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Abstract
By means of the theory of resolvent and Schauder’s fixed point, the existence results
of semilinear composite fractional relaxation systems are acquired. Then the new
approach of setting up minimizing sequences twice is used to derive the optimal
pairs without Lipschitz assumptions on nonlinear functions and nonlocal items.
Moreover, the reflexivity of a state space X is not required by making full use of the
compact method. Our results essentially improve and generalize those on optimal
controls in recent literature.
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1 Introduction
Let X be a Banach space and Y be a separable reflexive Banach space. The paper is devoted
to investigating the Lagrange optimal controls and the time optimal controls subjected to
the following fractional semilinear composite relaxation system:

⎧
⎪⎪⎨

⎪⎪⎩

y′(t) = ACDγ y(t) – y(t) + f (t, y(t)) + B(t)u(t), t ∈ [, c],

y() + m(y) = y ∈ X,

u ∈ Uad,

(.)

where  < γ < . y(t) ∈ X and u(t) ∈ Y . A : D(A) ⊆ X → X generate a resolvent family
{R–γ (t)}t≥. B ∈ L∞([, c],L(Y , X)). The admissible control set Uad and the functions f :
[, c] × X → X, m : C([, c], X) → X will be given later.

Fractional differential equations play a critical role in many fields, such as physics, en-
gineering, chemistry, etc., in which it is used as a tool of modeling many phenomena. So,
more and more researchers pay attention to it. We refer the readers to the monographs
[–], the recent papers [–] and the reference therein. Our motivation for studying the
fractional relaxation system comes from the existing work (see []) in which system (.)
without control item and with A being a positive constant is discussed. Especially, when
γ = /, the system is the classical Basset problem, which is concerned with the unsteady
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accelerating in a viscous fluid for gravitational force. Numerical analysis of the fractional
relaxation system is carried out in [–].

In recent decades, in spite of many research works on the optimal control problems gov-
erned by fractional differential systems in infinite dimension Banach spaces, it has been
well recognized that most of the existing results on optimal controls are obtained under
the following two conditions. One is that the mild solution of the corresponding system ex-
ists uniquely, and then the Lipschitz continuity of nonlinear functions and nonlocal items
is required. The other is that both of the spaces X and Y are reflexive in time optimal prob-
lems. We refer the readers to the recent papers [, –] and the references therein.

It is our intention to deal with the solvability of system (.) by using the properties
of resolvent developed by Fan []. Meanwhile, Lagrange optimal control problems and
time optimal control problems governed by system (.) are studied. Two contributions
are made here. One is that we remove the Lipschitz continuity of nonlinear function f
and nonlocal item m without imposing any other conditions. Inspired by Zhu and Huang
[], we derive the optimal pairs by utilizing the new technique of setting up minimizing
sequences twice. The other is that we make full use of the compactness of resolvent to
compensate the lack of reflexivity of X, and the conclusion about time optimal controls
also holds here. Hence, our results essentially improve the related results on this topic.

The present paper is built up as follows. The basic definitions and assumptions which
will be used throughout the paper are presented in Section . We establish the solvability of
system (.) in Section . Lagrange optimal control problems subjected to system (.) are
investigated in Section . Time optimal control problems governed by (.) are presented
in Section . We illustrate our results with an example in Section .

2 Preliminaries and basic assumptions
In this paper, let c >  be fixed and  < γ < . R and R

+ are the sets of real numbers and
nonnegative real numbers, respectively. The set of all continuous functions from [, c] to
the Banach space X with ‖y‖ = sup{‖y(t)‖, t ∈ [, c]} is denoted by C([, c], X), and the
set of all Bochner integrable functions from [, c] to the Banach space X with ‖f ‖Lp =
(
∫ c

 ‖f (t)‖p dt)/p is denoted by Lp([, c], X), where  ≤ p < ∞. Let L∞([, c], X) be the set of
all essentially bounded functions on [, c] with values in X and ‖f ‖∞ = esssup{‖f (t)‖, t ∈
[, c]}, and let L(X, Y ) be the space of all linear and continuous operators from X to Y with
the operator norm ‖ · ‖. L(X) respecting the space L(X, X).

Let f : [,∞) → X be an appropriate abstract function. The Caputo fractional order
derivative is defined by

CDγ f (t) =
∫ t


g–γ (t – τ )f ′(τ ) dτ ,

provided the right-hand side exists, where gγ (t) := tγ –

�(γ ) , t > .

