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Abstract
In this paper, we introduce a newmetric space to study the existence and uniqueness
of solutions to second order fuzzy dynamic equations on time scales. In this regard,
we use Banach’s fixed point theorem to prove this result. Also, we see that this metric
guarantees an elegant and easier proof for the existence of solutions to second order
fuzzy dynamic equations on time scales.
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1 Introduction
Recently, one of the most interesting and significant discussions in the field of differential
equations is dynamic equations on time scales. The valuable applications of these equa-
tions in control theory, mathematical economics, mathematical biology, engineering and
technology have made it more impressive, see [–].

The theory of dynamic equations and the essential concepts in the calculus of time scales
were introduced by Bernd Aulbach and Stefan Hilger []. The dynamic systems on time
scales have gained impetus since they demonstrate the interplay of two different theories,
namely, the theories of continuous and discrete dynamic systems.

So far, many research papers have been done to investigate the existence of solutions for
first and second order, boundary value and other types of dynamic equations, see [–].

Authors in [] presented the definitions of delta derivative and delta integral for fuzzy-
valued functions. So, as the second step, it is natural to investigate the existence and
uniqueness of solutions to fuzzy dynamic equations on time scales. The main aim of this
paper is to prove the existence and uniqueness of solutions to second order fuzzy dynamic
equations on time scales, and we put off discussing this problem to Section . Before that,
we introduce a new metric on the set of the fuzzy continuous functions on time scales and
use it to define another new metric space.

This work is generalized as follows: Section  contains a brief summary of the theory
of fuzzy sets and calculus of time scales. Section  deals with the fuzzy calculus on time
scales. Then in Section  we restrict our attention to two new metric spaces. Finally in the
last section the main results are stated and proved.
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2 Preliminaries
In this section, we give some definitions and introduce necessary notations which will be
used throughout the paper.

Definition . ([, ]) Let X be a nonempty set. A fuzzy set u in X is characterized by its
membership function u : X → [, ]. Then u(x) is interpreted as the degree of membership
of an element x in the fuzzy set u for each x ∈ X.

Let us denote by RF the class of fuzzy subsets of the real axis (i.e., u : R→ [, ]), satis-
fying the following properties:

(i) u is normal, i.e., there exists x ∈R with u(x) = ;
(ii) u is fuzzy-convex set (i.e., u(tx + ( – t)y) ≥ min{u(x), u(y)}, ∀t ∈ [, ], x, y ∈R);

(iii) u is upper semicontinuous on R;
(iv) cl{x ∈R; u(x) > } is compact, where cl denotes the closure of a subset.

Then RF is called the space of fuzzy numbers. Obviously, R⊂RF . Here R ⊂RF is under-
stood as R = {χ{x}; x is a usual real number}. For  < α ≤ , denote [u]α = {x ∈ R; u(x) ≥ α}
and [u] = cl{x ∈R; u(x) > }.

Using the definition of fuzzy numbers, it follows that for any α ∈ [, ], [u]α is a bounded
closed interval. The notation [u]α = [uα , uα] denotes explicitly the α-level set of u. We refer
to u and u as the lower and upper branches on u, respectively.

For u, v ∈RF and λ ∈R, the sum u+v and the product λ ·u are defined by [u+v]α = [u]α +
[v]α , [λ · u]α = λ[u]α , ∀α ∈ [, ], where [u]α + [v]α = {x + y : x ∈ [u]α , y ∈ [v]α} means the
usual addition of two intervals of R and λ[u]α = {λ · x : x ∈ [u]α} means the usual product
between a scalar and a subset of R.

Let D : RF ×RF → R
+ ∪ {}, D(u, v) = supα∈[,] max{|uα – vα|, |uα – vα|}, be the Haus-

dorff distance between fuzzy numbers, where [u]α = [uα , uα], [v]α = [vα , vα].
The following properties are well known, see [–]:
- D(u + w, v + w) = D(u, v), ∀u, v, w ∈RF ,
- D(k · u, k · v) = |k|D(u, v), ∀k ∈R, u, v ∈RF

- D(u + v, w + e) ≤ D(u, w) + D(v, e), ∀u, v, w, e ∈RF ,
- D(u 	 w, u 	 v) = D(w, v), ∀u, v, w ∈RF ,

and (RF , D) is a complete metric space. Also we define for each x, y ∈ C(I,RF ), D(x, y) =
supt∈I D(x(t), y(t)), where C(I,RF ) is a set of all fuzzy continuous functions on I .

Theorem . ([])
(i) If we denote ̃ = χ{}, then ̃ ∈RF is the neutral element with respect to +, i.e.,

u + ̃ = ̃ + u = u, for all u ∈ RF ;
(ii) For any a, b ∈ R with a, b ≤  or a, b ≥  and any u ∈ RF , we have

(a + b) · u = a · u + b · u; for general a, b ∈ R, the above property does not hold;
(iii) For any λ ∈R and any u, v ∈RF , we have λ · (u + v) = λ · u + λ · v;
(iv) For any λ,μ ∈R and any u ∈RF , we have λ · (μ · u) = (λμ) · u.

