treated compartment
The proportion of the newly infected to develop tuberculosis directly

1-p The proportion of the newly infected to enter the latent class

753 The death rate of the treated individuals

where 2" =R* x L1(0,00) x L} (0,00) x R*, L' (0, 00) is the set of all integrable functions
from (0, 00) into R* = [0,00). In system (1.4), S(¢) represents the number of individuals
who are susceptible to tuberculosis disease, that is, who are not yet infected at time ¢; e(6, £)
represents the density of individuals in latent stage (who are infected with the disease but
not yet infective) at time ¢; i(a, £) represents the density of infective individuals with age of
infection a at time ¢; T'(¢) represents the number of individuals who are being treated at
time ¢. The definitions of all parameters and variables in system (1.4) are listed in Table 1.

In the sequel, we further make the following assumptions.

(H1) B and v are Lipschitz continuous on R* with Lipschitz coefficients Lg and L,,

respectively.
(H2) B,y,v € L(0,00), B,7 and ¥ are the essential supremums of 8,y and v,
respectively. There are positive constants vg and yp such that vy = ming>o v(6) and
Yo = ming>o ¥ (a), respectively.

(H3) There is a positive constant pq satisfying po = min{u, o}, 1(a) is a bounded
function on R* satisfying u;(a) > po for all a > 0.

Using the theory of age-structured dynamical systems introduced in [36, 37], one can
show that system (1.4) has a unique solution (S(¢), e(-, £), i(-, £), T (¢)) satisfying the boundary
conditions (1.5) and the initial condition (1.6). Moreover, it is easy to show that all solutions
of system (1.4) with the boundary conditions (1.5) and the initial condition (1.6) are defined
on [0, +00) and remain positive for all £ > 0. Furthermore, 2" is positively invariant and
system (1.4) exhibits a continuous semi-flow ® : R* x .2~ — Z°, namely,

Dy(Xo) = D(t,X0) = (S(0),e(-,0),i(-, ), T(1)), t=0,Xo€ X (1.7)

Given a point (x, @1, ¢2,2) € 2, we have the norm ||(x, 1, ¢2,2)|| 27 = x + fooo ¢1(a)da +
15 (@) da + z.

The primary goal of this work is to carry out a complete mathematical analysis of sys-
tem (1.4) with the boundary conditions (1.5) and the initial condition (1.6), and establish
its global dynamics. The organization of this paper is as follows. In the next section, we
establish the asymptotic smoothness of the semi-flow generated by system (1.4). In Sec-
tion 3, we calculate the basic reproduction number and discuss the existence of feasible
steady states of system (1.4) with the boundary conditions (1.5). In Section 4, by analyz-
ing the corresponding characteristic equations, we study the local asymptotic stability of a
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disease-free steady state and an endemic steady state of system (1.4). In Section 5, we show
that if the basic reproduction number is greater than unity, system (1.4) is uniformly per-
sistent. In Section 6, we are concerned with the global stability of each of feasible steady
states of system (1.4) by means of Lyapunov functionals and LaSalle’s invariance principle.
A brief discussion is given in Section 7 to conclude this work.

2 Boundedness and asymptotic smoothness

In order to address the global dynamics of system (1.4) with the boundary conditions
(1.5), in this section, we are concerned with the asymptotic smoothness of the semi-flow
{®(£)}:>0 generated by system (1.4).

2.1 Boundedness of solutions
In this subsection, we verify the boundedness of semi-flow {®(¢£)};>0.

Proposition 2.1 Let ®, be defined as in (1.7). Then the following statements hold.
(i) % [®:(Xo)l. 2w <A~ pollP:(Xo)ll 2 forall t > 0;
(i) 11P:(Xo)ll 2= < max{A/po, | Xoll 2} for all t > 0;
(ili) limsup,_, o |P:(Xo)ll 2= < A/po;
(iv) @, is point dissipative: there is a bounded set that attracts all points in Z .

Proof Let ®.(Xo) = ®(t, Xo) := (S(8), e(-,8),i(-, £), T(¢)) be any nonnegative solution of sys-
tem (1.4) with the boundary conditions (1.5) and the initial condition (1.6). Denote
[ Xoll 2 =S° + [, " eo(0)do + ;7 io(a) da + T°.

Define

|®(t,Xo)|| ,

=S() + foce(O,t) do + /Ooi(a, t)da + T(t). (2.1)
0 0

We derive from system (1.4) that

% | @@t Xo)| , = A - uSE) - S() /Ooo B(a)i(a,t)da

+/‘ de(0,t) d9+/ az(a,t)d
0 ot 0 ot

+ / y(a)i(a,t)da — (1o + 8)T (). (2.2)
0

400 4 3400 — (11 +v(0))e(O, £), 2228 4 2D — (1, (a) + y(a))i(a, ¢) into

On substituting =

(2.2), it follows that

%”dJ(t,Xo)”% =A — uS(t) —S(t)/oooﬁ(a)i(a, t)da

® Je(8,t) oo
_/o 55 - /0 (1 -+ v(6))e(6, 1) d8

_/0 aig;,t) d“_/o (@) + y(@))i(a,t) da

+ / y(a)i(a,t)da — (o + 8)T(t)
0
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=A—uS()-S() /OO B(a)i(a,t)da
0
—e(0,8)| —f (1 +v(0))e®,t)do
0
i@l - [ @)+ y(@)ita ) da
0
+ f y(a)i(a,t)da — (1o + 8)T (). (2.3)
0

We have from (1.5) and (2.3)

d o0 o0
Glowxl, <a-usO-u [ ew0do- [ m@itanda- 10

<A - || (5 Xo) | - (2.4)
The variation of constants formula implies
A A
|®@tXo)|| , < — —e‘*‘of{— - ||Xo||5{}, (2.5)
Mo Mo
which yields
A
|®(t,Xo0)|| , < max{ —, 1 Xoll 2 (2.6)
Mo
for all £ > 0. This completes the proof. O
The following results are direct consequences of Proposition 2.1.
Proposition 2.2 [f X, € 2" and || Xo|| 2 < K for some K > A/ 1o, then
oo o0
S() <K, / e(0,t)db <K, / i(a,t)da <K, T <K, (2.7)
0 0

forallt> 0.

Proposition 2.3 Let C € 2" be bounded. Then
(1) ®,(C) is bounded,
(2) @, is eventually bounded on C.

2.2 Asymptotic smoothness
In this subsection, we show the asymptotic smoothness of the semi-flow {®(¢)} ;0.

Let (S(¢),e(-,2),i(-,t), T(¢)) be a solution of system (1.4) with the boundary conditions
(1.5) and the initial condition (1.6). Integrating the second and the third equations of sys-
tem (1.4) along the characteristic line ¢ — a4 = const., respectively, we have

Li(t-0)p(9), 0<6<t,

eold - D)%, 0<t=<9,

e(8,t) = (2.8)




Xu et al. Advances in Difference Equations (2017) 2017:242 Page 7 of 34

and
Lo(t - , 0< t,
i) - 2( ﬂ)¢2((6? <a< 2.9)
io((l - t) (15?%(,1(;)’ 0 =< t <a,
where
$1(0) = e—fg(uw(s))ds, bo(a) = e S5 O ©)ds, (2.10)
and
Li(t) = S(HA1(¢) + (1 - p)8 T (), Ly(t) = As(t) + pST(2), (2.11)
here

Ae) = f B(@)ila, ) da,

° (2.12)
Az(t):/ v(0)e(d,t)do.