Definition . An operator family {Rγ (t)}t≥ ⊂L(X) is called a resolvent generated by a
closed and linear operator A with the domain D(A) on X if it fulfills:

() Rγ (·)y ∈ C([,∞), X) for y ∈ X , and Rγ () = I ;
() Rγ (t)D(A) ⊂ D(A), and for all y ∈ D(A) and t ≥ , there holds that

ARγ (t)y = Rγ (t)Ay;
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() for all y ∈ D(A), t ≥ , the following resolvent equation holds:

Rγ (t)y = y +
∫ t


gγ (t – τ )ARγ (τ )y dτ .

By virtue of [], we can infer that the resolvent equation is satisfied for all y ∈ X. Now,
the mild solution of system (.) will be given below using the definition of resolvent and
Laplace transformation, and the details can be seen in [].

Definition . A function y ∈ C([, c], X) is said to be the mild solution of (.) if

y(t) = y – m(y) –
∫ t


R–γ (t – τ )y(τ ) dτ +

∫ t


R–γ (t – τ )

[
f
(
τ , y(τ )

)
+ B(τ )u(τ )

]
dτ

for each t ∈ [, c] and u ∈ Uad .

Let r >  be a real number, and Wr = {y ∈ C([, c], X) : ‖y‖ ≤ r}. The following assump-
tions will be used throughout the paper.

(HA) The resolvent {R–γ (t)}t> generated by A is compact and uniformly continuous,
and set M = supt∈[,c] ‖R–γ (t)‖.

(Hf )
() f (·, y) is measurable for all y ∈ X , and f (t, ·) is continuous for a.e. t ∈ [, c].
() there exists a function η ∈ L([, c],R+) with ‖η‖L([,c]) < 

M such that

∥
∥f (t, y) – y

∥
∥ ≤ η(t)

(
 + ‖y‖) (.)

for all y ∈ X .
(Hm) m is a continuous and compact operator on C([, c], X) with ‖m(y)‖ ≤ N for all

y ∈ C([, c], X) and some N > .
(HB) B ∈ L∞([, c],L(Y , X)), and ‖B‖∞ = MB.

The admissible control set is defined by

Uad := Sp
U =

{
u ∈ Lp([, c], Y

)
: u(t) ∈ U(t), a.e. t ∈ [, c]

}
,

where  < p < ∞, and the multivalued map U satisfies the condition (HU).
(HU) U : [, c] → Plv(Y ) (the set of all nonempty closed and convex subset of Y )

satisfies:
() U(·) is graph measurable;
() U([, c]) = {ν ∈ Y : ν ∈ U(t), t ∈ [, c]} ⊆ � for some bounded subset of � of

Y , that is, ‖U([, c])‖ = sup{ν ∈ U(t) : t ∈ [, c]} ≤ M̃ for some M̃ > .
In view of [], we can infer that (HU) implies that Uad �= ∅ and, clearly, Uad is bounded,

closed and convex, and Bu ∈ Lp([, c], X).

Remark . Let  < γ < . In view of Fan [], Lemma ., an analytic resolvent of ana-
lyticity type (ω, θ) is uniformly continuous for all t > .

The following property of resolvent plays an important role in this paper.
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Lemma . ([]) Let  < γ < . If (HA) is satisfied, then for each t >  there holds
() limh→+ ‖R–γ (t + h) – R–γ (t)R–γ (h)‖ = ;
() limh→+ ‖R–γ (t) – R–γ (h)R–γ (t – h)‖ = .

3 The solvability of system (1.1)
In this section, by making use of the compactness and uniform continuity of resolvent, the
mild solutions of system (.) are obtained without the Lipschitz continuity of f and m.
More importantly, no other conditions of f and m are applied.

Theorem . Let all the assumptions listed in Section  be fulfilled. Then, for every u ∈
Uad , system (.) possesses at least one mild solution.

Proof For each y ∈ X and u ∈ Uad , we define the solution operator G : C([, c], X) →
C([, c], X) as

Gy(t) = y – m(y) –
∫ t


R–γ (t – τ )y(τ ) dτ +

∫ t


R–γ (t – τ )

[
f
(
τ , y(τ )

)
+ B(τ )u(τ )

]
dτ .

It suffices to establish the existence of a fixed point of G. The proof will proceed in the
following steps.

Step . We show that G(Wr) ⊆ Wr with r >
‖y‖+N+M‖η‖L([,c])+MMB‖u‖L([,c])

–M‖η‖L([,c])
. In fact, for

every y ∈ Wr , we have

∥
∥Gy(t)

∥
∥ ≤ ‖y‖ + N + M‖η‖L([,c])( + r) + MMB‖u‖L([,c])

≤ r.