Definition . ([, ]) Let x, y ∈ RF . If there exists z ∈ RF such that x = y + z, then z is
called the H-difference of x and y and it is denoted by x 	 y.
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Definition . ([, ]) Given u, v ∈ RF , the gH-difference is the fuzzy number w, if it
exists, such that

u 	gH v = w ⇔
⎧
⎨

⎩

(i) u = v + w

or (ii) v = u + (–) · w.
()

If u 	gH v exists, its α cuts are given by

[u 	gH v]α =
[
min

{
uα – vα , uα – vα

}
, max

{
uα – vα , uα – vα

}]

and u 	 v = u 	gH v if u 	 v exists. If (i) and (ii) are satisfied simultaneously, then w is a
crisp number.

Remark . ([, ]) In the fuzzy case, it is possible that the gH-difference of two fuzzy
numbers does not exist. If u 	gH v exists, then v 	gH u exists and v 	gH u = –(u 	gH v).

Proposition . [, ] Let u, v ∈RF be two fuzzy numbers; then
(i) if the gH-difference exists, it is unique;

(ii) u 	gH v = u 	 v or u 	gH v = –(u 	 v) whenever the expressions on the right exist; in
particular, u 	gH u = u 	 u = ̃;

(iii) if u 	gH v exists in the sense (i), then v 	gH u exists in the sense (ii) and vice versa;
(iv) (u + v) 	gH v = u;
(v) ̃ 	gH (u 	gH v) = v 	gH u;

(vi) u 	gH v = v 	gH u = w if and only if w = –w; furthermore, w = ̃ if and only if u = v.

Definition . ([]) A time scale T is a nonempty, closed subset of R, equipped with the
topology induced from the standard topology on R.

Definition . ([]) The forward (backward) jump operator σ (t) at t for t < supT (respec-
tively ρ(t) at t for t > infT) is given by

σ (t) = inf{τ > t : τ ∈ T} (
ρ(t) = sup{τ < t : τ ∈ T}) for all t ∈ T. ()

Additionally, σ (supT) = supT if supT < ∞, and ρ(infT) = infT if infT > –∞. Further-
more, the graininess function μ : T → R

+ is defined by μ(t) = σ (t) – t, and also the left-
graininess function ν : T →R

+ is defined by ν(t) = t – ρ(t).

Definition . ([]) If σ (t) > t, then the point t is called right-scattered; while if ρ(t) < t,
then t is termed left-scattered. If t < supT and σ (t) = t, then the point t is called right-dense;
while if t > infT and ρ(t) = t, then we say that t is left-dense.

Definition . A mapping f : T →RF is rd-continuous if it is continuous at each right-
dense point and its left-side limits exist (finite) at left-dense points in T. We denote the set
of rd-continuous functions from T to RF by Crd[T,RF ].

Definition . ([]) Fix t ∈ T and f : T →R. Define f 	(t) to be the real number (provided
it exists) with the property that given ε >  there is a neighborhood UT of t (i.e., UT =
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(t – δ, t + δ) ∩T) such that

∣
∣
(
f
(
σ (t)

)
– f (s)

)
– f 	(t)

(
σ (t) – s

)∣
∣ ≤ ε

∣
∣σ (t) – s

∣
∣

for all s ∈ UT. f 	(t) is called the 	-derivative of f at t.

Definition . ([]) We say that a function f : T→R is right-increasing at a point t ∈
T \ {minT} provided

(i) if t is right-scattered, then f (t) < f (σ (t));
(ii) if t is right-dense, then there is a neighborhood UT = (t – δ, t + δ) ∩T of t such

that

f (t) > f (t) for all t ∈ UT with t > t.

Similarly, we say that f is right-decreasing if above in (i), f (σ (t)) < f (t) and in (ii), f (t) <
f (t).

Theorem . ([]) Suppose f : T → R is differentiable at t ∈ T \ {minT}. If f 	(t) > ,
then f is right-increasing at the point t. If f 	(t) < , then f is right-decreasing at the point
t.

Here, we review some properties of the exponential function on time scales. For more
details, we refer to Definition . [].

A function p : T→ R is called regressive if  + μ(t)p(t) =  for all t ∈ T, and the function
p is called positively regressive if  + μ(t)p(t) >  for all t ∈ T. If p : T → R is a regressive
function and t ∈ T, then (see Theorem . []) the exponential function ep(·, t) is the
unique solution of the initial value problem

y	(t) = p(t)y(t), y(t) = .

The following properties of the exponential function will be used in the last section.
(i) e(t, s) = , ep(t, t) = ;

(ii) ep(σ (t), s) = [ + μ(t)p(t)]ep(t, s);
(iii) ep(t, r)ep(r, s) = ep(t, s);
(iv) ep(t, s) = 

ep(s,t) ;
(v) e	

p (t, t) = p(t)ep(t, t).
The set Tk is defined to be T\ {m} if T has a left-scattered maximum m, otherwise Tk = T.