0

Proposition 2.4 The functions A,(t) and A,(t) are Lipschitz continuous on R*.

Proof Let K > max{A/o,||Xo| 2°}. By Proposition 2.1 we have ||®;|| o~ <K for all £ > 0.
Fix t > 0 and 4 > 0. Then

Ai(t+h)—A(t) = /000 Bla)i(a,t + h)da — /000 B(a)i(a,t)da
h o0
= / Bla)i(a,t + h)da + f Bla)i(a,t + h)da
0 h
- /ooﬁ(a)i(a, t)da. (2.13)
0

On substituting (2.9) into (2.13), it follows that

h
Ayt + 1) = Ay(0) = f B@La(t + h— a)y(a) da
0
+/h ﬁ(a)i(a,t+h)da—/o B(a)i(a,t)da. (2.14)

By Proposition 2.2, we have Ly(£) < (v + pd)K. Noting that ¢,(a) < 1, it follows from (2.14)
that

|A1(t + h) - Ai(2)|

< B[ + p8)Kh +

/00 B(a)i(a,t + h)da — /00 Bla)i(a,t)da
h 0

= B(v + p8)Kh + . (2.15)

/OO,B(G +h)i(oc +h,t+h)do —/wﬁ(a)i(a,t)da
0 0
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We have from (2.9)

h A+,
iashtsh=ian 9t i e oo (2.16)

¢a(a)

foralla > 0,¢t > 0,4 > 0. Hence, (2.15) can be rewritten as

|A1(t + h) = A1 ()| < B(D + p8)Kh

+

/ Bla + hyila, e ta " Er ) ds g / B(a)i(a,t)da
0 0

< B(0 + p8)Kh + /0 ~ Bla+h(1-ela +h(”1(s)”’(s))ds)i(a, t)da
+ /000 ’ﬁ(a +h) - ,B(a)’i(a, t)da. (2.17)
Noting that 1 — e™ < x for x > 0, it follows from (2.17) that
|Av(t + 1) - A1) <K[B( +pd + i + 7) + Lg ] h, (2.18)

here the fact that B(a) is Lipschitz continuous on R* was used.
In a similar way, we have

|As(t + 1) — Ay(8)| <K[D(BK + (1-p)s + u+ D) + Ly | h. (2.19)
This completes the proof. O
Proposition 2.5 The functions Ly(t) and Ly (t) are Lipschitz continuous on R*.

Proof Let K > max{A/o,||Xo| 2-}. By Proposition 2.1 we have || ®;|| 2~ < K for all £ > 0.
Fix ¢ > 0 and /2 > 0. Then

Lyt + ) = Li(8)| < |S(e+ WAL+ h) - S(OA(2)|
+(L-p)8|T(t+h) - T(o)]
< Ay(t +h)|S(t + 1) = S(6)] + S()|Av(t + ) — Ay (2)]
+(L-p)8|T(t+h) - T(t)|
< BK(A + uK + BK*)h + K*[B(V + pS + i + V) + Lg|h
+8K(1—p)(J + pa + 8)h

= M, h. (2.20)

Similarly, one has

’Lz(t +h) —Lg(t)| < K[\'}(BK +Q-p)S+pu+ \')) +Lv]h + pSK(y + po + 8)h

i= My, h. (2.21)

This completes the proof. d
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We now state two theorems introduced in [38] (Theorems 2.46 and B.2) which are useful

in proving the asymptotic smoothness of the semi-flow ®.

Theorem 2.1 The semi-flow ® : R* x 2, — 2 is asymptotically smooth if there are
maps O,V : R* x 2, — 2, such that ®(t,x) = O(t,X) + V (¢, X) and the following hold
for any bounded closed set C C X, that is forward invariant under ®:

(1) limy, o diam O(£,C) = 0;

(2) there exists tc > 0 such that V(¢,C) has compact closure for each t > tc.

Theorem 2.2 Let C be a subset of L*(R*). Then C has compact closure if and only if the
following assumptions hold:
(i) suprec 1S f (@) da < oo;
(i) lim,—oo [ |[f(a)l da = O uniformly in f € C;
(ii) limy—o+ [y~ If(a +h) —f(a)l da = O uniformly inf € C;
(iv) limy,_, o+ f: |f(a)| da = 0 uniformly in f € C.

We are now ready to state and prove a result on the asymptotic smoothness of the semi-

flow ® generated by system (1.4).

Theorem 2.3 The semi-flow ® generated by system (1.4) is asymptotically smooth.
Proof To verify the conditions (1) and (2) in Theorem 2.1, we first decompose the
semi-flow ® into two parts: for £ > 0, let V(¢ Xp) := (S@),e(-1),i(- 1), T(2)), O, Xp) :=

(0: ée('r t)r J)i(" t)’ 0): where

Lit-0)p1(0), 0<6<t,

e0,t) =
0, 0<t<9,
(2.22)
5.6.0 0, 0<6<t,
T e -2 0<t<o,
+ Ly(t-a)pz(a), 0<a<t,
i(a,t) =
0, 0<t<a,
(2.23)
~ 0, 0<ac<t,
¢i(ﬂ! t) = . bo(a)
io(a - t)¢2%ﬂ_t), 0<t<a.

Clearly, we have ® =©® + W for ¢t > 0.
Let C be a bounded subset of 2 and K > A/uo the bound for C. Let ®(¢,X,) =
(S®),e(-, 1),i(-, 1), T(t)), where Xy = (5%, eo(-),io(-), T®) € C. Then

6281 = / 16.(0,1)| do

*© &1(0)
= /t‘ eo(0 —t) 520D do. (2.24)
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Letting 6 — ¢ = o, it follows from (2.24) that

= Y $1(o +1¢)
[6e0)] 1 = fo eo(o) 2 dor

> — [T (u+v(s)) ds
= eg(o)e Jo Y do
0

o0
§e_(’”"°)t/ eo(o)do
0

< Ke~(w+v0)t, (2.25)

yielding lim,_, o0 [|@e(-8)|l;1 = 0. In a similar way, one can prove that [|@;(-,f)| <
Ke~o0)t and hence

Jim [ @i, 0)] 1 = 0. (2.26)

Accordingly, ©(t, Xo) approaches 0 € 2" with exponential decay and hence, lim;_, ,», diam
O(t,C) = 0 and the assumption (1) in Theorem 2.1 holds.

In the following we show that W(t,C) has compact closure for each ¢ > t¢ by verifying
the assumptions (i)-(iv) of Theorem 2.2.

From Proposition 2.2 we see that S(¢) and T'(¢) remain in the compact set [0, K]. Next,
we show that &(6, t) and i(a, t) remain in a pre-compact subset of L! independent of Xj.

