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Abstract
In this paper we study the existence of solutions for a coupled
Allen-Cahn-Navier-Stokes model in two dimensions with an external force containing
infinite delay effects in the weighted space Cδ (Y). We prove the existence of pullback
attractors for the dynamical system associated to the problem under more general
assumptions.
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1 Introduction
Diffuse interface models are well-known tools to describe dynamics of complex fluids ([,
]). For instance, this approach is used in [] to describe cavitation phenomena in a flow-
ing liquid. The resulting model essentially consists of the Navier-Stokes equations suitably
coupled with the well-known phase-field system. In the isothermal compressible case, ex-
istence of a global weak solution for such a system has been recently proved in []. In the
incompressible isothermal case, neglecting chemical reactions and other forces, the model
reduces to an evolution system which governs the fluid velocity u and the order parame-
ter φ. This system can be written as a Navier-Stokes equation coupled with a convective
Allen-Cahn equation.

In [, ], Gal and Grasselli proved that the initial and boundary value problem gener-
ates a strongly continuous semigroup on a suitable phase space which possesses the global
attractor A and establish the existence of an exponential attractor E which entails that A
has finite fractal dimension. Medjo in [] studied the pullback asymptotic behavior of so-
lutions for a non-autonomous homogeneous two-phase flow model in a two-dimensional
domain.

Recently the appearance of delay effects in partial difference equations has been inten-
sively treated. In [–], the authors studied the D Navier-Stokes equations in which
additional external forces were included in the model. The existence of an attractor for a
D Navier-Stokes system with delays is proved in []. The authors proved the existence
and uniqueness of a stationary solution and the exponential decay of the solutions of the
evolutionary problem to this stationary solution in [] and strengthened some results on
the existence and properties of pullback attractors in []. It is a natural generalization to
the Allen-Cahn-Navier-Stokes equations with delays. Medjo in [, ] studied a coupled
Cahn-Hilliard-Navier-Stokes model with delays in a two-dimensional domain and proved
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the existence and uniqueness of the weak and strong solution when the external force con-
tains some delays. He also discusses the asymptotic behavior of the weak solutions and the
stability of the stationary solutions.

Our purpose is to study a coupled Allen-Cahn-Navier-Stokes model with infinite delays.
The paper is organized as follows. Section  we describe the model and some functional
spaces useful for the problem. Section  we prove the existence and uniqueness of the
solution. Also we analyze the continuity properties of the solutions with respect to ini-
tial data. Section  is devoted to generalizing the results on asymptotic behavior, proving
under more general assumptions the existence of pullback attractors.

2 A two-phase flow model
We consider a model of homogeneous incompressible two-phase flow with singularly os-
cillating forces. We assume that the domain � ⊂ R be an open and bounded set with
smooth enough boundary ∂� and consider (arbitrary) values τ < T in R. Then we con-
sider the following system:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂u
∂t – ν�u + (u · ∇)u + ∇p – Kμ∇φ = g(t) + G(t, (u,φ)t),

div u = ,
∂φ

∂t + u · ∇φ + μ = ,

μ = –ε�φ + αf (φ),

()

in � × (τ , T).
In (), the unknown functions are the velocity u = (u, u) of the fluid, its pressure p and

the order parameter φ. The quantity μ is the variational derivative of the following free
energy functional:

F (φ) =
∫

�

(
ε


|∇φ| + αF(φ)

)

ds,

where F(r) =
∫ r

 f (ζ ) dζ , the constants ν >  and K >  the kinematic viscosity of the fluid
and capillarity coefficient, respectively, ε,α >  are two physical parameters describing
the interaction between the two phases. In particular, ε is related with the thickness of the
interface separating the two fluid. The number τ ∈ R is the initial time. We endow () with
the boundary condition

u = ,
∂φ

∂η
=  on ∂� × (τ , T),

where ∂� is the boundary of � and η is its outward normal. The initial condition is given
by

(u,φ)(t + τ ) = ϑ(t) = (ϑ,ϑ)(t), t ∈ (–∞, ]. ()

The terms g(t) is a non-delayed external force field, G(t, (u,φ)t) is another external force
containing some hereditary characteristics and we denote by (u,φ)t the function defined
on (–∞, ] by the relation (u,φ)t = (u,φ)(t + s), s ∈ (–∞, ].
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We assume that f ∈ C(R) satisfies

lim|r|→+∞ f ′(r) > ,
∣
∣f ′(r)