3 Fuzzy delta derivative and integral on time scales
Definition . ([]) Assume that f : T → RF is a fuzzy function, and let t ∈ T

k . Then f
is said to be right fuzzy delta differentiable at t if there exists an element 	+

Hf (t) of RF

with the property that given any ε > , there exists a neighborhood UT of t [i.e., UT =
(t – δ, t + δ) ∩T for some δ >  such that for all t + h ∈ UT

D
[
f (t + h) 	gH f

(
σ (t)

)
,	+

Hf (t)
(
h – μ(t)

)] ≤ ε
(
h – μ(t)

)
,

with  ≤ h < δ.
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Definition . ([]) Assume that f : T →RF is a fuzzy function, and let t ∈ T
k . Then f is

said to be left fuzzy delta differentiable at t if there exists an element 	–
Hf (t) of RF with

the property that given any ε > , there exists a neighborhood UT of t such that for all
t – h ∈ UT

D
[
f
(
σ (t)

) 	gH f (t – h),	–
Hf (t)

(
h + μ(t)

)] ≤ ε
(
h + μ(t)

)
,

with  ≤ h < δ.

In the above definitions 	+
Hf (t) and 	–

H f (t) are termed, respectively, right fuzzy delta
derivative and left fuzzy delta derivative at t.

Definition . ([]) Let f : T → RF be a fuzzy function and t ∈ T
k . Then f is said to be

	-Hukuhara differentiable at t if f is both left and right fuzzy delta differentiable at t ∈ T
k

and 	+
H f (t) = 	–

Hf (t), and we will denote it by 	Hf (t).

We call 	Hf (t) the 	-Hukuhara derivative of f at t. We say that f is 	H -differentiable
at t if its 	H -derivative exists at t. Moreover, we say that f is 	H -differentiable on T

k if its
	H -derivative exists at each t ∈ T

k . The fuzzy function 	Hf : Tk →RF is then called the
	H -derivative of f on T

k .

Proposition . ([]) If the 	H -derivative of f at t exists, then it is unique. Hence, the
	H -derivative is well defined.

Lemma . ([]) Assume that f : T →RF is 	H -differentiable at t ∈ T
k , then f is contin-

uous at t.

Theorem . ([]) Assume that f : T →RF is a function, and let t ∈ T
k , then we have the

following:
(i) If f is continuous at t and t is right-scattered, then f is 	H -differentiable at t with

	Hf (t) =
f (σ (t)) 	gH f (t)

μ(t)
; ()

(ii) If t is right-dense, then f is 	H -differentiable at t iff the limits

lim
h→+

f (t + h) 	gH f (t)
h

and lim
h→+

f (t) 	gH f (t – h)
h

exist and satisfy in this case

lim
h→+

f (t + h) 	gH f (t)
h

= lim
h→+

f (t) 	gH f (t – h)
h

= 	Hf (t). ()

Lemma . ([]) If f is 	H -differentiable at t ∈ T
k , then f (σ (t)) = f (t) + μ(t)	Hf (t) or

f (t) = f (σ (t)) + (–)μ(t)	Hf (t).

Remark . Assume that f is 	H -differentiable, we say that f is 	H -differentiable in the
sense (i) or (i)	H -differentiable if, in the definition of 	H -derivative, gH-difference is equiv-
alent to H-difference, and we say that f is 	H -differentiable in the sense (ii) or (ii)	H -
differentiable if gH-difference is equivalent to another case.
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Definition . Let f : T→RF and t ∈ T. We define the second order fuzzy delta deriva-
tive of f as follows: We say that f is fuzzy delta differentiable of the second order at t if there
exist elements 	H f (t) and 	

Hf (t) such that given any ε > , there exists a neighborhood
UT of t [i.e., UT = (t – δ, t + δ) ∩T] for some δ >  such that for all t + h ∈ UT

D
[
	H f (t + h) 	gH 	Hf

(
σ (t)

)
,	

Hf (t)
(
h – μ(t)

)] ≤ ε
(
h – μ(t)

)
,

with  ≤ h < δ, and

D
[
f
(
σ (t)

) 	gH f (t – h),	
Hf (t)

(
h + μ(t)

)] ≤ ε
(
h + μ(t)

)
,

with  ≤ h < δ, where 	
H (·) = 	H (	H (·)).

In fact, the second fuzzy delta derivative, or second order fuzzy delta derivative, is the
fuzzy delta derivative of the fuzzy delta derivative of fuzzy function on time scales that we
denote by 	

Hf (t). Higher fuzzy delta derivative can also be defined.

Lemma . If f , g : T → RF are 	H -differentiable at t ∈ T
k , in the same case of 	H -

differentiability (both are (i)	H -differentiable or (ii)	H -differentiable), then f + g : T →
RF is also 	H -differentiable at t and

	H (f + g)(t) = 	H f (t) + 	Hg(t). ()

Proof It can be easily proved using Theorem .. �

Lemma . If f : T → RF is 	H -differentiable at t ∈ T
k , then for any nonnegative con-

stant λ ∈ R, λf : T →RF is 	H -differentiable at t with

	H (λf )(t) = λ	Hf (t).

Proof It follows easily from Theorem .. �

Now, we present the definition of integral on time scales and give some properties of
integrals on time scales for fuzzy-valued functions. Let T be a time scale, a < b be points
in T, and [a, b]T be the closed (and bounded) interval in T. A partition of [a, b]T is any
finite ordered subset

P = {t, t, . . . , tn} ⊂ [a, b]T, where a = t < t < · · · < tn = b.

The number n depends on the particular partition, so we have n = n(P). The intervals
[ti–, ti) for  ≤ i ≤ n are called the subintervals of the partition P. We denote the set of all
partitions of [a, b]T by P = P(a, b).