Step . We need to verify the continuity of G on C([, c], X). Let {yn}∞n= ⊆ C([, c], X) be
a sequence such that limn→∞ yn = y. Then

∥
∥Gyn(t) – Gy(t)

∥
∥ ≤ ∥

∥m(yn) – m(y)
∥
∥

+ M
∫ t



∥
∥yn(τ ) – y(τ )

∥
∥dτ + M

∫ t



∥
∥f

(
τ , yn(τ )

)
– f

(
τ , y(τ )

)∥
∥dτ .

It follows from (Hf), (Hm) and the dominated convergence theorem that

‖Gyn – Gy‖ → 

as n → ∞. This means that G is continuous.
Step . We establish the compactness of G. First, we show the equicontinuity of the set


 = {Gy : y ∈ Wr} in C([, c], X). For any  ≤ t < t ≤ c, y ∈ Wr and δ >  small enough, we
have

∥
∥Gy(t) – Gy(t)

∥
∥

≤
∥
∥
∥
∥

∫ t


R–γ (t – τ )

[
f
(
τ , y(τ )

)
– y(τ )

]
dτ –

∫ t


R–γ (t – τ )

[
f
(
τ , y(τ )

)
– y(τ )

]
dτ

∥
∥
∥
∥

+
∥
∥
∥
∥

∫ t


R–γ (t – τ )B(τ )u(τ ) dτ –

∫ t


R–γ (t – τ )B(τ )u(τ ) dτ

∥
∥
∥
∥
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≤
∫ t–δ



∥
∥R–γ (t – τ ) – R–γ (t – τ )

∥
∥
∥
∥f

(
τ , y(τ )

)
– y(τ )

∥
∥dτ

+
∫ t

t–δ

∥
∥R–γ (t – τ ) – R–γ (t – τ )

∥
∥
∥
∥f

(
τ , y(τ )

)
– y(τ )

∥
∥dτ

+
∫ t

t

∥
∥R–γ (t – τ )

(
f
(
τ , y(τ )

)
– y(τ )

)∥
∥dτ +

∫ t

t

∥
∥R–γ (t – τ )B(τ )u(τ )

∥
∥dτ

+
∫ t–δ



∥
∥R–γ (t – τ ) – R–γ (t – τ )

∥
∥
∥
∥B(τ )u(τ )

∥
∥dτ

+
∫ t

t–δ

∥
∥R–γ (t – τ ) – R–γ (t – τ )

∥
∥
∥
∥B(τ )u(τ )

∥
∥ds

≤ (
( + r)‖η‖L([,c]) + MB‖u‖L([,c])

)
sup

≤τ≤t–δ

∥
∥R–γ (t – τ ) – R–γ (t – τ )

∥
∥

+ M
(
( + r)‖η‖L([t–δ,t]) + MB‖u‖L([t–δ,t])

)

+ M
(
( + r)‖η‖L([t,t]) + MB‖u‖L([t,t])

)
.

In view of the arbitrariness of δ and the uniform continuity of R–γ (t), t > , one gets

lim
t→t

∥
∥Gy(t) – Gy(t)

∥
∥ = ,

uniformly for y ∈ Wr .
Then we verify the precompactness of the set 
(t) = {Gy(t) : y ∈ Wr} in X. Obviously,

the set 
() = {y – m(y) : y ∈ Wr} is relatively compact in X due to the compactness of m.
In the case of t ∈ (, b], for each  < ε < t

 small enough, we define the set 
ε(t) in X as
follows:


ε(t) =
{

Gεy(t) : y ∈ Wr
}

,

where

Gεy(t) = y – m(y) – R–γ (ε)
∫ t–ε


R–γ (t – ε – τ )y(τ ) dτ

+ R–γ (ε)
∫ t–ε


R–γ (t – ε – τ )

[
f
(
τ , y(τ )

)
+ B(τ )u(τ )

]
dτ .

One can deduce that 
ε(t) is relatively compact in X by virtue of the compactness of re-
solvent R–γ (ε) and the nonlocal item m. Moreover, for each y ∈ Wr , we have

∥
∥Gy(t) – Gεy(t)

∥
∥

≤
∥
∥
∥
∥

∫ t


R–γ (t – τ )

[
f
(
τ , y(τ )

)
– y(τ )

]
dτ

– R–γ (ε)
∫ t–ε


R–γ (t – ε – τ )

[
f
(
τ , y(τ )

)
– y(τ )

]
dτ

∥
∥
∥
∥

+
∥
∥
∥
∥

∫ t


R–γ (t – τ )B(τ )u(τ ) dτ – R–γ (ε)