∣
∣ ≤ cf

(
 + |r|k), ∀r ∈ R, ()

where cf is some positive constant and k ∈ [, +∞) is fixed. So we get

∣
∣f (r)

∣
∣ ≤ cf

(
 + |r|k+), ∀r ∈ R. ()

If X is a real Hilbert space with inner product (·, ·)X , we will denote the induced norm
by | · |X while X∗ will indicate its dual with 〈·, ·〉 for the duality between X∗ and X and the
norm by ‖ · ‖∗. We set

V =
{

u ∈ C∞
 (�) : div u =  in �

}
.

We denote by H and V the closure ofV in (L(�)) and (H
(�)), respectively. The scalar

product in H is denoted by (·, ·)L and the associated norm by | · |L . Moreover, the space
V is endowed with the scalar product

(
(u, v)

)
=

∑

i=

(∂xi u, ∂xi v)L , ‖u‖ =
(
(u, u)

)/.

We define the operator A by

Au = P�u, ∀u ∈ D(A) = H(�) ∩ V,

where P is the Leray-Helmholtz projector from L(�) onto H. Then A is a self-adjoint
positive unbounded operator in H which is associated with the scalar product defined
above. Furthermore, A–

 is a compact linear operator on H and |A · |L is a norm on
D(A) that is equivalent to the H-norm. From (), we can find γ >  such that

lim|r|→+∞ f ′(r) > γ > . ()

Then we can define the linear positive unbounded operator Aγ on L(�) by

Aγ φ = –�φ + γφ, ∀φ ∈ D(Aγ ),

where

D(Aγ ) =
{

ρ ∈ H(�);
∂ρ

∂η
=  on ∂�

}

.

Note that A–
γ is a compact linear operator on L(�) and |Aγ · |L is a norm on D(Aγ )

that is equivalent to the H-norm. We set V = H(�). Furthermore we denote by λ >  a
positive constant satisfying

λ|ω|L ≤ ‖ω‖ ∀ω ∈ V; λ
∣
∣A/

γ ψ
∣
∣
L ≤ |Aγ ψ |L ∀ψ ∈ H(�). ()
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We also introduce the bilinear operators B, B and their associated trilinear forms b,
b as well as the coupling mapping R, which are defined from D(A) × D(A) into H,
D(A) × D(Aγ ) into L(�) and L(�) × D(A/

γ ) into H, respectively. More precisely, we
set

(
B(u, v), w

)
=

∫

�

[
(u · ∇)v

] · w dx = b(u, v, w), ∀u, v, w ∈ D(A),

(
B(u,φ),ρ

)
=

∫

�

[
(u · ∇)φ

]
ρ dx = b(u,φ,ρ), ∀u ∈ D(A),φ,ρ ∈ D(Aγ ),

(
R(μ,φ), w

)

=
∫

�

μ[∇φ · w] dx = b(w,φ,μ), ∀w ∈ D(A), (μ,φ) ∈ L(�) × D
(
A/

γ

)
.

Note that R(μ,φ) = Pμ∇φ and B, B and R satisfy the following estimates:

∣
∣B(u, v)

∣
∣
V∗


≤ c|u|/

L ‖u‖/|v|/
L ‖v‖/, ∀u, v ∈ V, ()

∣
∣B(u,φ)

∣
∣
V∗


≤ c|u|/

L ‖u‖/|φ|/
L ‖φ‖/, ∀u ∈ V,φ ∈ V, ()

∣
∣R(Aγ φ,ρ)

∣
∣
V∗


≤ c‖ρ‖/|Aγ ρ|/

L |Aγ φ|L , ∀φ,ρ ∈ D(Aγ ). ()

Now we define the Hilbert spaces Y and V by Y = H ×H(�), V = V ×D(Aγ ) endowed
with the scalar products whose associated norms are

∣
∣(u,φ)

∣
∣
Y

= K–|u|L + ε
(|∇φ|L + γ |φ|L

)
= K–|u|L + ε

∣
∣A/

γ φ
∣
∣
L ;

∥
∥(u,φ)

∥
∥
V

= ‖u‖ + |Aγ φ|L .