It is easy to show that

é(@, t) < ile—(u+vo)€’ ;(ﬂ, t) < iZe—(M0+V0)“, (227)
where
L= BK? +(1-p)8K,  Ly=9K +psK. (2.28)

Therefore, the assumptions (i), (ii) and (iv) of Theorem 2.2 follow directly. We need only
to verify that (iii) of Theorem 2.2 holds. Since we are concerned with the limit as # — 0,

we assume that /z € (0, ¢). In this case, we have
/w|é(9 +h,t)—&0,t)| db
0
t-h
- [ =0 -1010 + 1) - Lite - 0)r 0)] do
0
t
. / Ly(¢ — 6)¢1(0) db
t-h
t—h
5/ Ly(t— 6 — )| $1(0 + ) — 41(0)| db
0
t-h
- / |L1(6 —t = h) = Ly (0 — t)|$1(0) dO
0

+ / t Li(t—60)pr(6) db. (2.29)
t—h
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It follows from (2.28) and (2.29) that

0 t-h
f &0 +h,t)-2(0,t)|do < L, / $1(0)(1 - e—f;’*hmw(sws) 40
0 0
t-h _ t
+ML1h/ ¢1(0) do +L1/ $1(0)db
0 t-h

t-h 0+h
sL/ ¢1(9)/ (1 +v(s))dsdO + My h + Lih
0 0

<[(w+ D)Ly + My, + L] (2.30)

In a similar way, we have

/wﬁ(a +h,t) —ila,t)| da < [(i + 7)Ls + My, + Ly |h. (2.31)
0

Hence, the condition (jii) of Theorem 2.2 holds. By Theorem 2.1, the asymptotic smooth-
ness of the semi-flow ® generated by system (1.4) follows. This completes the proof. [

The following result is immediate from Theorem 2.33 in [38] and Theorem 2.3.

Theorem 2.4 There exists a global attractor A of bounded sets in 2.

3 Steady states and basic reproduction number

In this section, we establish the existence of feasible steady states of system (1.4) with the
boundary conditions (1.5).

Clearly, system (1.4) always has a disease-free steady state E1(A/u,0,0,0). If system (1.4)

admits an endemic steady state (S*, e*(0), i*(a), T*), then it must satisfy the following equa-
tions:

A—-uS*-8* /ooﬂ(a)i*(a) da =0,
0

de*(6) .
o ==+ v(@)e" ),

di,;a) =—(w(@) + y(@))i*(a),

0 (3.1)
/0 y(@)i*(@)da = (s + 9)T",

oo
e*(0)=S* / B(a)i*(a)da + (1 —p)sT,
0
i*(0) = / v(0)e*(0)do + pdT*.
0
It follows from the second and the third equations of (3.1) that

€(0) =€ (0)1(6),  i*(a) =i"(0)pa(a). (3.2)
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We derive from the fourth equation of (3.1) that

@i (@da
- pa+8

T* (3.3)
It follows from the fifth equation of (3.1) and (3.3) that

€*(0) = $*i*(0) /0 B(a)px(a)da + (;z_f?

(0) /0 T (@ (a) da. (3.4)

We obtain from the sixth equation of (3.1) and (3.3) that

*(0) = ¢*(0) fo T 010 do + L2 i(0) /0 " Y (@(a)da. (35)

M2 +8

On substituting (3.4) into (3.5), we have

B o0 . o) (1—]9)8 00
- /0 v(e)¢>l(9)d9[s /O plapla)das SL fo y(a)@(a)da}

pé
2+

+

/0 v (@)pa(a) da, (3.6)
yielding

_ M2 +8-8[0-p) S v(©)¢1(0)d6 + p) [ v (@)pa(a) da

S* o o0
(m2+8) fy v(0)¢1(0)d0 [y Bla)g(a)da

3.7)

Since
/ v(0)p1(0)do < / v(@)e‘fg veds gg =1 _ e Jo veds o
0 0
and

o0 [ee]
/ y(a)ps(a)da < f y(a)e*fo v©)ds go 1 _ g Jo vi9)ds _ 1,
0 0

we have §* > 0.
On substituting (3.7) into the first equation of (3.1), it follows that

uw

o)
H O S 0@ do [ P day

(Ho - 1), (3.8)

where
Ty - ;—* /0 v(0)n(0) d6 /0 B(@)po(a) da

+

[(1 -p) / v(0)$1(0)do +p} f v (@)pa(a) da. (3.9)
M2 + 1) 0 0

X, is called the basic reproduction number representing the average number of new in-
fections generated by a single newly infectious individual during the full infectious pe-
riod [39].
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In conclusion, if Z, > 1, in addition to the disease-free steady state Ej, system (1.4) has
a unique endemic steady state E*(S*, e*(0), i*(a), T*), where

_Hat8-[1-p)s Jo v(0)¢1(0)do + ps] [1° v (@)pa(a) da

S* o0 o0

(112 + ) [ v(O)pr(0)dO [° Bla)ba(a) da
(o) P02 +9S I B@p@da +50-PI6®)

(112 + D) [ v(O)1(0) dO([ B(a)pa(a) dar)? 510

) weo(a) '
*(a) = Ko —1),
N S T O @) o pada@dar Y
- w o v(@)pa(a)da -1

(24 8)S* [ v(0)pi(0)dO([° B(a)pa(a) da)?

4 Local stability
In this section, we study the local stability of each of feasible steady states of system (1.4)
with the boundary conditions (1.5).

We first consider the local stability of the disease-free steady state E1(A/u,0,0,0).

Let S(2) = x1(8) + A/, e(0,t) = y1(0,t),i(a, t) = z1(a, t), T(¢) = wi(t). Linearizing system
(1.4) at the steady state E;, it follows from (1.4) and (1.5) that

i(t) = —p () - 2 / Bl@)ai(a, 1) da,
M Jo

8y1(9:t) 3)’1(@,1‘) _

ot * 20 _(M + V(9))y1(9, t),
821;6;, t) N 8218(: £) _ _(Ml(ﬂ) s )/(a))zl(g, 0,

00 (4.1)
() - [O Y@zt da— (s + Swi(t),

A oo
7002 [ pam(anda+ 1= oo,
0
o0
21(0,¢) = / v(0)y1(0,8) dO + pSw(t).
0
Looking for solutions of system (4.1) of the form x;(¢) = x11*, %10, £) = y11(0)e, z1(a, t) =

zin(a)er, wi(t) = wi e, where x1, y11(9), z11 (@) and wy; will be determined later, we obtain
the following linear eigenvalue problem:

A o0
A+ p)xy =—— / Bla)zu(a) da,
mJo

V(@) = —(A + 1 +1(0))yn(6),

Zy(a) = —(h + pa(a) + y(a))zu(a),

A+ po +8)wn = / y(a)zi(a)da,
0
=2 / B(@)zn(@) da + (1 - p)owy,
“Jo

(0) = / V(@)1 (6)dB + pSwiy.
0
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It follows from the second and the third equations of system (4.2) that

y11(0) = yn(0)e” o Oerpsvis ds (4.3)
and

21(a) = 21 (0) Jo s, (4.4)
We obtain from the fourth equation of system (4.2) that

y 1o v(@zu(a)d (4.5)
W T s '

On substituting (4.5) into the fifth and the sixth equations of system (4.2), one obtains

y11(0 / B(a)zn(a )d6l+k(+ uf)fS/ y(a)zn(a)da (4.6)
and
21(0) = y1(0) /0 v(e)(pl(e)dm% /0 y(@)zu(a) da. (4.7)