∫ t–ε


R–γ (t – ε – τ )B(τ )u(τ ) dτ

∥
∥
∥
∥
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≤
∫ t–ε



∥
∥R–γ (t – τ ) – R–γ (ε)R–γ (t – ε – τ )

∥
∥
∥
∥f

(
τ , y(τ )

)
– y(τ )

∥
∥dτ

+
∫ t–ε

t–ε

∥
∥R–γ (t – τ ) – R–γ (ε)R–γ (t – ε – τ )

∥
∥
∥
∥f

(
τ , y(τ )

)
– y(τ )

∥
∥dτ

+
∫ t

t–ε

∥
∥R–γ (t – τ )

(
f
(
τ , y(τ )

)
– y(τ )

)∥
∥dτ +

∫ t

t–ε

∥
∥R–γ (t – τ )B(τ )u(τ )

∥
∥dτ

+
∫ t–ε



∥
∥R–γ (t – τ ) – R–γ (ε)R–γ (t – ε – τ )

∥
∥
∥
∥B(τ )u(τ )

∥
∥dτ

+
∫ t–ε

t–ε

∥
∥R–γ (t – τ ) – R–γ (ε)R–γ (t – ε – τ )

∥
∥
∥
∥B(τ )u(τ )

∥
∥dτ

≤ (‖η‖L([,c])( + r) + MB‖u‖L([,c])
)

× sup
≤τ≤t–ε

∥
∥R–γ (t – τ ) – R–γ (ε)R–γ (t – ε – τ )

∥
∥

+
(
M + M)(( + r)‖η‖L([t–ε,t–ε]) + MB‖u‖L([t–ε,t–ε])

)

+ M
(
( + r)‖η‖L([t–ε,t]) + MB‖u‖L([t–ε,t])

)
.

Exploiting Lemma . yields ‖Gy(t) – Gεy(t)‖ →  as ε → , that is, the set 
ε(t) is arbi-
trarily close to the set 
(t) for t > . This together with the precompactness of 
ε(t) gives
rise to the precompactness of 
(t) in X. Thanks to the Arzela-Ascoli theorem, one has
that the operator G is compact.

Now, applying Schauder’s fixed point theorem, one gets that G possesses at least one
fixed point in Wr , which is the mild solution of system (.). This completes the proof. �

Remark . The properties of resolvent (Lemma .) are of great importance in the pro-
cess of deriving the compactness of the solution operator G, through which the methods
used in the sense of integer order differential equations can be successfully applied here.

Remark . In view of Theorem ., for each u ∈ Uad , and y ∈ C([, c], X) is the corre-
sponding mild solution of system (.), one has

∥
∥y(t)

∥
∥ ≤ ‖y‖ + N + M‖η‖L([,c]) + M

∫ t


η(τ )

∥
∥y(τ )

∥
∥dτ + MMBM̃c.

Using Gronwall’s lemma, one can obtain that ‖y(t)‖ ≤ R, where

R =
(‖y‖ + N + M‖η‖L([,c]) + MMBM̃c

)
eM‖η‖L([,c]) ,

which is independent of u.

Remark . For convenience, we denote

S(u) =
{

y ∈ WR : y is the mild solution of (.) corresponding to the control u ∈ Uad
}

,

Ad =
{

(y, u) : u ∈ Uad, y ∈ S(u)
}

.
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4 Lagrange optimal control problems subjected to system (1.1)
In this section, the idea of constructing the minimizing sequences twice will be used to
solve the following Lagrange optimal control problem (P):

inf
(y,u)∈Ad

J (y, u),

where the cost function J (y, u) =
∫ c

 L(t, y(t), u(t)) dt, and the cost integrand L : [, c]×X ×
Y →R∪ {+∞} satisfies the condition (HL).

(HL) () (t, y, u) → L(t, y, u) is measurable;
() L(t, ·, ·) is sequentially lower semi-continuous on X × Y for a.e. t ∈ [, c];
() L(t, y, ·) is convex on Y for each y ∈ X and a.e. t ∈ [, c];
() L(t, y, u) ≥ φ(t) + a(‖y‖p + ‖u‖p) for some φ ∈ Lp([, c],R), a ≥  and a.e.

t ∈ [, c].
The following lemma will be used in the proof of our main results.

Lemma . If (HA) holds, then the operator F : Lp([, c], X) → C([, c], X) given by

(Fl)(·) =
∫ ·


R–γ (· – τ )l(τ ) dτ

is compact for  < p < ∞. Moreover, the condition ln ⇀ l in Lp([, c], X) as n → ∞ leads to
the fact that Fln → Fl in C([, c], X) as n → ∞.