Let fγ (r) = f (r) – α–εγ r and observe that fγ still satisfies () with γ in place of γ since
ε ≤ α, and Fγ (r) =

∫ r
 fγ (ζ ) dζ is bounded from below.

There are several phase spaces which allow us to deal with infinite delays. For instance,
for a given δ > , and a given Banach space X, we may consider the space

Cδ(X) =
{
ϕ ∈ C

(
(–∞, ]; X

)
: ∃ lim

s→–∞ eδsϕ(s) ∈ X
}

with the norm

‖ϕ‖δ := sup
s∈(–∞,]

eδs∣∣ϕ(s)
∣
∣
X .

In order to state the problem in the correct framework, we assume that G : [τ , T] ×
Cδ(Y) → (L(�)) satisfies

(g) for any (u,φ) ∈ Cδ(Y), t ∈ [τ , T] → G(t, (u,φ)) is measurable;
(g) for any t ∈ R, G(t, ) = ;
(g) there exists a constant Lg >  such that, for any t ∈ [τ , T], (u,φ), (u,φ) ∈ Cδ(Y),

|G(t, (u,φ)) – G(t, (u,φ))|L ≤ Lg‖(u,φ) – (u,φ)‖δ .
An example of an operator satisfying assumptions (g)-(g) is given here.
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We will assume that the distributed delay term on the Banach space Cδ(Y) is given by

G
(
t, (u,φ)t

)
:=

∫ 

–∞
G

(
t, s, (u,φ)(t + s)

)
ds,

where the function G : [τ , T] × (–∞, ] ×Y → (L(�)) satisfies

G(t, s, ) = ,
∣
∣G

(
t, s, (u,φ)

)
– G

(
t, s, (u,φ)

)∣
∣
R ≤ L(s)

∣
∣(u,φ) – (u,φ)

∣
∣
Y

,

for the function L > . We assume that L(·)e–(δ+θ )· ∈ L(–∞, ) for certain θ > . We can
prove as in [] that (g)-(g) are all satisfied.

Hereafter, we will use the above space and the distributed delay for our problem.
Using the notations above, we rewrite () in the form

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

du
dt + νAu + B(u, u) – KR(εAγ φ,φ) = g(t) + G(t, (u,φ)t),
dφ

dt + B(u,φ) + μ = ,

μ = εAγ φ + αfγ (φ),

(u,φ)(t + τ ) = ϑ(t) = (ϑ,ϑ)(t), t ∈ (–∞, ].

()

Remark  In the weak formulation (), the term μ∇φ is replaced by εAγ ∇φ. This is jus-
tified since f ′

γ (φ) is the gradient Fγ (φ) and can be incorporated into the pressure gradient;
see []. To simplify the notation, we set α = K = .

Remark  Set ∀(ω,ψ) ∈ Y

E(t) = ε(ω,ψ) =
∣
∣(ω,ψ)

∣
∣
Y

+ 
〈
Fγ (ψ), 

〉

L + α,

where α is a constant large enough and independent on (ω,ψ) such that E(t) is nonneg-
ative.

Definition  A pair (u,φ) is called a weak solution to () if

(u,φ) ∈ C((–∞, T];Y) ∩ L([τ , T];V
)
,

du
dt

∈ L([τ , T]; V ∗

)
,

dφ

dt
,μ ∈ L([τ , T]; V ∗


)
,

and (u,φ) satisfies () and () in V ∗
 and V ∗

 , respectively.

Remark  If (u,φ) is a weak solution of () in the sense given above, then (u,φ) satisfies
an energy equality. Namely,

E(t) – E(s) +
∫ t

s

(
ν‖u‖ + |μ|L

)
dr

= 
∫ t

s

(〈
g(r), u(r)

〉
+

〈
G

(
r, (u,φ)r

)
, u(r)

〉)
dr ∀s, t ∈ [τ , T],

where E(t) = ε(u,φ).
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3 Existence of solutions
In this section we establish existence of weak and strong solution for problem () as addi-
tional assumptions are satisfied and some related properties.

Theorem  Assume that g ∈ L(τ , T ; V ∗
 ), G : [τ , T]×Cδ(Y) → (L(�)) satisfies (g)-(g).

Then, for ϑ ∈ Cδ(Y), there exists a unique weak solution (u,φ) of ().