Lemma . ([]) For each δ > , there exists a partition P ∈P(a, b) given by a = t < t <
· · · < tn = b such that for each i ∈ {, , . . . , n} either

ti – ti– < δ
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or

ti – ti– > δ and ρ(ti) = ti–.

Definition . ([]) A function f : [a, b]T → RF is called Riemann 	-integrable on
[a, b]T if there exists IR ∈ RF , with the property ∀ε > , ∃δ > , such that for any divi-
sion of [a, b]T, d : a = x < · · · < xn = b with xi ∈ [a, b]T, and for any points ξi ∈ [xi, xi+)T,
i = , n – , we have

D

[ n–∑

i=

f (ξi).(xi+ – xi), IR

]

< ε.

Then we denote by IR =
∫ b

a f (x)	x the fuzzy Riemann 	-integral.

Definition . ([]) Let f : [, t]T → RF . We define levelwise the 	-integral of f in
[, t]T (denoted by

∫

[,t]T
f (t)	t or

∫ t
 f (t)	t) as the set of the integrals of the measur-

able selections for [f ]α , for each α ∈ (, ]. We say that f is 	-integrable over [, t]T if
∫

[,t]T
f (t)	t ∈RF , and we have

[∫ t


f (t)	t

]α

=
[∫ t


f α(t)	t,

∫ t


f α(t)	t

]

()

for each α ∈ (, ].

Theorem . If f , g : [a, b]T →RF are 	-integrable on [a, b]T, then αf +βg , where α,β ∈
R is 	-integrable on [a, b]T and

∫ b

a

(
αf (t) + βg(t)

)
	t = α

(∫ b

a
f (t)	t

)

+ β

(∫ b

a
g(t)	t

)

. ()

Proof It easily follows from Definition .. �

Theorem . If f : [a, b]T → RF is 	H -differentiable on [a, b]T and a ∈ T, then 	Hf (t)
is 	-integrable over [a, b]T and

f (s) = f (a) +
∫ s

a
	H f (t)	t,

or

f (a) = f (s) + (–)
∫ s

a
	Hf (t)	t,

for any s ∈ [a, b]T.

Proof By setting the functions δL and δR defined in Definition  [] as the same constant
functions, the proof immediately follows from Theorem  []. �
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Theorem . Let f ∈ Crd[T,RF ], and let t ∈ T. Then f is 	-integrable from t to σ (t) and

∫ σ (t)

t
f (s)	s = μ(t)f (t). ()

4 New metric space
Now, we are ready to define a new metric for the fuzzy continuous functions on time
scales.

Definition . Let D denote the Hausdorff metric on the space RF . Let γ >  be a con-
stant. We define the space of all fuzzy continuous functions on time scales C([t, t +
a]T;RF ) along with γ -metric dγ (x, y) which is defined as

dγ (x, y) := sup
t∈[t,t+a]T

D(x(t), y(t))
eγ (t, t)

()

for all t ∈ [t, t + a]T and x, y ∈ C([t, t + a]T;RF );

Also, since e(t, s) ≡ , so d is defined as

d(x, y) := sup
t∈[t,t+a]T

D
(
x(t), y(t)

)
()

for all t ∈ [t, t + a]T and x, y ∈ C([t, t + a]T;RF ), that is the same Hausdorff metric on a
fuzzy continuous functions space.

In addition, we consider

‖x‖γ := sup
t∈[t,t+a]T

D(x(t), ̃)
eγ (t, t)

for all t ∈ [t, t + a]T and x ∈ C([t, t + a]T;RF ). Also, ‖x‖ is defined as

‖x‖ := sup
t∈[t,t+a]T

D
(
x(t), ̃

)
,

the dγ map is a new generalization of Bielecki’s metric in []. The following two lemmas
describe some important properties of dγ and ‖ · ‖γ .

Lemma . If γ >  is constant then:
(i) dγ is a metric and it is equivalent to the sup-metric d;

(ii) (C([t, t + a]T;RF ), dγ ) is a complete metric space.

Proof We note that γ ∈ Crd([t, t + a]T;RF ) as any constant function is always rd-
continuous. Since μ(t) ≥ , we have +μ(t)γ >  for all t ∈ [t, t +a]T. Hence, γ ∈ R+ (a set
of positive regressive functions and rd continuous) and eγ (t, t) >  for all t ∈ [t, t + a]T
(see []). It follows that for each x, y ∈ C([t, t + a]T;RF ) we have

(i) Since γ > , eγ (t, t) > , thus dγ ≥ . dγ (x, y) =  if and only if D(x, y) = , and we
know that D(x, y) =  if and only if x = y.

Since D is a metric, so dγ (x, y) = dγ (y, x).
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Also we have

dγ (x, z) = sup
t∈[t,t+a]T

D(x, z)
eγ (t, t)

≤ sup
t∈[t,t+a]T

D(x, y)
eγ (t, t)

+ sup
t∈[t,t+a]T

D(y, z)
eγ (t, t)

= dγ (x, y) + dγ (y, z).

We know that e	
γ (t, t) = γ eγ (t, t) > , then eγ (t, t) is right-increasing, so we have


eγ (t + a, t)

≤ 
eγ (t, t)

≤ ,

it follows


eγ (t + a, t)

d(x, y) ≤ dγ (x, y) ≤ d(x, y).