Proof A similar manner as that in Theorem . gives the conclusion. Also it can be seen
in []. So we omit it. �

Theorem . Under the conditions of Theorem . and (HL), the Lagrange optimal prob-
lem (P) admits at least one optimal pair, that is, there is a pair (y∗, u∗) ∈Ad such that

J (y∗, u∗) ≤ J (y, u)

holds for all (y, u) ∈Ad .

Proof In view of Theorem ., there is at least one mild solution y ∈ WR such that (y, u) ∈
Ad for each u ∈ Uad , that is, S(u) �= ∅. For clarity, we proceed in the following two steps.

Step . For each u ∈ Uad , set

F (u) = inf
y∈S(u)

J (y, u). (.)

The fact S(u) �= ∅ implies that F (u) is well defined. We aim to show that F (u) = J (ŷ, u) for
some ŷ ∈ S(u).

It is trivial for the cases that infy∈S(u) J (y, u) = +∞ and the set S(u) has finite elements.
Otherwise, the assumption (HL) implies that F (u) > –∞. Moreover, the definition of in-
fimum gives

lim
n→∞J (yn, u) = F (u) (.)
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for some {yn}∞n= ⊆ S(u). Note that (yn, u) ∈Ad , one has

yn(t) = y – m(yn) –
∫ t


R–γ (t – τ )yn(τ ) dτ

+
∫ t


R–γ (t – τ )

[
f
(
τ , yn(τ )

)
+ B(τ )u(τ )

]
dτ (.)

for each n ≥ . The compactness of R–γ (t), t >  and m, an argument similar to the one
used in Theorem . yields the precompactness of {yn}∞n=. Then a subsequence can be
extracted from {yn}∞n=, still denoted by it, such that

lim
n→∞ yn = ŷ (.)

for some ŷ ∈ C([, c], X). Now, taking n → ∞ to both sides of (.) and using the Lebesgue
dominated convergence theorem yields

ŷ(t) = y – m(ŷ) –
∫ t


R–γ (t – τ )ŷ(τ ) dτ

+
∫ t


R–γ (t – τ )

[
f
(
τ , ŷ(τ )

)
+ B(τ )u(τ )

]
dτ (.)

due to the continuity of f (s, ·), s ∈ [, t] and m(·). This means that ŷ ∈ S(u). We will show
that ŷ satisfies that F (u) = J (ŷ, u). It is worth mentioning that the assumption (HL) sat-
isfies all the conditions of Balder ([], Theorem .). Hence, Applying Balder’s theorem
yields

F (u) = lim
n→∞J (yn, u)

= lim
n→∞

∫ c


L
(
t, yn(t), u(t)

)
dt

≥
∫ c


L
(
t, ŷ(t), u(t)

)
dt = J (ŷ, u)

≥ F (u),

which implies that F (u) = J (ŷ, u).
Step . We verify that

F (u∗) = inf
u∈Uad

F (u) (.)

for some u∗ ∈ Uad . It is trivial for the case that infu∈Uad F (u) = +∞. Otherwise, again from
(HL), we have infu∈Uad F (u) > –∞. Let {un}∞n= ⊆ Uad be a minimizing sequence such that

lim
n→∞F (un) = F (u∗). (.)

Obviously, {un}∞n= is bounded in Lp([, c], Y ). The reflexivity of Lp([, c], Y ) gives rise to
the fact that a subsequence of {un}∞n= can be extracted, still denoted by it, such that

un ⇀ u∗ (.)
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as n → ∞ for some u∗ ∈ Lp([, c], Y ). Moreover, by virtue of the convexity, closeness of
Uad and Mazur’s theorem, we have that u∗ ∈ Uad . Now we only need to show that F (u)
attains its infimum at u∗. To this end, according to Step , we may suppose that ŷn ∈ S(un)
such that

F (un) = J (ŷn, un).

The fact that ŷn ∈ S(un) implies

ŷn(t) = y – m(ŷn) –
∫ t


R–γ (t – τ )ŷn(τ ) dτ

+
∫ t


R–γ (t – τ )

[
f
(
τ , ŷn(τ )

)
+ B(τ )un(τ )

]
dτ (.)

for each n ≥ . Similar to the proof in Theorem ., thanks to the compactness of R–γ (t)
and m, as well as the uniform boundedness of {un}∞n= in L([, c], Y ), one obtains the pre-
compactness of {ŷn}∞n= in C([, c], X). Then there is a subsequence of {ŷn}∞n=, still denoted
by it, such that

ŷn → y∗ (.)

as n → ∞ for some y∗ ∈ C([, c], Y ). On the other hand, with the help of Lemma ., (.),
and the fact that B(·)un(·) ∈ Lp([, c], X), we obtain that

∫ t


R–γ (t – τ )B(τ )un(τ ) dτ →

∫ t


R–γ (t – τ )B(τ )u∗(τ ) dτ (.)

as n → ∞. Now, taking n → ∞ to both sides of (.) yields

y∗(t) = y – m(y∗) –
∫ t


R–γ (t – τ )y∗(τ ) dτ

+
∫ t


R–γ (t – τ )

[
f
(
τ , y∗(τ )

)
+ B(τ )u∗(τ )

]
dτ . (.)