Proof For the existence, we split the proof into several steps.
Step : A Galerkin scheme. Since the injection of V ⊂ Y is compact. Let {(ωi,ψi), i =

, , , . . .} ⊂ V be an orthonormal basis of Y, where {ωi, i = , , . . .}, {ψi, i = , , . . .} are
eigenvectors of A and Aγ , respectively. We set Vm = Ym = span{(ω,ψ), (ω,ψ), . . . ,
(ωm,ψm)}. We look for (um,φm) ∈Ym, the solution to the ordinary differential equations

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

dum

dt + Pm
 (νAum + B(um, um) – R(εAγ φm,φm))

= Pm
 (g(t) + G(t, (um,φm)t)),

dφm

dt + Pm
 (B(um,φm) + μm) = ,

μm = Pm
 (εAγ φm + fγ (φm)),

(um,φm)(t + τ ) = Pmϑ(t), t ∈ (–∞, ],

()

where Pm = (Pm
 , Pm

 ) : H × L(�) → V
m is the orthogonal projection. Since Pm(, G(t,

(u,φ)t)) is a local Lipschitz function in (u,φ), it follows from the theory of ordinary differ-
ential equations that this equation has a local solution (um,φm).

Next we will deduce a priori estimates that ensure that the solutions do exist for all time.
Step : A priori estimates. By taking the scalar product in H of () with um, then taking

the scalar product in L(�) of () with μm, we get

dEm

dt
+ ν

∥
∥um∥

∥ + 
∣
∣μm∣

∣
L = 

〈
g(t), um〉

+ 
〈
G

(
t,

(
um,φm)

t

)
, um〉

, ()

where Em(t) = ε(um(t),φm(t)). Then by (g), we have

dEm

dt
+ ν

∥
∥um∥

∥ + 
∣
∣μm∣

∣
L ≤ 

∥
∥g(t)

∥
∥∗

∥
∥um∥

∥ + Lg
∥
∥
(

um,φm)

t

∥
∥

δ

∣
∣um∣

∣
L

≤ ν
∥
∥um∥

∥ + ν–∥∥g(t)
∥
∥

∗ + Lg
∥
∥
(

um,φm)

t

∥
∥

δ
;

then

dEm

dt
+ ν

∥
∥um∥

∥ + 
∣
∣μm∣

∣
L ≤ ν–∥∥g(t)

∥
∥

∗ + Lg
∥
∥
(

um,φm)

t

∥
∥

δ

≤ ν–∥∥g(t)
∥
∥

∗ + Lg
∥
∥Em

t
∥
∥

δ
,

where

‖E‖δ = sup
s∈(–∞,]

eδsE(s)

and therefore

Em(t) +
∫ t

τ

(
ν
∥
∥um∥

∥ + 
∣
∣μm∣

∣
L

)
ds ≤ E(τ ) +

∫ t

τ

(
ν–∥∥g(s)

∥
∥

∗ + Lg
∥
∥Em

s
∥
∥

δ

)
ds. ()
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Thus

∥
∥Em

t
∥
∥

δ
≤ max

{

sup
θ∈(–∞,τ–t]

eδθ Em(
ϑ(t + θ – τ )

)
,

sup
θ∈[τ–t,]

(

eδθ E(τ ) + eδθ

∫ t+θ

τ

(
ν–∥∥g(s)

∥
∥

∗ + Lg
∥
∥Em

s
∥
∥

δ

)
ds

)}

≤ max

{

sup
θ∈(–∞,τ–t]

eδθ Em(
ϑ(t + θ – τ )

)
,

E(τ ) +
∫ t

τ

(
ν–∥∥g(s)

∥
∥

∗ + Lg
∥
∥Em

s
∥
∥

δ

)
ds

}

and

sup
θ∈(–∞,τ–t]

eδθ Em(
ϑ(t + θ – τ )

)
= sup

θ≤
eδ(θ–(t–τ ))E

(
ϑ(θ )

)

= e–δ(t–τ )∥∥E(ϑ)
∥
∥

δ
≤ ∥

∥E(ϑ)
∥
∥

δ

and E(τ ) = E(ϑ()) ≤ ‖E(ϑ)‖δ , so we can obtain

∥
∥Em

t
∥
∥

δ
≤ ∥

∥E(ϑ)
∥
∥

δ
+

∫ t

τ

(
ν–∥∥g(s)

∥
∥

∗ + Lg
∥
∥Em

s
∥
∥

δ

)
ds.