We derive from (4.6) and (4.7) that

(- | v(@)@(@)d@[ [ p@m@dar S22 y(a)zll(mda]
0

8 o0
+ )LL/ y(a)zy(a)da. (4.8)
+ 2 +8 Jo

On substituting (4.4) into (4.8), we obtain the characteristic equation of system (1.4) at

the disease-free steady state E; of the form

S =1 (4.9)

where

£0) = %/ T hO)m0)do | " playe IB0ords g
0 0

8

. m[u—m /0 v(0)¢n(6) d6 +p}

X /00 y(a)e’fg(“’”(s)w“))ds da. (4.10)
0

Clearly, we have f(0) = %,. It is easy to show that /(1) < 0 and lim; ., f (1) = 0. Hence,
f(A) is a decreasing function. Clearly, if %, > 1, then f(1) = 1 has a unique positive root.
Hence, if %o > 1, the steady state E; is unstable.
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We now claim that if %, < 1, the steady state E; is locally asymptotically stable. Other-

wise, equation (4.9) has at least one root A = a; + ib; satisfying a; > 0. It follows that

[f(w)] < %/m v(0)d1(0) do /ooﬂ(a)e—/i?wl(s)w(s»ds da
0 0

R [(l—p) / v(6)1(6) do +p} / y (@)e™ o 1 +r(Dds gg
Mo + 0 0 0

=%0<1,

a contradiction. Hence, if Z, < 1, all roots of equation (4.9) have negative real parts. Ac-
cordingly, the steady state E; is locally asymptotically stable if %, < 1.

We now study the local stability of the endemic steady state E*(S*,e*(0),i*(a), T*) of
system (1.4).

Letting S() = x(t) + S*,e(0,t) = y(0,t) + e*(0),i(a, t) = z(a, t) + i*(a), T(¢) = w(t) + T*, and
linearizing system (1.4) at the steady state E*, it follows that

x(t) = — i*(a) d - S* ~ ,t)da,
@) (u+ fo B(a)i*(a) a)x(t) /0 Bla)z(a, 1) da
0y(0,0)  9y(0,0)

oy + 59 = —(M + u(@))y(e, t),
azgat, b, azé: 1 _ ~(m(a) + y(@)z(a, 1),

. (4.11)
W) - /O v (@)2la,t) da— (13 + S)wit),

(0, £) = x(t) /000 Bla)i*(a)da + S* /000 Bla)z(a,t)da + (1 — p)dw(t),

z(0,1) = /:0 v(0)y(6,t)dé + pSw(t).

Looking for solutions of system (4.11) of the form x(¢) = x,€,y(0,t) = y1(0)e*, z(a, t) =

zi(a)e, w(t) = wie*, where x1,71(0),z1(a) and w; will be determined later, we obtain the
following linear eigenvalue problem:

(k + 0+ /000 Bla)i*(a) da)xl =-5" Aoo B(a)zi(a)da,

91(0) = =(A + p +v(6))(6),

Z(a) = —(1 + ui(a) + y(a))z1(a),

A+ 2 + 8wy = /OO v(a)z1(a) da, (4.12)
0
n(0) = / pla)i*(a)da +S* / B(a)zi(a) da + (1 - p)sw,
0 0

z1(0) = / v(0)y1(0) dO + pSw.
0
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It follows from the second and the third equations of system (4.12) that

$1(6) = yr(0)e o G (4.13)
and

21(a) = 21 (0)e~Jo W)y (D ds, (4.14)

We derive from the first equation of system (4.12) that

~ S* ;% B(@)z(a)da
e w+ [y Bla)it(a)da (415)

It follows from the fourth equation of system (4.12) that

)d
wy = u. (4.16)
A+ g+ 8
We have from the fifth equation of system (4.12), (4.15) and (4.16)
S*(A > d 1-p)s [
()= St W)y P@a@da | (1-p) / y(@)z(a) da. (4.17)
Kt [y p@ir@da " 3o+ Jo
On substituting (4.16) into the sixth equation of system (4.12), one has
o0 8 oo
Z1(0)=y1(0)/ v(0)$1(0) do + )Lpif y(@)zi(a)da. (4.18)
0 +uz+8 Jo
It follows from (4.17) and (4.18) that
0) = 0)p1(0) do d
z1(0) A+u+f0°°ﬁ(a)i*(a)da A v(0)$1(6) ; B(a)zi(a)da
[ o) [ v00)ds +p} | v@a@ada (419)
A + g+ 6

On substituting (4.14) into (4.19), we obtain the characteristic equation of system (1.4)
at the steady state E* of the form

fid) =1, (4.20)

where

AR =

S0 ~ > — Jo A1 (9)+y () ds
A+ fo° Bla)i*(a)da /0 v(0)1(0) d0 /0 pla)e da

[(1 _p) /0 v(0)61(60) do +p]

+—
A+ g+ 8

o0
« / y(@)e I Gsm@ ) ds g (4.21)
0
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We now claim that if %, > 1, all roots of equation (4.20) have negative real parts. Other-
wise, equation (4.20) has at least one root A, = a, + bsi satisfying a, > 0. In this case, we
have

S*Aa +
Ao+ 1+ [y Bla)i*(a) dal

o0
/ Bla)e- 502 mOrO)ds 4,
0

[A02)| <

X /(;oo v(0)¢1(0) dO

)
+7
[A2 + po + 8]

[o¢]
/ Y (@)™ I8 G @erO)ds g,
0

[(1—10) /0 v(0)1(6) db +p}

X

<5 /0 v(0)(6) d6 /O B(@)ps(a) da

+

oo oo
(00 [ v@n01a0 +p] [ y@iada
o+ 68 0 0
-1, (4.22)
a contradiction. Therefore, if Z, > 1, then the endemic steady state E* is locally asymptot-

ically stable.
In conclusion, we have the following result.

Theorem 4.1 For system (1.4) with the boundary conditions (1.5), if %o < 1, the disease-
free steady state E1(A/,0,0,0) is locally asymptotically stable; if o > 1, E, is unstable and
an endemic steady state E*(S*,e*(0),i*(a), T*) exists and is locally asymptotically stable.

5 Uniform persistence
In this section, we establish the uniform persistence of the semi-flow {®(£)};>0 generated
by system (1.4) when the basic reproduction number is greater than unity.

Define

a =inf{a:/wﬂ(u)du=0}, as =inf{a:/ooy(u)du=0},

é:inf{@:/mv(u)du:O}.
)

Noting that B(-), (), v(-) € L (0, 00), we have a; > 0, a, > 0,6 >0.
Denote

X =L}(0,+00) x L1(0, +00) x R*, a = max{a.a}

0 a
Y= {(e(.,t),i(-,t), T(t))T eX: / e(8,t)dd > 0 or / i(a,t)da>0or T(t) > 0},
0 0
and

V=R*'xY, aY=2\Y, V=x\D



Xu et al. Advances in Difference Equations (2017) 2017:242 Page 18 of 34

Theorem 5.1 The subsets )Y and 0) are both positively invariant under the semi-flow
{D(t)}i>0, namely, ©(t,Y) C Y and ®(t,0)) C dY for t > 0. The disease-free steady state
E(A/14,0,0,0) is globally asymptotically stable for the semi-flow {®(£)} > restricted to 0 ).

Proof Let (S°,e(-),io(-), T°) € V. Then (eo(+), io(-), T°) € JNJ Denote
L(t) = /(; e(0,t)do + /0 i(a,t)da + T(¢).