This means that y∗ ∈ S(u∗). Moreover, applying Balder’s theorem again gives

F (u∗) = lim
n→∞F (un)

= lim
n→∞

∫ c


L
(
t, ŷn(t), un(t)

)
dt

≥
∫ c


L
(
t, y∗(t), u∗(t)

)
dt = J (y∗, u∗)

≥ F (u∗).

Combining this with Step  yields

J (y∗, u∗) = F (u∗) = inf
u∈Sp

U

F (u) = inf
u∈Sp

U

inf
y∈S(u)

J (y, u) = inf
(y,u)∈Ad

J (y, u),

that is, (y∗, u∗) is a feasible pair at which J reaches a minimum. This ends the proof. �
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Remark . The optimal pairs for the Lagrange problem (P) are obtained without the
Lipschitz continuity of f and m. To compensate, the new idea of setting up minimizing se-
quences twice is used. Hence, our results generalize the recent existing ones in [, –],
in which the Lipschitz assumptions on nonlinear function and nonlocal item are needed.

5 Time optimal control problems governed by system (1.1)
In this segment, let W be a bounded, closed and convex subset of the Banach space X.
Define the subsets as follows:

AW
d =

{
(y, u) ∈Ad : y(t) ∈ W for some t ∈ [, c]

}
;

U =
{

u ∈ Uad : (y, u) ∈AW
d for some y ∈ S(u)

}
;

SW
u =

{
y ∈ S(u) : u ∈ U, (y, u) ∈AW

d
}

.

Suppose that AW
d �= ∅. Then, for any (y, u) ∈ AW

d , define the first time t(y,u) such that
y(t(y,u)) ∈ W as the transition time. Obviously, t(y,u) is well defined owing to the fact that
y(·) ∈ C([, c], X) as well as the closeness and convexity of W . The set W is called the target
set.

Now, we ponder the following time optimal control problem (P):

inf
(y,u)∈AW

d

t(y,u).

Theorem . Let the hypotheses specified in Section  hold. Then system (.) possesses at
least one feasible pair which solves the problem (P), that is, there is a pair (y∗, u∗) ∈ AW

d
such that

t(y∗ ,u∗) ≤ t(y,u)

holds for all (y, u) ∈AW
d .

Remark . The control u∗, the time t(y∗ ,u∗) and the pair (y∗, u∗) in Theorem . are called
the time optimal control, optimal time and time optimal pair, respectively.

Proof of Theorem . From Theorem ., we have that there exists at least one y such that
(y, u) ∈Ad for each u ∈ Uad . We will proceed in two steps to check the main results.

Step . For any fixed u ∈ U, set tu = infy∈SW
u

t(y,u). It is trivial for the case that the set SW
u

has finite elements. Otherwise, the definition of infimum gives that there is a monotone
decreasing sequence {t(yn ,u)}n≥ such that

lim
n→∞ t(yn ,u) = tu, (.)

where (yn, u) ∈AW
d for each n ≥ . Moreover, a similar manner utilized in Step  of Theo-

rem . gives the precompactness of {yn}n≥. Then there is a subsequence of {yn}n≥, still
denoted by it, and a function ỹ ∈ S(u) such that

yn → ỹ (.)
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as n → ∞. We will show that ỹ(tu) ∈ W . For each n ≥ , the definition of t(yn ,u) yields

yn(t(yn ,u)) ∈ W . (.)

In view of (.) and (.), one has

yn(t(yn ,u)) → ỹ
(
tu). (.)

This together with (.) and the closeness of W yields

ỹ
(
tu) ∈ W . (.)

Step . Let t = infu∈U tu. If U contains finite elements, the proof is obvious. Otherwise,
there exists a monotone decreasing sequence {tun}n≥ such that

lim
n→∞ tun = t, (.)

where un ∈ U. In the light of Step , let ỹn be such that (ỹn, un) ∈ AW
d and ỹn(tun ) ∈ W .

