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Abstract
In this paper, a predator-prey system with Holling type function response
incorporating prey refuge is presented. By applying the analytical approaches, the
dynamics behavior of the considered system is investigated, including stability, limit
cycle and bifurcation. The results show that the shape of the functional response
plays an important role in determining the dynamics of the system. Especially, the
interesting conclusion is that the prey refuge has a destabilizing effect under some
certain conditions.
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1 Introduction
Researches on predation systems are always a popular issue in contemporary theoreti-
cal ecology and applied mathematics [–]. Results based on non-spatial systems have
shown that the effect of prey refuge played an important role in determining the dynam-
ical consequences of predator-prey systems [, , , , , , –]. Incorporating the
effect of prey refuge into the considered predation system is initially done by modify-
ing the originally functional response of predator to prey population, the functional re-
sponse describes the per capita consumption rates of predators depending on prey den-
sity, and quantifies the energy transfer between trophic levels, like Holling I, II, III and
IV functional response [, ]. The most widely reported conclusions are the commu-
nity/interior/positive/coexistent equilibrium of the considered predation system being
stabilized and the equilibrium density of prey and/or predator was enhanced by the addi-
tion of prey refuge [, , , , , ].

This paper is based on the following predator-prey system with prey self-limitation and
the population growth of prey is logistic in the absence of predators:

⎧
⎨

⎩

ẋ(t) = rx( – x
K ) – f (x)y,

ẏ(t) = (cf (x) – d)y.
(.)
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Here, x(t) and y(t) are the density of prey and predator populations at time t, respec-
tively, and they are all positive numbers. The other parameters have the following biolog-
ical meanings: r is the intrinsic per capita growth rate of prey population; K is the prey
environmental carrying capacity; c is the efficiency with which predators convert con-
sumed prey into new predators; d is the per capita death rate of predators. The function
f (x) denotes a generalized functional response and represents the amount of prey killed
per unit time by an individual predator. This paper applies a generalized representation of
the functional response

f (x) =
λxn

 + λhxn ,

which is introduced by Real [] and defined as Holling type functional response, where h
is the handling time of predators, λ is the attack efficiency of predator to prey population,
the exponent n describes the shape of the functional response, including the Holling II
functional response for n =  and Holling III functional response for n = .

Incorporating a Holling type functional response into the system (.), the following
predator-prey system could be obtained:

⎧
⎨

⎩

ẋ(t) = rx( – x
K ) – λxny

+λhxn ,

ẏ(t) = ( cλxn

+λhxn – d)y.
(.)

In this paper, we extend the above model by incorporating the effect of prey refuge. Kot
[] gave a definition for the total number of prey caught V :

V = λ(T – hV )x,

where λ is the attack coefficient, h is the handling time required per prey, T is the total
time and all parameters are positive. This definition proposes that the total number of prey
caught by its predators is linearly proportional to prey’s density. However, most cases may
be included in this representation. Hence, without loss of generality, this paper assumes
that the total number of prey caught, V (x), is

⎧
⎨

⎩

V (x) = λTs(x)xn,

Ts(x) = T – hV (x),
(.)

where Ts(x) is the available search time and the other parameters are similar to Kot’s def-
inition [].

According to Maynard Simth [] and Ma et al. [], there exists a quantity βx of prey
population which occupy refuges. By modifying the total number of prey caught V , it is
given that

⎧
⎨

⎩

V (x) = λTs(x)(( – β))xn,

Ts(x) = T – hV (x).
(.)
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Solving V (x) from the above equations, we have

V (x) =
λT( – β)nxny

 + λh( – β)nxn .

Thus, the modified functional response which incorporates the effect of prey refuge is
given by

V (x)
T

=
λ( – β)nxny

 + λh( – β)nxn .

Based on the above analysis, the system (.) with the effect of prey refuge gets the fol-
lowing form:

⎧
⎨

⎩

ẋ(t) = rx( – x
K ) – λ(–β)nxny

+λh(–β)nxn ,

ẏ(t) = ( cλ(–β)nxn

+λh(–β)nxn – d)y.
(.)

Before proceeding, we use the following change of variables:

ϕ :
(
R+


) × R → (

R+

) × R, ϕ(x, y, t) =

(

Kx̄, Khrȳ,
A + xn

r
t̄
)

and rewriting x̄, ȳ, t̄ as x, y, t, we obtain the equivalent form of the system (.)

⎧
⎨

⎩

ẋ(t) = x( – x)(A + xn) – xny,

ẏ(t) = B(xn – C(A + xn))y.
(.)

We have only three parameters, where A = 
Knλh(–β)n > , B = c

hr > , C = dh
c > .