It follows from (1.4), (1.5), (2.8) and (2.9) that

o0

d *© . © .
EL(t) = S(t)/(; B(a)i(a,t) da—,u/o e(0,t)do —/0 ui(a)i(a, t) da — o, T(¢)

_— /0 e(6,2)d6 - /0 ju(@ila ) da - us (@)

> - max{u, 25 M1ax }L(t):
where 11, = €sssup,c(g - This yields
L(¢) > efmax{u,uz,mmax}ll(o).

Hence, we have ®(¢,)) C ).
Using a similar argument as in the proof of Lemma 3.2 in [40], one can show that 9 is

positively invariant under the semi-flow {®(¢)}.
Let (S°, e0(-),io(-), T°) € 8Y. Then (eo(-),io(-), T°) € 3). We consider the following sys-

tem:

de(0, de(d,
e;t t) . e(ge t) = — (i +v(0))e(d, 1),
Bi(aat, t) N Bi(gt;, f) _ —(m(a) + y(@))i(a,t),

10 [ y@itada- o+ 570,
0 (5.1)
e(0,1) = S(t)/ Bla)i(a,t)da + (1 - p)ST(¢t),
0
i(0,t) = /‘00 v(0)e(®,£)db + pST(t),
0

e(0,0) = ey (), i(a,0) = ig(a), T(0)=0.

Since limsup,_, , ., S(¢) < A/, by the comparison principle, we have

ela,t) < é(a,t), i(a,t) <ia,b), T@®) < T(@), (5.2)
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where &(a, t),i(a, t) and T(¢) satisfy

de(0,t) 0e(0,t)

el —(1+v(0))e, 1),
ai(gzt, £) N SLE;Z ,t) —(ma(a) + y(a))l(ﬂ t),

— ) = /:o y(@)i(a,t)da — (uy + 8)T(t),

e(0,1) / ﬂ(a)z(u, tYda + (1 - p)cST(t)
i(0,8) = f h (0)2(0,1)do + psT(2),

0
20,0)=e(0),  i(a,0)=iola), 7(0) = 0.

Solving the first and the second equations of system (5.3), we have

50, 1) Lit-0)p(0), 0<6<t,
e(d,t) =
eo® — 1) %, 0<t<6,

and

ioa-1) 2%, 0<t<a,

2(61, t) — liz(t - a)¢2(ﬂ)) 0<ac<t,

where

Li(2) = 2(0,¢) = A f ” B(a)i(a,t)da + (1 - p)sT(t)
" Jo
and

Ly(2) :=1(0,2) = / ” V(0)e(0,1)d6 + psT(¢).
0
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(5.3)

(5.4)

(5.5)

(5.6)

(5.7)

On substituting (5.4) and (5.5) into the third, the fourth and the fifth equations of (5.3), it

follows that

dT(t)

dt =/0 y(@La(t - a)po(a) da— (na + 8)T (1) + G (8),

i) = / B@La(t - a)a(a)da + (L - p)ST(®) + Ga(0)

L) - / VOVt - 0)¢(6)d6 + p5 T(8) + G (o)
0

a(a)
$2(a—t)

Galt) = / Bl@iola—1t) ﬁ(“)) .

e g O
Gal0)= [ v0)ento - 0202 .

da,

i) - f v (@iola—1)

(5.8)
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Since (eo(+), io(+), T°) € 3, we have G;(£) = 0 (i = 1,2,3) for all £ > 0. It therefore follows
from (5.8) that

dl b A
% 2/0 y(a)Ly(t — a)ps(a)da — (s + 8)T(t),

ixa:%lfmmﬁm;awxwda+u—pm%m, o)
iﬁﬂ=i/ VOVt - 6)¢1(6) d6 + p5 T (D),
0

T(0)=0.

It is easy to show that system (5.9) has a unique solution L) =0,1,(t) =0, T(¢t) = 0.
We obtain from (5.4) (9, t) = 0 for 0 < 6 < ¢. For § > t, we have

¢1(6)
¢ (0 -1)

|6, 0)] 1 = eo® - 1) < el

Il
which yields lim;—, ,« €(6, £) = 0. Similarly, one has lim;_, , Q(a, t) = 0. By comparison prin-
ciple, it follows that lim;_, , €(0,t) = 0,1im;_, ;o i(a,£) = 0 and T(¢) = 0 as t — +00. We

obtain from the first equation of system (1.4) that lim;_, ., S(t) = A/u. This completes the
proof. d

Theorem 5.2 If %y > 1, then the semi-flow {®(t)};>0 generated by system (1.4) is uni-
formly persistent with respect to the pair (V,0)); that is, there exists an & > 0 such that
lim; o0 || D(8, %) || 27 = € for x € V. Furthermore, there is a compact subset Ay C )Y which
is a global attractor for {®(t)}i0 in Y.

Proof Since the disease-free steady state E1(A/u,0,0,0) is globally asymptotically stable
in Y, applying Theorem 4.2 in [41], we need only to show that

WHEN)NY =¥,
where
WS(E) = {x €V: lim @(t%) = El}.

Otherwise, there exists a solution y € ) such that ®(¢,y) — E; as t — oo. In this case, one

can find a sequence {y,} C V such that

1
||<I>(t»J’n)—5’||% < Z; t>0,

where y = (A/w,0,0,0).
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Denote cb(t;yn) = (Su(t), en(s 1), in(, ), T, (2)) and Yn = (8,(0), €,4(:,0),iu(-,0), T,,(0)). Since
o > 1, one can choose # sufficiently large satisfying So — % >0 and
1 [e.¢] [e¢]
(50-3) [ p@rssi@aa [~ vornneras
0 0

é
Mo+ 8

+

[P +(1 —P)/ V(9)¢1(9)d9] / y(@)pa(a)da > 1, (5.10)
0 0
where Sy = A/u. For such an # > 0, there exists a T} > 0 such that, for ¢ > T7,

1 1
So——<S,(t) <Sp + —. (5.11)
n n

Consider the following auxiliary system:

9e(0,t) 08(0,1)

+ —(1+v(0))e®, 1),

ot 206
8i(aat, t) N 8i(86;, t) = —(m(@) +y(@)i(a, 1),
dT R 1
% - /0 y(@i(a,t)da - (12 +8)T(), o

50,6) - (50 . 1) / " B@ia, tyda+ (- p)sT(@),
njJo
10,¢) = / ~ v(0)e(0,t)do + psT(¢).
0

It is easy to show that if %, > 1, system (5.12) has a unique steady state E(0, 0, 0).
Looking for solutions of system (5.12) of the form

20,t) =&,(0)e",  iat) =i(a)e, T(t) = The™, (5.13)

where the functions &,(9), 7, () and the constant 7; will be determined later, we obtain the

following linear eigenvalue problem:
&) =—(h+p+v00)e®),
i(@) = —(A + (@) + y(@))ir(a),

/0 y (@i da =0+ + )T,

(5.14)

3 1\ [® N

e(0) = <So - ;) / B(a)i(a)da + (1 - p)sTh,

0
~ o0 ~
i1(0) = / v(0)ey(0)do + pSTy.
0
It follows from the first, the second and the third equations of system (5.14) that
21(0) = & (0)e o anvionds, (5.15)

i1(a) = 1 (0)eJo Grm@)ry () ds, (5.16)
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and

5 _Jo v@h@da

5.17
! A+uz+6 ( )

On substituting (5.15)-(5.17) into the fourth and the fifth equations of (5.14), we obtain the
characteristic equation of system (5.14) at the steady state E, of the form

fr(r) =1, (5.18)
where

1 o0 a o 0
fz()n) = (SO _ _) / ﬂ(a)e‘fO (A+p1(s)+y () ds d(l/ v(@)e‘JO (A+p+v(s)) ds do
njJo

0

P / (@ 00 ©)ds g,
At+ua+8 Jy
X |:p +(@1 —p)/ v(9)e’fg(“’“"(s))ds d@]. (5.19)
0

Clearly, we have

fz<0>:(so—1) / Bla)a(a) da f v(6)p1(0) o
n 0 0

+

g+ 0 |:I9 +(1 —P)/O V(5)¢1(9)d9] ‘/0 v(a)p,(a)da > 1

and
Alim f(x) =0.