Thus by Gronwall’s lemma, we have

∥
∥Em

t
∥
∥

δ
≤ eLg (t–τ )

(
∥
∥E(ϑ)

∥
∥

δ
+

∫ t

τ

ν–∥∥g(s)
∥
∥

∗ ds
)

.

Using this inequality, we also see that there exists a constant C, depending on some con-
stants of the problem (namely, ν , Lg and g) and on τ , T and R > , such that

∥
∥Em

t
∥
∥

δ
≤ C(τ , T , R), Em(t) ≤ C(τ , T , R). ()

As |(um,φm)|
Y

≤ Em(t), this implies that (um,φm) is bounded in L∞(τ , T ;Y) ∩ L(τ , T ,V)
∀T > τ . Noting that

μm = εAγ φm + αfγ
(
φm)

we get []

∣
∣Aγ φm∣

∣
L ≤ c

∣
∣μm∣

∣
L + Q

(∥
∥φm∥

∥
)
, ()

∣
∣A/

γ φm∣
∣
L ≤ c

∣
∣μm∣

∣
L + Q

(∥
∥φm∥

∥
)
, ()

where Q is a monotone nondecreasing function independent on time, the initial condition
and m. Then we see that A/

γ φm is bounded in L(τ , T ; D(A/
γ )). With ()-(), () and ()

we get

d
dt

(
um,φm)

is bounded in L(τ , T ; V ∗

) × L(τ , T ; V ∗


)
.



Yang Advances in Difference Equations  (2017) 2017:238 Page 8 of 20

Step : Approximation in Cδ(Y) of the initial datum. For the initial datum ϑ ∈ Cδ(Y) we
have used the projections in the Galerkin scheme in Step . Let us check that

Pmϑ → ϑ in Cδ(Y).

Indeed assume there do not exist ε >  and a subsequence such that

eδθm
∣
∣Pmϑ(θm) – ϑ(θm)

∣
∣ > ε.

One can assume that θm → –∞. Otherwise, if θm → θ then Pmϑ(θm) → ϑ(θ ). We have
|Pmϑ(θm) – ϑ(θ )| ≤ |Pmϑ(θm) – Pmϑ(θ )| + |Pmϑ(θ ) – ϑ(θ )| →  as m → +∞. But with
θm → –∞ as m → +∞ if we denote x = limθ→–∞ eδθϑ(θ ), we obtain

eδθm
∣
∣Pmϑ(θm) – ϑ(θm)

∣
∣ =

∣
∣Pm(

eδθmϑ(θm)
)

– eδθmϑ(θm)
∣
∣

≤ ∣
∣Pm(

eδθmϑ(θm)
)

– Pmx
∣
∣ +

∣
∣Pmx – x

∣
∣ +

∣
∣x – eδθmϑ(θm)

∣
∣

→ .

Thus there is a contradiction.
Step : Energy method and compactness results. Now using the standard methods as in

[], we can pass to the limit in () as m → ∞ and we see that (u,φ) is a weak solution of
().

From Step  we get a subsequence (still) denoted by (um,φm) and using the compactness
theorem

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(um,φm)
∗

⇀ (u,φ) weakly star in L∞(τ , T ;Y),

(um,φm) ⇀ (u,φ) weakly in L(τ , T ;V),
d
dt (um,φm) ⇀ d

dt (u,φ) weakly in L(τ , T ; V ∗
 ) × L(τ , T ; V ∗

 ),

(um,φm) → (u,φ) strongly in L(τ , T ;Y),

G(·, (um,φ)) ⇀ ζ weakly in L(τ , T ; (L(�))),

()

for all T > τ . Furthermore we can also assume that

(
um,φm)

(t) → (u,φ)(t) in Y a.e. t ∈ (τ , T), ()

which nevertheless is not enough.
Since the injection of V into Y is compact, the injection of Y into V

∗ is compact too. So
by the Ascoli-Arzela theorem we have

(
um,φm)

(t) → (u,φ)(t) in C
(
[τ , T],V∗). ()

Then, for any {tm} ⊂ [τ , T], with tm → t, we have

(
um,φm)

(tm) ⇀
(

um,φm)
(t) weakly in Y ()
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and

Em(tm) ⇀ E(t) weakly in Y. ()

Next we will prove that

(
um,φm)

(tm) → (
um,φm)

(t) in C
(
[τ , T];Y

)
.