(ii) Now we show that (C([t, t + a]T,RF ), dγ ) is a complete metric space. We show that
every Cauchy sequence in (C([t, t + a]T,RF ), dγ ) converges to a function in C([t, t +
a]T,RF ). Let xi(t) be a Cauchy sequence in C([t, t + a]T;RF ). This means that for every
ε >  there is a positive integer Nε such that

D(xi(t), xj(t))
eγ (t, t)

< ε for all i, j > Nε , for all t ∈ [t, t + a]T.

Thus, according to part (i),

D
(
xi(t), xj(t)

)
< εeγ (t + a, t) for all i, j > Nε , for all t ∈ [t, t + a]T.

Since (C([t, t + a]T,RF ), d) is a complete metric space (see []), there exists x ∈
C([t, t + a]T,RF ) such that

lim
i→∞ D

(
xi(t), x(t)

)
=  for all t ∈ [t, t + a]T,

and as a result of (i), we have limi→∞ dγ (xi(t), x(t)) = . Hence the Cauchy sequence xi in
C([t, t +a]T,RF ) is convergent and the limit is a fuzzy continuous function on [t, t +a]T.
Thus (C([t, t + a]T;RF ), dγ ) is a complete metric space. �

Note that we show ‖ · ‖γ has properties similar to the properties of a norm in the usual
crisp sense, without being a norm. It is not a norm because C([a, b]T,RF ) is not a vector
space (see part (ii) of Theorem .) and, consequently, C([a, b]T,RF ) with ‖ · ‖γ is not a
normed space.

Lemma . The mapping ‖ · ‖γ : RF → [,∞) has the following properties:
(i) ‖x‖γ =  if and only if x = ;

(ii) ‖λ · x‖γ = |λ|‖x‖γ for all x ∈ C([t, t + a]T,RF ) and λ ∈ R;
(iii) ‖x + y‖γ ≤ ‖x‖γ + ‖y‖γ for all x, y ∈RF .
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Proof
(i) ‖ · ‖γ ≥  and it is obvious that ‖x‖γ =  if and only if x = .

(ii) for λ ∈R and x ∈ C([t, t + a]T;RF ),

‖λx‖γ = sup
t∈[t,t+a]T

D(λx(t), ̃)
eγ (t, t)

= |λ| sup
t∈[t,t+a]T

D(x(t), ̃)
eγ (t, t)

= |λ|‖x‖γ ,

and
(iii) for x, y ∈ C([t, t + a]T;RF ),

‖x + y‖γ = sup
t∈[t,t+a]T

D((x + y)(t), ̃)
eγ (t, t)

≤ sup
t∈[t,t+a]T

D(x(t), ̃)
eγ (t, t)

+ sup
t∈[t,t+a]T

D(y(t), ̃)
eγ (t, t)

= ‖x‖γ + ‖y‖γ .
�

So far we have proved that C([t, t + a]T;RF ) is a complete metric space with the dis-
tance

dγ (x, y) = sup
t∈[t,t+a]T

D(x(t), y(t))
eγ (t, t)

.

Let C([t, t +a]T,RF ) denote the set of continuous functions x : [t, t +a]T →RF whose
derivative 	Hx : [t, t + a]T → RF exists as a continuous function. For x, y ∈ C([t, t +
a]T,RF ), consider the following distance:

d
γ (x, y) = dγ (x, y) + dγ (	Hx,	Hy).

It easily follows from part (i) of Lemma . that d
γ is also a metric.

Lemma . The couple (C([t, t + a]T;RF ), d
γ ) is a complete metric space.

Proof Let {xn}∞n= ⊂ C([t, t + a]T,RF ) be a Cauchy sequence in (C([t, t + a]T,RF ), d
γ ),

that is,

d
γ (xn, xm) = dγ (xn, xm) + dγ (	Hxn,	Hxm) → , n, m → ∞.

Then the sequences {xn}∞n= and {	Hx}∞n= are Cauchy sequences in (C([t, t +a]T,RF ), dγ ),
which is complete. Then there exist x, y ∈ C([t, t + a]T,RF ) such that {xn} → x and
{	Hxn} → y as n → +∞. We have to prove that x ∈ C([t, t + a]T,RF ) and that 	H x = y.
In this case,

d
γ (xn, x) = dγ (xn, x) + dγ (	Hxn,	Hx) = dγ (xn, x) + dγ (	Hxn, y) → , n → ∞,
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which proves that {xn} → x in (C([t, t + a]T,RF ), d
γ ) is a complete metric space. If

we check that x(t) = x(t) +
∫ t

t
y(s)	s, the continuity of y and application of Theorem 

[] provide that x ∈ C([t, t + a]T,RF ) and 	Hx = y. We will use that xn(t) = xn(t) +
∫ t

t
	Hxn(s)	s. Let ψ(t) = x(t) +

∫ t
t

y(s)	s, then

dγ (x,ψ) = sup
t∈[t,t+a]T

{D(x(t), x(t) +
∫ t

t
y(s)	s)

eγ (t, t)

}

≤ sup
t∈[t,t+a]T

{ (D(x(t), xn(t)) + D(xn(t), x(t) +
∫ t

t
y(s)	s))

eγ (t, t)