Hence, if Z, > 1, then equation (5.18) has at least one positive root Aq. This implies that
the solution (&(-, ), i(-, t), T(t)) of system (5.12) is unbounded. By comparison principle, the
solution ®(¢,y,) of system (1.4) is unbounded, which contradicts Proposition 2.2. There-
fore, the semi-flow {®(£)};>0 generated by system (1.4) is uniformly persistent. Further-
more, there is a compact subset Ag C ) which is a global attractor for {®(¢£)};>¢ in ). This
completes the proof. d

6 Global stability
In this section, we are concerned with the global asymptotic stability of each of feasible
steady states of system (1.4) with the boundary conditions (1.5) and the initial condition
(1.6). The strategy of proofs is to use suitable Lyapunov functionals and LaSalle’s invariance
principle.

We first state and prove a result on the global asymptotic stability of the disease-free
steady state E1(A/u,0,0,0) of system (1.4).

Theorem 6.1 If %, <1, the disease-free steady state E;(A/u,0,0,0) of system (1.4) is glob-
ally asymptotically stable.
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Proof Let (S(t),e(0,t),i(a, t), T(t)) be any positive solution of system (1.4) with the bound-
ary conditions (1.5). Denote Sy = A/ .
Define

Vl(t) = S(t) - S() —S() In @ + /mFl(Q)e(G,t) do
So Jo

+ /00 Fy(a)i(a,t)da + kT (t), (6.1)
0

where the positive constant k and the nonnegative kernel functions F;(0) and F,(a) will
be determined later.

Calculating the derivative of V;(¢£) along positive solutions of system (1.4), it follows that

%Vl(t) = (1 SS( )> [A uS(t) - S(t)/ Bla)i(a, t) da]
oo ae(e t) o di(a,t)
+/0 F(0) do + /(; Fy(a) P da

+ k[/oo y(a)i(a,t)da — (ua + 5)T(t)]- (6.2)
0

On substituting A = 1Sy, ae(e,t) =—(u+v(0))e®,t) - ae(e 9 and dlf;ltt = —(u1(a) + y (a))i(a,

£) - azga 1) into equation (6. 2) one obtains

d S
@ = ( %)[—M(s(t)—so)]

/ Bla atdu+So/ Bla)i(a,t)d.

_/0 F1(9)|:(u+v(9)) 0,0+ ;9 ”}d@

[ raf @ viahian « 40 a

0 a

+ k|:/00 ]/(a)i(ﬂ, t) da — (/’LZ + 6)T(t)] (63)
0

Using integration by parts, we derive from (6.3) that

d S,

Vil = (1 - T%) [-11(S(2) - So)]
—S(t)/0 B(a)i(a,t) da+So/0 B(a)i(a,t)da
—~F1(0)e(0,1)|3 + /0 [F1(0) - (i +v(0))F1(6)]e(®, £) do
- Fy(a)i(a, t)|3° + /0 [Fy(a) - (n1(a) + y(a))Fa(a))i(a, t) da

+ k/oo y(a)i(a,t)da — k(o + 8)T(2). (6.4)
0
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Choose
e U
F1(9)=A1/ v(u)e’fG (rv(sDds gy
0
Fa@)= [ (Soplw) + kyt)e 079500 gy,

where

1
Al=——"—.
LT 0(0)¢n(0) db

Direct calculations show that

Fl(O) =1, lim F1(9) =0,

0—o00

F(0) = (1 + v(0))E:(0) — A1v(8),
and

E,(0) = So fo Bla)pala) da+ k /O v (@)pa(a) da,

Fy(@) = (m1(a) + y (@) Fa(a) - (Sop(a) + ky (a)),

lim Fy(a) = 0.

a— 00

We therefore obtain from (6.4)-(6.8)

d S
V0= (1 - T(;)> [-12(S(®) - 0)]
-S i(a,t)da + S, i(a,t)d
0 fo Bla)ila, f)da+ S, /0 B(@)i(a,0)da
+ F1(0)e(0, t) — Az /OO v(0)e(d,t) do
0
+ F5(0)i(0,8) — Ky / (SO,B(a) + ky(a))i(a, t)da
0

+ k/oo y(a)i(a,t)da — k(s + 8)T(t)
0

So

- (1 - %> [-1(S(®) - So)]

+ 1 =p)ST(t) — k(ua + 8)T(2) — Ay /OO v(0)e(0,t)do
0
. (50 /0 B(a)s(a)da + k /0 Y (@)s(@) da)

X (/*00 v(0)e(d,t)do +p8T(t)>.
0
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(6.5)

(6.6)

(6.8)

(6.9)
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Choosing k satisfying k(s + 8) = (1 — p)d + A1 p8, we have from (6.9)

d S
A (1 - y%) [~(S(0) - So)]
+ (SO/O Bla)pz(a) da+k/0 v(a)p(a) da—A1>

X (/OO v(B)e(0,t)do +p3T(t)>
0

S(t) — So)? %
= -M% + Ay( o - 1)( / v(0)e(0,1)do + pST(t)). (6.10)
0
Clearly, if Z, <1, V{(£) < 0 holds and V() = 0 implies that S(t) = So,e(0,¢) =0, T(£) = 0
Hence, the largest invariant subset of {V/(¢) = 0} is the singleton E;(Sy, 0,0, 0). By Theo-
rem 4.1, we see that if Z, < 1, the steady state E is locally asymptotically stable. Therefore,
the global asymptotic stability of E; follows from LaSalle’s invariance principle. This com-

pletes the proof. O

We are now in a position to state and prove a result on the global asymptotic stability of
the endemic steady state E*(S*,e*(0), i*(a), T*) of system (1.4) with the boundary condi-
tions (1.5).

Theorem 6.2 If%, > 1, the endemic steady state E*(S*, e*(0), i*(a), T*) of system (1.4) with
the boundary conditions (1.5) is globally asymptotically stable.