That is, we will prove that

Em(tm) → E(t) in C
(
[τ , T];Y

)
.

If this were not so we take into account that (u,φ) ∈ C([τ , T];Y), there would exist ε > 
and t ∈ [τ , T] and subsequences (relabeled the same) {(um,φm)} and {tm} ⊂ [τ , T] with
limm→+∞ tm = t such that

∣
∣Em(tm) – E(t)

∣
∣ ≥ ε ∀m.

To prove that this is absurd, we will use the energy method. Observe that the following
energy inequality holds for all (um,φm):




Em(t) +



∫ t

s

(
ν
∥
∥um(r)

∥
∥ +

∣
∣μm∣

∣
L

)
dr

≤
∫ t

s

〈
g(r), um(r)

〉
dr +




Em(s) + C(t – s) ∀s, t ∈ [τ , T], ()

where C = D
νλ

and D corresponds to the upper bound

∫ t

s

∣
∣G

(
r,

(
um,φm)

r

)∣
∣ dr ≤ D(t – s), τ ≤ s ≤ t ≤ T ,

by (g), (g) and ().
On the other hand, by (), passing to the limit in (), we see that (u,φ) ∈ C([τ , T];Y) is

a solution of a similar problem to (),

dE
dt

+ ν‖u‖ + |μ|L = 
〈
g(t), u

〉
+ (ζ , u) ()

with the initial data (u,φ)(τ ) = ϑ(). Therefore, it satisfies the energy equality

E(t) +
∫ s

t

(
ν‖u‖ + |μ|L

)
dr

= E(s) + 
∫ t

s

(〈
g(r), u(r)

〉
+

〈
G

(
r, (u,φ)r

)
, u(r)

〉)
dr ∀s, t ∈ [τ , T].

Furthermore, from the last convergence in (), we deduce that

∫ t

s

∣
∣ζ (r)

∣
∣ dr ≤ lim

m→+∞ sup
∫ t

s

∣
∣G

(
r, (u,φ)m

r
)∣
∣ dr ≤ D(t – s) ∀τ ≤ s ≤ t ≤ T .
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Now consider the functions Jm, J : [τ , T] → R defined by

Jm(t) =



Em(t) –
∫ t

τ

〈
g(r), um(r)

〉
dr – Ct,

J(t) =



E(t) –
∫ t

τ

〈
g(r), u(r)

〉
dr – Ct.

Obviously, Jm, J are non-increasing functions. By (), we get

Jm(t) → J(t) a.e. t ∈ [τ , T]. ()

On the one hand, from ()

E(tm) ⇀ E(t) weakly in Y ()

and we get

E(t) ≤ lim
m→+∞ inf E(tm).

On the other hand, if t = τ we get from Step  and () with s = τ

lim
m→+∞ sup E(tm) ≤ E(t),

so we assume that t ≥ τ . This is important, since we will approach this value t from the
left by a sequence {t̃k}, i.e., limk→+∞ t̃k = t with {t̃k} being values where () holds. Since
E(t) is continuous at t, for any ε there is kε such that

∣
∣J(t̃k) – J(t)

∣
∣ ≤ ε/ ∀k ≥ kε .

Then taking tm ≥ tk̃ε
, as Jm is non-increasing and for all t̃k the convergence () holds, and

one has

Jm(tm) – J(t) ≤ ∣
∣Jm(t̃kε ) – J(t̃kε )

∣
∣ +

∣
∣J(t̃kε ) – J(t)

∣
∣

and with

∫ tm

τ

〈
g(r), um(r)

〉
dr →

∫ t

τ

〈
g(r), u(r)

〉
dr

we get

lim
m→+∞ sup E(tm) ≤ E(t)

and

E(tm) → E(t) in Y
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and

(
um,φm)

(tm) → (u,φ)(t) in Y,
(

um,φm) → (u,φ) C
(
[τ , T],Y

)
.