}

= sup
t∈[t,t+a]T

{ (D(x(t), xn(t)) + D(xn(t) +
∫ t

t
	Hxn(s)	s, x(t) +

∫ t
t

y(s)	s))
eγ (t, t)

}

≤ dγ (x, xn) + sup
t∈[t,t+a]T

{ (D(xn(t), x(t)) + D(
∫ t

t
	Hxn(s)	s,

∫ t
t

y(s)	s))
eγ (t, t)

}

≤ dγ (x, xn) + sup
t∈[t,t+a]T

{ (D(xn(t), x(t)) +
∫ t

t
D(	Hxn(s), y(s))	s))

eγ (t, t)

}

≤ dγ (x, xn) + sup
t∈[t,t+a]T

{ ( D(xn(t),x(t))
eγ (t,t) +

∫ t
t

D(	Hxn(s), y(s))	s))

eγ (t, t)

}

≤ dγ (x, xn) + sup
t∈[t,t+a]T

{
dγ (xn, x)
eγ (t, t)

+

∫ t
t

D(	H xn(s),y(s))eγ (s,t)
eγ (s,t) 	s

eγ (t, t)

}

≤ dγ (x, xn) + dγ (xn, x) + sup
t∈[t,t+a]T

{∫ t
t

D(	H xn(s),y(s))eγ (s,t)
eγ (s,t) 	s

eγ (t, t)

}

≤ dγ (x, xn) + dγ (xn, x) + sup
t∈[t,t+a]T

{∫ t
t

dγ (	Hxn, y)eγ (s, t)	s
eγ (t, t)

}

≤ dγ (x, xn) + dγ (xn, x) + sup
t∈[t,t+a]T

{

dγ (	Hxn, y)
eγ (t, t) – 
γ eγ (t, t)

}

= dγ (x, xn) + dγ (xn, x) +
dγ (	Hxn, y)

γ
sup

t∈[t,t+a]T

{

 –


eγ (t, t)

}

= dγ (x, xn) + dγ (xn, x) +
dγ (	Hxn, y)

γ

{

 –


eγ (t + a, t)

}

→ , n → ∞.

This proves that d(x,ψ) = , and therefore x(t) = ψ(t), t ∈ [t, t + a]T, or x(t) = x(t) +
∫ t

t
y(s) ds, t ∈ [t, t + a]T, and the complete character of C([t, t + a]T,RF ) is achieved. �

Before starting the main discussion, we give a definition that is necessary to continue.

Definition . Let T be a time scale. A function f : T×RF →RF is called
(i) rd-continuous if g defined by g(t) = f (t, x(t)) is rd-continuous for any continuous

function x : T→RF ;
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(ii) Lipschitz continuous with respect to the second variable on a set S ⊂ T×RF if
there exists a constant L >  such that

D
(
f (t, x), f (t, x)

) ≤ LD(x, x) for all (t, x), (t, x) ∈ S.

Consider the following fuzzy dynamic equations:

	Hx(t) = f
(
t, x(t)

)
, x(t) = x, t ∈ [t, t + a]T. ()

Lemma . For t ∈ T, the fuzzy dynamic equation 	Hx(t) = f (t, x(t)), x(t) = x ∈ RF ,
where f : T × RF → RF is rd-continuous, is equivalent to one of the following integral
equations:

⎧
⎪⎪⎨

⎪⎪⎩

x(t) = x +
∫ t

t
f (s, x(s))	s, t ∈ [t, t + a]T

or

x = x(t) + (–) · ∫ t
t

f (s, x(s))	s, t ∈ [t, t + a]T

()

on the interval [t, t + a]T, depending on the 	gH considered in the definition of delta
derivative, (i)	H or (ii)	H , respectively.

Proof Let us suppose that x is a solution of the fuzzy dynamic equation 	Hx(t) = f (t, x(t)),
x(t) = x ∈ RF . Then, by integration, we get

∫ t

t

	Hx(s)	s =
∫ t

t

f
(
s, x(s)

)
	s.

So,

⎧
⎪⎪⎨

⎪⎪⎩

x(t) = x +
∫ t

t
f (s, x(s))	s,

or

x = x(t) + (–) · ∫ t
t

f (s, x(s))	s,

where in both cases we have a solution x of the 	H -integral equation.
In fact, a solution to the integral equations in () is a continuous function satisfying the

conditions in (). Now, if x is a solution to one of 	-integral equations (), we can write

x(t + h) = x +
∫ t+h

t

f
(
s, x(s)

)
	s

and

x
(
σ (t)

)
= x +

∫ σ (t)

t

f
(
s, x(s)

)
	s,

or

x(t + h) = x 	 (–) ·
∫ t+h

t

f
(
s, x(s)

)
	s,
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and

x
(
σ (t)

)
= x 	 (–) ·

∫ σ (t)

t

f
(
s, x(s)

)
	s.

Therefore, if t is a right-scattered point σ (t) > t

x(σ (t)) 	gH x(t)
μ(t)

=


μ(t)

∫ σ (t)

t
f
(
s, x(s)

)
	s.

Since
∫ σ (t)

t f (s)	s = μ(t)f (t), it follows

x(σ (t)) 	gH x(t)
μ(t)

= f
(
t, x(t)

)
.