2 Equilibria
The equilibrium points of the system (.) are E(, ), EK (K , ), Ẽ(x̃, ỹ), where

x̃ =


 – β

[
d

λ(c – dh)

]/n

,

ỹ =
cr

d( – β)

[
d

λ(c – dh)

]/n[

 –


K( – β)

(
d

λ(c – dh)

)/n]

.

The equilibrium point Ẽ(x̃, ỹ) is positive if and only if

β <  –

K

(
d

λ(c – dh)

)/n

.

If β >  – 
K ( d

λ(c–dh) )/n, the equilibrium point Ẽ(x̃, ỹ) collapses with the point EK (K , ).
Now, differentiating ỹ with respect to β , we observe that ỹ attains its maximum value at

β =  –

K

(
d

λ(c – dh)

)/n

,

and then it decreases with further increases in β . Also we see that x̃ increases with β .
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Again, in order to investigate the local stability and the existence of limit cycle, we should
give the equilibrium points of the system (.). The equilibrium points of the system (.)
can be obtained by solving the following equations:

⎧
⎨

⎩

x( – x)(A + xn) – xny = ,

B(xn – C(A + xn))y = .
(.)

Clearly, it has three equilibrium points E(, ), E(, ), Ē(x̄, ȳ), where

x̄ =
(

AC
 – C

)/n

,

ȳ =

C

(
AC

 – C

)/n[

 –
(

AC
 – C

)/n]

.

The equilibrium point Ē(x̄, ȳ) is positive if and only if A < –C
C .

If A = –C
C , the positive equilibrium point collapses with the equilibrium point E(, ).

The equilibrium point Ē(x̄, ȳ) lies in the fourth quadrant when A > –C
C .

3 Positivity and boundedness of the solutions
In order to study the positivity and boundedness for the solutions of system (.), we de-
note the function on the right hand of system (.) as G = (xg, yg) in which

g(x, y) = r
(

 –
x
K

)

–
λ( – β)nxn–y

 + λh( – β)nxn ,

g(x, y) =
cλ( – β)nxn

 + λh( – β)nxn – d.

Clearly, G ∈ C(R
+). Thus G : R

+ → R is locally Lipschitz on R
+ = {(x, y)|x > , y >

}. Hence the fundamental theorem of existence and uniqueness ensures existence and
uniqueness of solution of the system (.) with the given initial conditions. The state space
of the system is the non-negative cone in R

+. In the theoretical ecology, positivity and
boundedness of the system establishes the biological well behaved nature of the system.

Theorem . All the solutions of the system (.) with the given initial conditions are al-
ways positive and bounded.

Proof Firstly, we wish to prove that (x(t), y(t)) ∈ R
+ for all t ∈ [, +∞]. We show this by the

method of contradiction. Suppose this is not true. Hence, there must exist one t̄ ∈ [, +∞],
such that x(t̄) ≤  and y(t̄) ≤ . From the system (.), we have

x(t) = x() exp

(∫ t


g(x, y) dt

)

,

y(t) = x() exp

(∫ t


g(x, y) dt

)

.
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Since (x(t), y(t)) are well defined and continuous on [, t̄], there must exist a M >  such
that ∀t ∈ [, t̄]

x(t) = x() exp

(∫ t


g(x, y) dt

)

≥ x() exp(–Mt̄),

y(t) = x() exp

(∫ t


g(x, y) dt

)

≥ y() exp(–Mt̄).

It is clear that if we have the limit t → t̄, we obtain

x(t̄) ≥ x() exp(–Mt̄) > ,

y(t̄) ≥ y() exp(–Mt̄) > ,

which is a contradiction. Hence, all the solutions of the system (.) are always positive.
Secondly, we will prove the boundedness.
Letting V (t) = x(t) + 

c y(t), then we obtain

V̇ (t) = rx
(

 –
x
K

)

–
λ( – β)nxny

 + λh( – β)nxn +
λ( – β)nxny

 + λh( – β)nxn –
d
c

y ≤ –dV (t) + (d + r)K .

Integrating both sides of the above equation and applying the theorem of the differential
inequality, we have

 < V (t) <
(d + r)K

d
(
 – e–dt) + V ()e–dt , V () = V

(
x(), y()

)

and limt→+∞ V (t) ≤ (d+r)K
d . �

4 Stability analysis
4.1 Local stability
The Jacobian matrix of the system (.) at the equilibrium point E(, ) is given by

J =

(
–(A + ) –

 B( – C – AC)

)

.

The two eigenvalues of matrix J are –(A + ) and B( – C – AC).
Hence, if A < –C

C , the equilibrium point E(, ) is a saddle point. Otherwise, the equi-
librium point E(, ) is locally asymptotically stable.