Thus, we can finally pass to the limit in ().
The uniqueness of the solution can be obtained in the following way. Consider two weak

solutions, (u,φ), (u,φ) of () with the same initial data, and denote ω = u – u, ψ =
φ – φ, (u,φ)t = (u,φ)(t + s), (u,φ)t = (u,φ)(t + s). We derive as Lemma . in []
that

dy
dt

≤ ϒ(t)y(t) + c
∣
∣G

(
t, (u,φ)t

)
– G

(
t, (u,φ)t

)∣
∣
L ≤ ϒ(t)y(t) + cL

g
∥
∥(ω,ψ)t

∥
∥

δ
,

where c = c� is a constant that depends only on � and

y(t) =
∣
∣(ω,ψ)

∣
∣
Y

,

ϒ(t) = c
(‖u‖ +

(
 + ‖φ‖)|Aγ φ|L + |u|L‖u‖)

+ Q
(|φ|H , |φ|H

)
.

As (ω,ψ)(θ ) = , if θ ≤ τ

∥
∥(ω,ψ)t

∥
∥

δ
= sup

θ≤
eδθ

∣
∣(ω,ψ)(t + θ )

∣
∣
Y

≤ sup
θ∈[τ–t,]

∣
∣(ω,ψ)(t + θ )

∣
∣
Y

≤ sup
r∈[τ ,t]

∣
∣(ω,ψ)(r)

∣
∣
Y

, ∀τ ≤ t ≤ T ,

so

dy
dt

≤ ϒ(t)y(t) + cL
g sup

r∈[τ ,t]
y(r);

we have

y(t) ≤ y() +
∫ t

τ

(
ϒ(s) + cL

g
)

sup
r∈[τ ,s]

y(r) ds.

Now we deduce that

sup
r∈[τ ,t]

y(r) ≤ y() +
∫ t

τ

(
ϒ(s) + cL

g
)

sup
r∈[τ ,s]

y(r) ds.

By the Gronwall lemma we finish the proof of uniqueness. �

Proposition  Assume that g ∈ L(τ , T ; V ∗
 ), G : [τ , T] × Cδ(Y) → (L(�)) satisfies as-

sumptions (g)-(g). Let us denote by (u,φ)(·; τ ,ϑ), (u,φ)(·; τ ,ϑ) the weak solutions
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corresponding to the initial data ϑ and ϑ. Then the following continuity properties hold:

max
r∈[τ ,t]

∣
∣(u,φ) – (u,φ)

∣
∣
Y

≤
(

∣
∣ϑ() – ϑ()

∣
∣ +

Lg

δ
‖ϑ – ϑ‖

δ

)

e
∫ t
τ (Lg +ϒ(s)) ds,

∥
∥(u,φ)t – (u,φ)t

∥
∥

δ
≤

(

 +
Lg

δ
‖ϑ – ϑ‖

δ

)

e
∫ t
τ (Lg +ϒ(s)) ds.

Proof Arguing as in the proof of Theorem , we have




dy
dt

≤ ϒ(t)y(t) +
(
G

(
t, (u,φ)t

)
– G

(
t, (u,φ)t

)
,ω

)
,

where

y(t) =
∣
∣(u – u,φ – φ)

∣
∣
Y

=
∣
∣(ω,ψ)

∣
∣
Y

,

ϒ(t) = c
(‖u‖ +

(
 + ‖φ‖)|Aγ φ|L + |u|L‖u‖)

+ Q
(|φ|H , |φ|H

)
.

As

∥
∥(ω,ψ)t

∥
∥

δ
= sup

θ≤
eδθ

∣
∣(ω,ψ)(t + θ )

∣
∣
Y

= max
{

sup
θ∈(–∞,τ–t]

eδθ
∣
∣ϑ(t – τ + θ ) – ϑ(t – τ + θ )

∣
∣
Y

,

sup
θ∈[τ–t,]

eδθ
∣
∣(ω,ψ)(t + θ )

∣
∣
Y

}

≤ max
{

eδ(τ–t)‖ϑ – ϑ‖
δ , max

θ∈[τ ,t]

∣
∣(ω,ψ)(θ )

∣
∣
Y

}
, ()

we conclude that




y ≤ 


y() + Lg‖ϑ – ϑ‖δ

∫ t

τ

eδ(τ–s)∣∣ω(s)
∣
∣ds

+ Lg

∫ t

τ

∣
∣ω(s)

∣
∣ max
θ∈[τ ,t]

∣
∣(ω,ψ)(θ )

∣
∣
Y

ds +
∫ t

τ

ϒ(s)y(s) ds.