And if t is a right-dense point σ (t) = t, we have (in the metric D)

lim
h→+

x(t + h) 	gH x(t)
h

= lim
h→+


h

∫ t+h

t
f
(
s, x(s)

)
	s,

and we observe that

D
[∫ t+h

t
f
(
s, x(s)

)
	s, hf

(
t, x(t)

)
]

= D
[∫ t+h

t
f
(
s, x(s)

)
	s,

∫ t+h

t
f
(
t, x(t)

)
	s

]

≤
∫ t+h

t
D

(
f
(
s, x(s)

)
, f

(
t, x(t)

))
	s.

Since f is continuous at t (t is right-dense), it follows that for each ε >  there exists a
neighborhood UT such that for each s ∈ UT, D(f (t, x(t)), f (s, x(s))) < ε. Hence, by taking
limit as h → +, we have

lim
h→+


h

∫ t+h

t
f
(
s, x(s)

)
	s = f

(
t, x(t)

)
, in the metric D,

therefore

lim
h→+

D
[

x(t + h) 	gH x(t)
h

, f
(
t, x(t)

)
]

= .

Similarly, the left fuzzy delta derivative of f in t is f (t, x(t)). This means that x is a solution
to the fuzzy dynamic equation 	Hx(t) = f (t, x(t)). �

From the proof of Lemma ., it is deduced that from the first expression in () we have
a (i)	H differentiable solution and from the second expression in () we have a (ii)	H -
differentiable solution. Based on Lemma ., every first order fuzzy dynamic equation
on time scales can be equivalent by one of two integral equations (), so we have the
following theorem for second order fuzzy dynamic equations.



Fard and Bidgoli Advances in Difference Equations  (2017) 2017:231 Page 14 of 17

Consider the following second order fuzzy dynamic equations:

	
Hx = f (t, x,	Hx), x(t) = k, 	H x(t) = k, ()

where k, k ∈ RF .

Theorem . Assume that f : [t, t + a]T → RF is rd-continuous. A mapping x : [t, t +
a] → RF is a solution to initial value problem () if and only if x and 	Hx are continuous
and satisfy one of the following integral equations:

(i) x(t) = k(t – t) +
∫ t

t
(
∫ z

t
f (s, x(s),	Hx(s))	s)	z + k, where 	Hx and 	

Hx are
(i)	H -differentials, or

(ii) x(t) = 	(–)(k(t – t) 	 (–)
∫ t

t
(
∫ z

t
f (s, x(s),	Hx(s))	s)	z) + k, where 	Hx and

	
Hx are (ii)	H -differentials, or

(iii) x(t) = 	(–)(k(t – t) +
∫ t

t
(
∫ z

t
f (s, x(s),	Hx(s))	s)	z) + k, where 	Hx is (i)	H

differential and 	
Hx is (ii)	H -differential, or

(iv) x(t) = k(t – t) 	 (–)
∫ t

t
(
∫ z

t
f (s, x(s),	Hx(s))	s)	z + k, where 	Hx is (ii)	H

differential and 	
Hx is (ii)	H -differential.

Proof It can be proved easily using Lemma .. �

Theorem . Let f : [t, t + a]T ×RF ×RF →RF be continuous, and suppose that there
exist L, L >  such that

D
(
f (t, x, x), f (t, y, y)

) ≤ LD(x, y) + LD(x, y)

for all t ∈ [t, t + a]T, x, x, y, y ∈ RF . Then the initial value problem () has a unique
solution on [t, t + a]T for each case.

Proof We only prove it for case (ii) of Theorem ., the proofs for other cases are similar.
Now, consider the following operator:

(Tx)(t) = 	(–)
(

k(t – t) 	 (–)
∫ t

t

(∫ z

t

f
(
x, x(s),	Hx

)
	s

)

	z
)

+ k. ()

Also note that

(
	HT(x)

)
(t) = k 	 (–)

∫ t

t

f
(
s, x(s),	Hx(s)

)
	s. ()

Now we will show that by choosing a big enough value γ , T map is a contraction, so
Banach’s fixed point theorem provides the existence of a unique fixed point for T , that is,
a unique solution for () in case (ii).

d
γ (Tx, Ty)

= dγ (Tx, Ty) + dγ

(
	H (Tx),	H (Ty)

)

= sup
t∈[t,t+a]T

{


eγ (t, t)
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× D
(

k 	 (–)
(

k(t – t) 	 (–)
∫ t

t

(∫ z

t

f
(
s, x(s),	Hx(s)

)
	s

)

	z
)

,

k 	 (–)
(

k(t – t) 	 (–)
∫ t

t

(∫ z

t

f
(
s, y(s),	Hy(s)

)
	s

)

	z
))}

+ sup
t∈[t,t+a]T

{


eγ (t, t)
D

(

k 	 (–)
∫ t

t

f
(
s, x(s),	Hx(s)

)
	s,

k 	 (–)
∫ t

t

f
(
s, y(s),	Hy(s)

)
	s

)}

= sup
t∈[t,t+a]T

{


eγ (t, t)
D

(

(–)
(

k(t – t) 	 (–)
∫ t

t

(∫ z

t

f
(
s, x(s),	Hx(s)

)
	s

)

	z
)