For the positive equilibrium point Ē(x̄, ȳ), the Jacobian matrix is as follows:

J =

(
A A

A 

)

.

Here

A =
(x̄)n

C
[(

 – n( – C)
)

–
(
 – n( – C)

)
x̄
]
,

A = –(x̄)n < , A = Bn( – C)(x̄)n–ȳ > .
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Clearly Det J = –AA > . Therefore, the sign of the eigenvalues of Jacobian matrix J

depends only on Tr J = A.
Hence, the interior equilibrium point Ē(x̄, ȳ) is locally asymptotically stable if and only

if

(
 – n( – C)

)
–

(
 – n( – C)

)
x̄ < . (.)

Case : If  < n < 
–C , then  – n( – C) >  and  – n( – C) > .

The inequality (.) can easily be solved as follows:

x̄ >
 – n( – C)
 – n( – C)

.

In other words

A >
 – C

C

[
 – n( – C)
 – n( – C)

]n

.

Hence, the interior equilibrium point Ē(x̄, ȳ) is locally asymptotically stable.
The results of González-Olivares et al. [] and Huang et al. [] are special cases of ours

for n =  and n = , respectively.
Case : If 

–C ≤ n ≤ 
–C , then the inequality (.) holds.

Therefore, the interior equilibrium point Ē(x̄, ȳ) is always asymptotically stable when-
ever the proportion of prey refuge is.

Case : If n > 
–C , then  – n( – C) <  and  – n( – C) < .

Hence, the inequality (.) is equivalent to the following condition:

x̄ <
 – n( – C)
 – n( – C)

.

It is easy to show that

A <
 – C

C

[
 – n( – C)
 – n( – C)

]n

.

Therefore, the interior equilibrium point Ē(x̄, ȳ) is locally asymptotically stable under
these assumptions.

4.2 Existence of limit cycle
Let us rewrite the system (.) in the following form:

⎧
⎨

⎩

ẋ(t) = xg(x) – yp(x),

ẏ(t) = (q(x) – AC)y.
(.)

Here g(x) = ( – x)(A + xn), p(x) = xn, q(x) = ( – C)p(x).
We present a lemma [] regarding uniqueness of limit cycle of the above system.
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Lemma ([]) Suppose the system (.) obeys

d
dx

(
xg ′(x) + g(x) – xg(x)(p′(x)/p(x))

q(x) – AC

)

≤ 

in  ≤ x < x̄ and x̄ < x ≤ . Then the system (.) has exactly one limit cycle which is globally
asymptotically stable with respect to the set {(x, y)|x > , y > }\{E(x̄, ȳ)}.

By employing the above lemma, we have

d
dx

(
xg ′(x) + g(x) – xg(x)(p′(x)/p(x))

q(x) – AC

)

≤ 

⇔ ϕ(x)
(( – C)xn – AC) ≤ .

Here

ϕ(x) = –( – C)xn + A
[
C( + n) + ( – n)(n – )( – C)

]
xn

– An
[
 – n( – C)

]
xn– – AC(n – ).

This will be equivalent to prove that ϕ(x) ≤  for all x > .
Noticing that ϕ() = –AC(n – ) ≤  for n ≥  and

ϕ′(x) = nxn–[–( – C)xn+ + A
(
C( + n) + ( – n)(n – )( – C)

)
x

– A(n – )
(
 – n( – C)

)]
.

It is easy to show that x =  and x = x̄ are the solutions of the equation ϕ′(x) = .
Again ϕ′′(x̄) = –nAx̄n–[C( + n) + (n – )(n – )( – C)] < .
Thus, x = x̄ is the maximum value point of the function ϕ(x).
Now, in order to prove ϕ(x) ≤ , it is enough to show that ϕ(x̄) ≤ .

ϕ(x̄) = –
nAC

x̄
[(

 – n( – C)
)

–
(
 – n( – C)

)
x̄
]

< .

That is,

(
 – n( – C)

)
–

(
 – n( – C)

)
x̄ > .

Clearly, it is exactly the condition of the instability of the interior equilibrium point
Ē(x̄, ȳ).

4.3 Global stability
In this section, we will prove the global stability of the positive equilibrium point Ẽ(x̃, ỹ)
of the system (.).