Proof Let (S(¢),e(a, t),i(a, t), T(¢)) be any positive solution of system (1.4) with the bound-

ary conditions (1.5).
Define

« f S) e . e(0,t)
Vo(t) =S G<?) +/o fi(@)e (6)G< =) )d@

+ /0 fz(a)i*(a)G(iiZ;:))) da+k T*G( TT(t)) (6.11)

where the function G(x) =x — 1 — Inx for x > 0, the constant k; > 0 and the nonnegative

kernel functions f,(0) and f;(a) will be determined later.
Calculating the derivative of V,(f) along positive solutions of system (1.4) with the
boundary conditions (1.5), it follows that

d S*
a\/g(t):( S(t))|:A uS(t) S(t)/ B(a)i(a, )da]
e*(0) \ de(d,t)
[ (- ) 5
fz( ( i*(a) ) di(a, t) Ja
i(a,t)

+ky (1 - T(t)) [/(; y(a)i(a,t)da — (uy + 8)T(t)] (6.12)
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On substituting A = uS* + §* fooo B(a)i*(a)da, % = —% —(u+v(0))e(d,t) and % =

—% — (u1(a) + y(a))i(a, t) into equation (6.12), we derive that

d HSO-SP [T 5
EVg(t):—is(t) +S/0 Bla)i (a)da(l—s(t)>

- S(¥) /000 B(a)i(a,t)da + S* /000 Bla)i(a,t)da

- /0 f1(9)<1 - :(Zet))) (86299, ) + (/,L + v(@))e(@,t)) do

— /Ooofz(a) (1 i(a) ><8i(a, £) + (m(a) + y(u))i(a, t)) da

B i(a,t) da

th fo  @ilat)da - k(s + 8)T(®

T* 00 . }
_klm/o v(@)i(a, t)da + ky(jy + 8)T*. (6.13)

Note that

% 6) = (1 +v(0)e*®) (6.14)

3¢ ©0)= (1 +v(9))e .
and

L @) = . 6.15

7 (@) = —(m(a) + y(@)i*(a). (6.15)

Direct calculations show that

0 e(0,1) 1 e*(0) \ [ 0e(0,t)

£G< =(0) ) = =) (1 - e(@,t))[ Y + (pc + v(@))e(@,t):| (6.16)
and

0 i(a,t) 1 i*(a) \[ di(a, t) .

a_zzG( @) ) = @ <1 T t))|: %2 +(m(a) + y(a))ia, t):|. (6.17)

We obtain from (6.13), (6.16) and (6.17) that

A ouSO-5P (7. 5"
d—tvz(t)——T+S/0 Bla)i (a)da(l—s(t)>

- S(¥) /000 B(a)i(a,t)da + S* /000 Bla)i(a,t)da

o N e(0,t)
—/0 fi(@)e (a)£G< e*(9)>d8

o0 e, 2 0 i(a,t)
_/0 fola)i (a)ﬁG( (@) ) da

+k /0 y(a)i(a,t)da — k(s + 8)T(t)

- kl% /o y(a)i(a,t)da + ky(ua + 8)T*. (6.18)
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Using integration by parts, we have from (6.18)

d WSO-SP [ 5
EVg(t):—T +S/0 Bla)i (a)da(l—%>

- S(¥) /00 B(a)i(a,t)da + S* /00 Bla)i(a,t)da
0 0

. e(®,t)
~fi(0)e (G)G( e*(9)>

oo

0

(0,0 y
+/0 G(e*(9)>[f1(9)e 6) +£i(6)e”'(6)] d6

—ﬁ(a)i*(a)G(i(“’ ”)

i*(a)

o]

0

+ / N G(i(“’ t))[fz/(a)i*(a) + (@) (@) da
0

i*(a)

+ky / y(a)i(a,t)da — ki(uo + 8)T(t)
0

*

- /q% /0 N y(@i(a,t)da + k(uy + 8)T*. (6.19)

On substituting (6.16) and (6.17) into (6.19), it follows that

d w(S) -89 [ " S
Evz(t) = —T +S /0 Bla)i (a)da(l— S(t)>

- S(¢¥) /00 B(a)i(a,t)da + S* /00 Bla)i(a,t)da
0 0

. e(0,t)
~fi(0)e (G)G( e*(0)>

oo

0

0 9, , .
+/0 G(eei(eg))[ﬁ(e)—(u+v(9)) (6)]e"(0) do

—ﬁ(a)i*(a)G(i(“’ ”)

i*(a)

o]

0

[ 6 (5 1@ - (@ + v @) da
0

i*(a)

+ky / y(a)i(a,t)da — ki(u + 8)T(t)
0

T* o0
-k — i(a,t)d 8T 6.20
b /0 Y (@)ila,t)da -+ k(s + ) (6.20)
Choose

fl(e) :Al/ v(u)e‘fé‘(uw(s))ds du,
009 (6.21)
fa(a) = / (S*Bw) + klV(u))e_f:(/’“l(s)ﬂ/(s))ds du,
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where A; is determined in (6.6). Direct calculations show that

A(0)
f6) = (1 +v(0))fi(6) - Av(6),

L lim £,(0) =
60— 00

and

A0 =5 / B@)ps(a)da+ ki / Y (@) (a) da,
0 0

£(@) = (@) + y(@)fs(@) - (S B(@) + kuy (@),

lim f3(@) = 0.

On substituting (6.22) and (6.23) into (6.20), we have

d w(S(t) — §*)* S*
EV2(£) T / ﬂ(ﬂ)l ((l) da (1 - %>

—S(t)/ ﬁ(a)i(a,t)da+5*/ Bla)i(a,t)da
0 0

) . e(0,1)
+e(0,t) —e*(0) —e*(0)In =(0)
o . . e(0,t)
—A1/0 v(9)<e(«9,t)—e (0)-€e*(0)In =) )d@

. (S* /0 " B@)pa@) da + k fo @@ da)

x <i(0, £) = i*(0) - *(0)In igﬁb?)

- ~ S*B(a) + kyy(a))| i(a,t) = i*(a) —i"(a)In (, ’ da
s co-ron'ss)
0 i*(a)
+k1/0 y(a)i(a,t)da — k(s + 8)T(t)
—kl%/ y(a)i(a,t)da + ki(uy + 8)T.
0

Choose k; > 0 satisfying

ki(pa +68) = pd (S*/O B(a)gs(a)da + k1/0 v (@) (a) da) +(1-p)é.

We derive from (1.5), (6.24) and (6.25) that

d w(S(t) - S* S*
R / Bla)i* (a)da( sm)

e(0,1) e(9,t)
= Alf O )n S

(S*/ B(a)i (a)da+k1‘/oooy(a)z (a)da) i(0,2)

—¢e*(0)In do

*(0)

Page 28 of 34

(6.22)

(6.23)

(6.24)

(6.25)
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+/0 (S*B(a) + kiy ()i (a)l ( )
“k /0 V(@)i* (@) l’((“a)t;ft) da + k(s + 8)T*. (6.26)

It follows from the fourth equation of equations (3.1) and (6.26) that

1(S(t) - §*)?
S(2)

S*
/’3 (S(t) t-in ()

S(t)
_kl/(‘) V(@i ()(l(at)T* el (at)T*)d

d
it Va(t) = -

*(a) T (2) *(a)T(t)

1A f ¥ @) @) In 6(9( t)) e( (0))

/ (@i (@)In *(a) S(t) ,(*éot)) i
vio [ @ @dan %00, (6:27)

On substituting (3.4) into (6.27), one has
%V2(t) _ _%;5*)2

-5 [ e @aal g -1-m g )
_klfoooy(a)i*(a)(lf?’)t;f; “1-In l(Z”)) (*))d
L AST / Bla)i* (a)da/ (( )) ((f t)) do
+A1(;;f); /0 y(@)i*(a) da /0 T @)@ n 6(9( t)) e(*o(ot)) d6
L ALS* /0 " 00)n(0)db / " B@ir@n ’(“( t)) SS(? ,’(*0(02) p
+ kA, /0 " (0)4,(6) db / Ry ((f t)) T(t) (6.28)