,

(–)
(

k(t – t) 	 (–)
∫ t

t

(∫ z

t

f
(
s, y(s),	Hy(s)

)
	s

)

	z
))}

+ sup
t∈[t,t+a]T

{


eγ (t, t)
D

(∫ t

t

f
(
s, x(s),	Hx(s)

)
	s,

∫ t

t

f
(
s, y(s),	Hy(s)

)
	s

)}

= sup
t∈[t,t+a]T

{


eγ (t, t)
D

((∫ t

t

(∫ z

t

f
(
s, x(s),	Hx(s)

)
	s

)

	z
)

,

(∫ t

t

(∫ z

t

f
(
s, y(s),	Hy(s)

)
	s

)

	z
))}

+ sup
t∈[t,t+a]T

{


eγ (t, t)
D

(∫ t

t

f
(
s, x(s),	Hx(s)

)
	s,

∫ t

t

f
(
s, y(s),	Hy(s)

)
	s

)}

≤ sup
t∈[t,t+a]T

{


eγ (t, t)

(∫ t

t

(∫ z

t

D
(
f
(
s, x(s),	Hx(s)

)
, f

(
s, y(s),	Hy(s)

))
	s

)

	z
)}

+ sup
t∈[t,t+a]T

{


eγ (t, t)

(∫ t

t

D
(
f
(
s, x(s),	Hx(s)

)
, f

(
s, y(s),	Hy(s)

))
	s

)}

≤ sup
t∈[t,t+a]T

{


eγ (t, t)

(∫ t

t

(∫ z

t

(
LD

(
x(s), y(s)

)
+ LD

(
	Hx(s),	Hy(s)

))
	s

)

	z
)}

+ sup
t∈[t,t+a]T

{


eγ (t, t)

(∫ t

t

(
LD

(
x(s), y(s)

)
+ LD

(
	H x(s),	Hy(s)

))
	s

)}

≤ sup
t∈[t,t+a]T

{


eγ (t, t)

×
(∫ t

t

(∫ z

t

(
Ldγ

(
x(s), y(s)

)
+ Ldγ (	H x,	Hy)

)
eγ (s, t)	s

)

	z
)}

+ sup
t∈[t,t+a]T

{


eγ (t, t)

(∫ t

t

(
Ldγ (x, y) + Ldγ (	Hx,	Hy)

)
eγ (s, t)	s

)}

=
(
Ldγ (x, y) + Ldγ (	Hx,	Hy)

)
(

sup
t∈[t,t+a]T

{


eγ (t, t)

(∫ t

t

(∫ z

t

eγ (s, t)	s
)

	z
)}

+ sup
t∈[t,t+a]T

{


eγ (t, t)

(∫ t

t

eγ (s, t)	s
)})

=
(
Ldγ (x, y) + Ldγ (	Hx,	Hy)

)
(

sup
t∈[t,t+a]T

{


eγ (t, t)

(∫ t

t

(
eγ (z, t) – 

γ

)

	z
)}



Fard and Bidgoli Advances in Difference Equations  (2017) 2017:231 Page 16 of 17

+ sup
t∈[t,t+a]T

{
eγ (t, t) – 
γ eγ (t, t)

})

=
(
Ldγ (x, y) + Ldγ (	Hx,	Hy)

)
(

sup
t∈[t,t+a]T

{


γ eγ (t, t)

(
eγ (t, t) – 

γ
– (t – t)

)}

+ sup
t∈[t,t+a]T

{
eγ (t, t) – 
γ eγ (t, t)

})

=
(
Ldγ (x, y) + Ldγ (	Hx,	Hy)

)
(

sup
t∈[t,t+a]T

{


γ eγ (t, t)
(
eγ (t, t) –  – γ (t – t)

)
}

+ sup
t∈[t,t+a]T

{

γ

(

 –


eγ (t, t)

)})

.

Since ( 
γ eγ (t,t) (eγ (t, t) –  – γ (t – t)))	 = t–t

eγ (σ (t),t) >  and ( 
γ

( – 
eγ (t,t) ))	 = 

eγ (σ (t),t) > ,
hence the suprema of two sets above is attained at point t + a. Therefore,

d
γ (Tx, Ty)

≤ max{L, L}d
γ (x, y)

(


γ eγ (t + a, t)
(
eγ (t + a, t) –  – γ (a)

)

+

γ

(

 –


eγ (t + a, t)

))

,

according to

lim
γ→∞

(


γ eγ (t + a, t)
(
eγ (t + a, t) –  – γ (a)

)
+


γ

(

 –


eγ (t + a, t)

))

→ , ()

we can choose γ >  such that

max{L, L}
(


γ eγ (t + a, t)

(
eγ (t + a, t) –  – γ (a)

)
+


γ

(

 –


eγ (t + a, t)

))

< 

thus T is a contractive mapping. �

5 Conclusion
In this paper, we introduced the second order fuzzy dynamic equations on time scales
and defined a new metric. We proved the existence and uniqueness of solutions to first
order fuzzy dynamic equations on time scales in []. But in this work we proved the
existence and uniqueness of solutions to second order fuzzy dynamic equations on time
scales. Although we apply this method for fuzzy dynamic equations, we can apply the
presented method for crisp ordinary differential equations.
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