We first choose a Lyapunov function defined as follows:

W
(
x(t), y(t)

)
=

∫ x

x̃

u – x̃
u

du + p
∫ y

ỹ

w – ỹ
w

dw (p > ).
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By a simple computation, we obtain

dW
dt

=
x – x̃

x
dx
dt

+ p
y – ỹ

y
dy
dt

= (x – x̃)
[

r
(

 –
x
K

)

–
λ( – β)nxny

 + λh( – β)nxn

]

+ p(y – ỹ)
(

cλ( – β)nxn

 + λh( – β)nxn – d
)

= (x – x̃)
[

r
(

 –
x̃
K

)

+
λ( – β)nx̃n–ỹ

 + λh( – β)nx̃n – r
(

 –
x
K

)

–
λ( – β)nxn–y

 + λh( – β)nxn

]

+ p(y – ỹ)
[

cλ( – β)nxn

 + λh( – β)nxn –
cλ( – β)nx̃n

 + λh( – β)nx̃n

]

= –
r
K

(x – x̃) – y(x – x̃)
(

λ( – β)nx̃n–

 + ch( – β)nx̃n –
λ( – β)nxn–

 + λh( – β)nxn

)

+ (x – x̃)(y – ỹ)
λ( – β)nx̃n–

 + λh( – β)nx̃n + pcλ( – β)(y – ỹ)
(
xn – x̃n)

= –
r
K

(x – x̃) – λ( – β)(n – )x̃n–y(x – x̃)

+
[

ncλx̃n–( – β)p –
λ( – β)x̃n–

 + λh( – β)nx̃n

]

.

Selecting p = λ(–β)nx̃n–

ncλ(–β)nx̃n–(+λh(–β)nx̃n) > , then we have

dW
dt

= –
r
K

(x – x̃) – λ( – β)n(n – )x̃n–y(x – x̃).

Thus, dW
dt <  if n ≥ . Hence, the positive equilibrium point Ẽ(x̃, ỹ) of the system (.) is

globally asymptotically stable.

5 Main results
According to the above analysis, we can obtain the following results.

Theorem . Assuming that  ≤ n < 
–C , then we have:

() If  < A < –C
C [ –n(–C)

–n(–C) ]n, the system (.) has a unique globally stable limit cycle
surrounding the interior equilibrium point Ē(x̄, ȳ) which is unstable.

() If –C
C [ –n(–C)

–n(–C) ]n < A < –C
C , the system (.) has a globally asymptotically stable

equilibrium point Ē(x̄, ȳ) at the first quadrant.

Theorem . Assuming that n > 
–C , then we have:

() If  < A < –C
C [ –n(–C)

–n(–C) ]n, the system (.) has a globally asymptotically stable
equilibrium point Ē(x̄, ȳ) in the first quadrant.

() If –C
C [ –n(–C)

–n(–C) ]n < A < –C
C , the system (.) has a unique globally stable limit cycle

surrounding the interior equilibrium point Ē(x̄, ȳ) which is unstable.

In reference to the original parameters of the system (.), the above results can be ex-
pressed as follows.

Theorem . Assuming that  ≤ n < c
c–dh , then we have:
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() If  < β <  – 
K [ d

λ(c–dh) ]/n[ c–n(c–dh)
c–n(c–dh) ], the prey and predator populations stably

oscillate around the unique interior equilibrium point.
() If  – 

K [ d
λ(c–dh) ]/n[ c–n(c–dh)

c–n(c–dh) ] < β <  – 
K [ d

λ(c–dh) ]/n, the two populations tend to reach
a globally asymptotically stable equilibrium point at the first quadrant.

Theorem . Assuming that n > c
c–dh , then we have:

() If  < β <  – 
K [ d

λ(c–dh) ]/n[ c–n(c–dh)
c–n(c–dh) ], the two populations tend to reach a globally

asymptotically stable equilibrium point in the first quadrant.
() If  – 

K [ d
λ(c–dh) ]/n[ c–n(c–dh)

c–n(c–dh) ] < β <  – 
K [ d

λ(c–dh) ]/n, the prey and predator
populations stably oscillate around the unique interior equilibrium point.

6 Bifurcation analysis
To obtain a complete classification of the qualitative behavior of the system (.), we an-
alyze the bifurcation pattern and illustrate the results with one parameter, saying the ef-
fect of prey refuge β . The classification requires up to two codimension-one bifurcations:
(i) Hopf-bifurcation point in which the coexistence equilibrium point Ẽ(x̃, ỹ) exchanges
stability, (ii) the bifurcation point tracking a transcritical bifurcation between the coexis-
tence equilibrium point Ẽ(x̃, ỹ) and the prey only equilibrium EK (K , ), where these two
equilibria coincide and exchange their stability to each other.

6.1 Hopf bifurcation
One-dimensional bifurcation analysis reveals the behavior of the system (.) when a par-
ticular system parameter is varied over a long range. Here we observe the behavior of the
system (.) when the prey refuge intensity is varied.