With the same method as that in Step  of Theorem ., we can infer that

un ⇀ u∗, ỹn → y∗ (.)

as n → ∞ for some u∗ ∈ Sp
U and y∗ ∈ S(u∗). Now, we show that y∗(t) ∈ W . Exploiting (.)

and (.), we have

ỹn
(
tun

) → y∗(t). (.)

This together with the closeness of W and the fact that

ỹn
(
tun

) ∈ W (.)

yields

y∗(t) ∈ W . (.)

The proof is ended. �

Remark . On the basis of the solution set S(u) and the target set W , a suitable defini-
tion of optimal time is given. Then the idea of constructing time optimal sequences twice
and the theory of resolvent are used to derive the existence of time optimal pairs without
the Lipschitz assumptions on f and the reflexivity of X. Therefore, our results essentially
improve those in [, –] and the references therein, where the Lipschitz continuity of
f and the reflexivity of X are all required.



Lian et al. Advances in Difference Equations  (2017) 2017:233 Page 12 of 14

6 Applications
The following fractional composite relaxation system will be considered:

⎧
⎪⎪⎨

⎪⎪⎩

∂x(t,θ )
∂t = ∂

∂θ
CDγ x(t, θ ) + t( + x(t, θ )) + Bu(t, θ ), t ∈ [, ], θ ∈ [, ],

x(t, ) = x(t, ) = ,

x(, θ ) = x(θ ),

(.)

where  < γ < .
Let X = Y = L([, ],R). Define the operator A : D(A) ⊆ X → X as

Aζ = ζ ′′

with the domain

D(A) =
{
ζ ∈ X; ζ , ζ ′ are absolutely continuous, ζ ′′ ∈ X, ζ () = ζ () = 

}
.

Then

Aζ =
∞∑

n=

(
–nπ)(ζ , en)en, ζ ∈ D(A),

where en(θ ) =
√

 sin(nπθ ), n = , , . . . , is an orthonormal basis of X. In view of [], we
infer that A generates a compact and analytic semigroup {T(t)}t> in X, and

T(t)ζ =
∞∑

n=

e–nπt(ζ , en)en, ζ ∈ X.

Obviously, ‖T(t)‖ ≤ . Furthermore, by means of the subordination principle [], Theo-
rem ., one has that a compact  – γ order fractional analytic resolvent {R–γ (t)}t≥ of
analytic type (ω, θ) can also be generated by A, and

R–γ (t) =
∫ ∞


ϕt,–γ (τ )T(τ ) dτ , t > ,

where ϕt,–γ (τ ) = tγ –�–γ (τ tγ –), �–γ (t), t >  is a probability density function such that
∫ ∞

 �–γ (t) dt = . Taking into account Lemma . in [], we obtain that {R–γ (t)}t> is
also continuous in the sense of uniform operator topology. Now, we can come to the con-
clusion that (HA) holds, and

∥
∥R–γ (t)

∥
∥ =

∥
∥
∥
∥

∫ ∞


�–γ (τ )T

(
τ t–γ

)
dτ

∥
∥
∥
∥ ≤ ,

that is, M = supt∈[,] ‖R–γ (t)‖ = .
Now, for every t ∈ [, ], θ ∈ [, ], let y(t)(θ ) = x(t, θ ), f (t, y(t))(θ ) = t(+y(t)(θ ))+y(t)(θ ),

u ∈ L([, ] × [, ], Y ), and u(t)(θ ) = u(t, θ ).
The cost function is such that

J (y, u) =
∫ 



∫ 



(∣
∣y(t)(θ )

∣
∣ +

∣
∣u(t)(θ )

∣
∣)dθ dt.
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Obviously, the cost integrand

L
(
t, y(t), u(t)

)
=

∫ 



(∣
∣y(t)(θ )

∣
∣ +

∣
∣u(t)(θ )

∣
∣)dθ =

∥
∥y(t)

∥
∥

X +
∥
∥u(t)

∥
∥

Y

satisfies the condition (HL). Now, for t ∈ [, ], define the control multivalued map

U(t) =
{

u(t)(·) ∈ Y :
∥
∥u(t)(·)∥∥Y ≤ N

}

and the target set

W =
{

y(·) ∈ X :
∥
∥y(·)∥∥X ≤ N

}
,

where N, N are given positive constants.
Now, system (.) can be reformulated as the abstract fractional relaxation system (.),

and all the conditions listed in Section  are satisfied. In fact,

∥
∥f

(
t, y(t)

)
(·) – y(t)(·)∥∥X =

(∫ 



∥
∥t( + y(t)(θ )

)∥
∥ dθ

) 
 ≤ t( +

∥
∥y(t)(·)∥∥X

)
,

with ‖t‖L([,]) = 
 < . Then, in light of Theorem ., we obtain that there exists an op-

timal pair (y∗, u∗) such that the integral cost functional J (y, u) attains its minimum. Fur-
thermore, if the set AW

d defined in Section  with c =  is nonempty, then it follows from
Theorem . that an optimal pair (y∗, u∗) exists at which the transition time t(y,u) attains
its minimum.
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10. Wang, JR, Fečkan, M, Zhou, Y: Center stable manifold for planar fractional damped equations. Appl. Math. Comput.