It follows from (6.25) and (6.28) that

d n(S(t) - §*)*
7 Vo(t) = s

- S*/O Bla)i*(a) dﬂ(S(t) —-1-In S(t))
o " i(a,t)T* i(a, )T
'kI/o y(a) (a)<i*(a)T(t) ST >)d

t

FAS / / B(@)i*(@)v(6)1(6) In ()(

€*(0)
(@) 0.0 db da
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ras' [ [ @i @m0 L8 do da

(1 p)é T(t) e*(0)
2 / f Y@ @))% doda

(1 p)8 e(®, ) i*(0)
o / / y(a)i*(a)v(0)p1(6) In #0) 10.0) dbda

/ B(@)pa(a) da / b(0)p1(6) b

* " i*(0) T(2)
Xfo y(a)i*(a)daln 0.0 T

+A

A Mkl /0 v (@)s(a) da /0 0(6)1(6) d6

°° " i*(0) T(¢)
X./o y(a)i*(a)daln 0.0 T

SOV [T <s>
= 50 S/O B(a)i*(a)daG 50

X i(a, )T
_ kI/o y(a)i (“)G(i*(a)T(t)> da
~ A8 / v(0)1(0) db f P (”)’*(“)G<S(t) ii(*a(’at)) :(0(02)) “

S*
(0,0 1(0)
i0) %

_AS / B(a)i*(a)da / v<9)¢1<9)G(

(1-p)s " °° T(t) €*(0)
—A; P /0 y(a)i (a)da/ v(9)¢)1(9)d9G( T* 0, ))

(I-p) [ " * e(9,t) i*(0)
—-A; rtd /0 y(a)i (a)da/(; v(9)¢1(6)G( =) i(O,t))dG

P fo B(@)pa(a)da / v(0)1(0) b

*® i*(0) T(2)
X,/o y(a)i*(a)da G(L(O,t) T*)

-A

_a P & /0 Y (@)a(a) da /O v(6)1(6) d6

M2 +

y / y(@)i*(a)da G( '(O(Ot)) TT“))

" S(t) i(a, t) e*(0)
+A;S f f Bla)i*(a)v(0)d 9)( S () 20, t) )d@ da

% o e(9,t) i*(0)
+AS /0 /0 Pla)i (“)”(9)¢1(9)(e*(9) i) )

—p)? [ y(a)i*(a)uw)cbl(e)(”f) () )a’ed

! Mo + é (O t)
(1 p)é e(0,t) i*(0)
P f / y(a)i*(a)v(0)d 0)( -0 (O t) )d@ da

/ B(@)pa(a) da / v(0)$1(0) o
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~ "(0) T()
X/o vireds ((0 0T _l>

Lk [ v@nada [ oo
*© " i*(0) T(2)
X/o y(a)i (a)dd(i(o,t) e —1). (6.29)

After some algebra, we have from (1.5)

MY el e " S(t) ia,t) e*(0
AS /0 /0 Bla)i (a)v(@)dn(@)( S @) e0.0) 1> do da
) i

) e

+ A S* /Oo /Ooﬁ(a)i*(a)v(e)(bl(G)(e(*(e) (0(0)) )d9 da
MM[ f Y @i @v(O)( )(TT()Q((O)) )deda
lllz f?f / y@rap @) )<e(ie>) o0 1) a0 da

P_s / B(a)pala) da /O v(0)1(0) db

« [y @aa( 55 52 1)

o [y @aada [ v

xﬁmﬂmmmw(S%ZT—Q

_(a-s /0 B@)p(a)da— k, / y(u)@(a)da)i*w)

0

+A1

+A1

-0. (6.30)

It therefore follows from (6.29) and (6.30) that

d w(S(t) - S* S*
Va0 = T / Bla)i (”)d“G<5(t))

0 i(a,t)T*
_/q/ y(@)i*(@)G (*(a)T(t)>d“
e U, () i(a, 1) €*(0)
_AlS/(; v(0)¢1(9)d9f Bl@)i*(@)G < i*(a) e(0, ))dﬂ
)z(

(l—p) RS > T(t) e’(0)
-A P fo y(a)i (a)daz/o v(9)¢1(9)d9G< - 20, t))

A-ps [~ x e0,1) i(0)
A M2+5/o (@) (“)”’“/o V(O)1(0)G (8(9) i(O,t))de

p . o0 o0
AP /0 B(@)pa(a) da /0 v(0)¢1(6) d6
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*© " i*(0) T(t)
x/(; y(a)i (a)daG(i(O,t) T*)

pé
Mo + 6

X/o y(a)i (u)daG(

4Py /0 Y (@)a(a) da /0 v(0)1(0) 6

i#(0) T(t))

i(0,t) T* (631

The function G(x) = x—1—Inx > 0 forallx > 0 and G(x) = 0 holds iffx = 1. Hence, V;(£) < 0
holds if %, > 1. It is readily seen from (6.31) that V;(¢) = 0 if and only if

o i(a,)T* S(t) i(a,t) €"(0)
SO=5" FoTo~ " T @00 63
T(£) €*(0) ., e(0,t) i*(0) #(0) T() '
T* e(0,t) e*(6) i(0,8) i0,8) T

for all 6 > 0,4 > 0. It is easy to verify that the largest invariant subset of {V}(£) = 0} is
the singleton E*. By Theorem 4.1, we see that if %, > 1, E* is locally asymptotically stable.
Therefore, using LaSalle’s invariance principle, we see that if Z, > 1, the global asymptotic

stability of E* follows. This completes the proof. O

7 Discussion

In this work, a tuberculosis infection model with incomplete treatment and age structure
for latently infected and infectious individuals has been investigated. By calculations, the
basic reproduction number has been established. A complete mathematical analysis has
been performed to show that the global dynamics of system (1.4) with boundary condi-
tions (1.5) is completely determined by the basic reproduction number. By constructing
suitable Lyapunov functionals and using LaSalle’s invariance principle, it has been shown
that if the basic reproduction number is less than unity, the disease-free steady state is
globally asymptotically stable and the disease dies out; if the basic reproduction number
is greater than unity, the endemic steady state is globally asymptotically stable and the dis-
ease persists. The global stability of the endemic steady state rules out any possibility for
the existence of Hopf bifurcations and sustained oscillations in system (1.4).

From the expression of %, we see that the recruitment rate A, the per-capita natu-
ral death rate p, the rate § at which a treated individual leaves the treated compartment,
the death rate u, of the treated individuals, the transmission rate S(a) of the infectious
individuals, the proportion p of the newly infected to develop tuberculosis directly, the
proportion 1 — p of the newly infected to enter the latent class, the rate v(f) at which
individuals who have been in the exposed compartment for duration 6, progress to the in-
fectious compartment, the remove rate u;(a) of infectious compartment and the recovery
rate y(a) do affect the value of the basic reproduction number. To control the disease, a
strategy should reduce the basic reproduction number to below unity. From the expres-
sion of the basic reproduction number, deceasing the recruitment rate, the transmission
rate of the infectious individuals and the rate of a treated individual leaving the treated
compartment and increasing the per-capita natural death rate and the death rate of the
treated individuals are helpful in controlling measles by decreasing the basic reproduc-

tion number.
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