By simple computation, the characteristic equation of the system (.) at the coexistence
equilibrium point Ẽ(x̃, ỹ) is

ξ  – ãξ + ãã = , (.)

in which

ã = r
(

 –
x̃
K

)

–
nλ( – β)nx̃n–ỹ

( + λh( – β)nx̃n) ,

ã =
λ( – β)nx̃n

 + λh( – β)nx̃n > ,

ã =
ncλ( – β)nx̃n–y

( + λh( – β)nx̃n) > .

It can easily be observed from the characteristic equation (.) that the roots become
purely imaginary when ã = , i.e. β = βc =  – 

K [ d
λ(c–dh) ]/n[ c–n(c–dh)

c–n(c–dh) ]. In this case,
Re(λ)|β=βc = , Im(λ)|β=βc 
=  and d

dβ
Re(λ)|β=βc <  (we use the standard package of Math-

ematica to get these results) and hence the transversality condition for a Hopf bifurca-
tion is satisfied. Therefore, there exists a Hopf bifurcation at β = βc. The negative sign of

d
dβ

Re(λ)|β=βc <  implies that the oscillations in the population densities dampen as the
effect of prey refuge passes from lower value to higher value through β = βc.

Hence, we obtain the following results.
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Theorem . The system (.) undergoes a Hopf bifurcation at Ẽ(x̃, ỹ) when the effect of
prey refuge β passes the threshold value βc =  – 

K [ d
λ(c–dh) ]/n[ c–n(c–dh)

c–n(c–dh) ].

6.2 Transcritical bifurcation
In this section, we will consider the existence of a transcritical bifurcation for the system
(.). In order to do this, we select the effect of prey refuge β as the bifurcation parameter.
According to the analysis in Section , if  – 

K [ d
λ(c–dh) ]/n[ c–n(c–dh)

c–n(c–dh) ] < β <  – 
K ( d

λ(c–dh) )/n,
the coexistence equilibrium Ẽ is stable but the axial equilibrium EK is unstable. The
two equilibria coincide a β = β =  – 

K ( d
λ(c–dh) )/n and exchange their stability when

 – 
K ( d

λ(c–dh) )/n < β < .
Now, we will prove that the system (.) undergoes a transcritical bifurcation by using

Sotomayer’s theorem []. For β = β, the system (.) has only one axial equilibrium point
EK . The Jacobian matrix evaluated at EK is

J = Df (x̃, ỹ;β) =

(
–r – d

c
 

)

.

J has an eigenvalue λ = . Let V and W be the eigenvectors corresponding to the eigen-
value λ =  for J and JT , respectively, then one can calculate

V =

(
– d

rc


)

, W =

(



)

.

Using the expressions for V and W , we get

W T fβ (x̃, ỹ;β) = ,

W T[
Dfβ (x̃, ỹ;β)V

]
= –

nd(c – dh)K
c

(
(c – dh)λ

d

) 
n


= ,

W T[
Df (x̃, ỹ;β)(V , V )

]
=

nd

Krc 
= .

Hence, according to Sotomayor’s theorem, the system (.) undergoes a transcritical
bifurcation when the effect of prey refuge β passes through the threshold value β.

Hence, we obtain the following results.

Theorem . The system (.) undergoes a transcritical bifurcation when the effect of prey
refuge β passes the threshold value β =  – 

K ( d
λ(c–dh) )/n.

7 Discussion
In this paper, we have considered a predator-prey system with a general functional re-
sponse incorporating a prey refuge. Our analysis reveals that

(i) The equilibrium point EK (K , ) is locally asymptotically stable if the proportion of
refuge using by prey is larger than  – 

K [ d
λ(c–dh) ]/n. Therefore, when the refuge using

by prey is high, the system predicts that the prey population reaches its carrying
capacity and the predators go extinct, a dynamics also observed by Collings [] for
some certain parameters.
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(ii) The shape of the functional response plays an important role in determining the
dynamic behavior of the system. If  < n < c

c–dh , the effect of prey refuge has a
stabilizing effect, which is consistent with results of González-Olivares and
Ramos-Jiliberto [] who has found a clear stabilizing effect on their considered
system. Here, stabilization or the increase of stability refers to cases where a
community equilibrium point changes from repeller to an attractor due to changes
in the value of a control parameter []. However, if the exponent n is larger than

c
c–dh , the stability of the interior equilibrium point changes from the globally
asymptotically stable state to the unstable state surrounding a globally stable limit
cycle as the refuge using by prey increases. The prey refuge can decrease the
stability of the interior equilibrium point. We call this a destabilizing effect.
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