296, 257-269 (2017)
11. Gorenflo, R, Mainardi, F: Fractional calculus: integral and differential equations of fractional order. In: Carpinteri, A,

Mainardi, F (eds.) Fractals and Fractional Calculus in Continuum Mechanics, pp. 223-276. Springer, Berlin (1997)
12. Fan, Z, Mophou, G: Existence of optimal controls for a semilinear composite fractional relaxation equation. Rep. Math.

Phys. 73, 311-323 (2014)
13. Fan, Z, Dong, Q, Li, G: Approximate controllability for semilinear composite fractional relaxation equations. Fract. Calc.

Appl. Anal. 19, 267-284 (2016)
14. Lizama, C, N’Guérékata, GM: Bounded mild solutions for semilinear integro differential equations in Banach spaces.

Integral Equ. Oper. Theory 68, 207-227 (2010)
15. Lizama, C: An operator theoretical approach to a class of fractional order differential equations. Appl. Math. Lett. 24,

184-190 (2011)
16. Wang, J, Zhou, Y, Medved, M: On the solvability and optimal controls of fractional integrodifferential evolution

systems with infinite delay. J. Optim. Theory Appl. 152, 31-50 (2012)
17. Kumar, S: Mild solution and fractional optimal control of semilinear system with fixed delay. J. Optim. Theory Appl.

1-14 (2015)
18. Fan, Z, Mophou, G: Existence and optimal controls for fractional evolution equations. Nonlinear Stud. 20, 163-172

(2013)
19. Meng, Q, Shen, Y: Optimal control for stochastic delay evolution equations. Appl. Math. Optim. 74, 53-89 (2016)
20. Lu, L, Liu, Z, Jiang, W, Luo, J: Solvability and optimal controls for semilinear fractional evolution hemivariational

inequalities. Math. Methods Appl. Sci. 39, 5452-5464 (2016)
21. Jiang, Y, Huang, N: Solvability and optimal controls of fractional delay evolution inclusions with Clarke subdifferential.

Math. Methods Appl. Sci. (2016). doi:10.1002/mma.4218
22. Wang, J, Zhou, Y: Time optimal control problem of a class of fractional distributed systems. Int. J. Dyn. Syst. Differ. Equ.

3, 363-382 (2011)
23. Jeong, JM, Son, SJ: Time optimal control of semilinear control systems involving time delays. J. Optim. Theory Appl.

165, 793-811 (2015)
24. Phung, KD, Wang, G, Zhang, X: On the existence of time optimal controls for linear evolution equations. Discrete

Contin. Dyn. Syst., Ser. B 4(4), 925-941 (2007)
25. Fan, Z: Characterization of compactness for resolvents and its applications. Appl. Math. Comput. 232, 60-67 (2014)
26. Zhu, L, Huang, Q: Nonlinear impulsive evolution equations with nonlocal conditions and optimal controls. Adv. Differ.

Equ. 2015, 378 (2015)
27. Prüss, J: Evolutionary Integral Equations and Applications. Birkhäuser, Basel (1993)
28. Hu, S, Papageorgiou, NS: Handbook of Multivalued Analysis. Kluwer Academic, Norwell (2000)
29. Balder, EJ: Necessary and sufficient conditions for L1-strong-weak lower semicontinuity of integral functionals.

Nonlinear Anal. 11, 1399-1404 (1987)
30. Pazy, A: Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer, Berlin (1983)
31. Bazhlekova, E: Subordination principle for fractional evolution equations. Fract. Calc. Appl. Anal. 3, 213-230 (2000)

http://dx.doi.org/10.1002/mma.4218

	Lagrange optimal controls and time optimal controls for composite fractional relaxation systems
	Abstract
	MSC
	Keywords

	Introduction
	Preliminaries and basic assumptions
	The solvability of system (1.1)
	Lagrange optimal control problems subjected to system (1.1)
	Time optimal control problems governed by system (1.1)
	Applications
	Acknowledgements
	Competing interests
	Authors' contributions
	Author details
	Publisher's Note
	References