Substituting t by r ∈ [τ , t] and considering the maximum when varying this r we can con-
clude that

max
r∈[τ ,t]

y ≤ y() +
Lg

δ
‖ϑ – ϑ‖

δ +
∫ t

τ

(
Lg + ϒ(s)

)
max
r∈[τ ,s]

y(r) ds.

Then by the Gronwall lemma, we get the result:

max
r∈[τ ,t]

∣
∣(u,φ) – (u,φ)

∣
∣
Y

≤
(

∣
∣ϑ() – ϑ()

∣
∣ +

Lg

δ
‖ϑ – ϑ‖

δ

)

e
∫ t
τ (Lg +ϒ(s)) ds. ()

With equations () and (), we get the last inequality. �
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Proposition  Assume that g ∈ L(τ , T ; V ∗
 ), G : [τ , T] × Cδ(Y) → (L(�)) satisfies as-

sumptions (g)-(g). Let us denote (u,φ)(·; s,ϑ) the solution of () with initial time s. Then,
for each t ∈ [τ , T] and ϑ ∈ Cδ(Y) fixed, the mapping s → (u,φ)t(·; s,ϑ) ∈ Cδ(Y), s ∈ [t, τ ] is
continuous.

The method of proof is similar to Proposition  in [].

4 Existence of pullback attractors
In this section we will prove the existence of a pullback attractor for the problem () with
the distributed delay under additional assumptions. We firstly recall some basic defini-
tions and main results that we will use later about properties required of a process for a
non-autonomous dynamical system in order to have a pullback attractor. These results
can be found in [] and [] and here we only reproduce the statements for the sake of
completeness.

Definition  Let X be a complete metric space. A family of mappings {U(t, τ ), t, τ ∈ R, t ≥
τ } ⊂ C(X, X) is said to be a process in X if U(t, τ )U(τ , r) = U(t, r) for any τ ≤ r ≤ t, and
U(τ , τ ) = Id for all τ . The process U(·, ·) is said to be continuous if the mapping (t, τ ) →
U(t, τ )x is continuous for all x ∈ X.

Corollary  Assume that g ∈ L
loc(R; V ∗

 ), G : R× Cδ(Y) → (L(�)) satisfies assumptions
(g)-(g) for any τ < T . Then the bi-parametric family of mappings U(t, τ ) : Cδ(Y) → Cδ(Y)
with t ≥ τ , defined by

U(t, τ )ϑ = (u,φ)t ,

where (u,φ)(·; τ ,ϑ) is the unique weak solution of (), defines a semi-process on Cδ(Y).

Proof The proof is a consequence of Theorem  and Proposition . �

The following result can be obtained analogously to [], Propositions ., . with the
natural changes in the delay norms.

Proposition  Assume that g ∈ L
loc(R; V ∗

 ), G : R × Cδ(Y) → (L(�)) satisfies assump-
tions (g)-(g) for any τ < T . Then for any bounded set B ⊂ Cδ(Y):

() The set weak of weak solutions {(u,φ)(·; τ ,ϑ) : ϑ ∈ B} is bounded in L∞(τ + ε, T ; V )
for any ε >  and any T > τ + ε.

() Moreover, if {ϑ() : ϑ ∈ B} is bounded in V , then {(u,φ)(·; τ ,ϑ) : ϑ ∈ B} is bounded in
L∞(τ , T ;Y) for all T > τ .

Definition  A process U on X is said to be closed if for any τ ≤ t, and any sequence
{xn} ⊂ X with xn → x ∈ X and U(t, τ )xn → y ∈ X, then U(t, τ )x = y.

Let us denote by P(X) the family of all nonempty subsets of X and consider a family of
nonempty sets D̂ = {D(t) : t ∈ R} ⊂ P(X).

Definition  We say that a process U on X is pullback D̂-asymptotically compact if for
any t ∈ R and any sequences {τn} ⊂ (–∞, t] and {xn} ⊂ X satisfying τn → –∞ and xn ∈
D(τn) for all n, the sequence {U(t, τn)xn} is relatively compact in X.
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Denote

�(D̂, t) =
⋂

s≤t

⋃

τ≤s
U(t, τ )D(τ )

X
∀t ∈ R,

where {· · ·}X is the closure in X.
Given A, B ⊂ X we denote by dist(A, B) the Hausdorff semi-distance in X between them,

defined as

dist(A, B) = sup
a∈A

inf
b∈B

d(a, b).

Let D be a nonempty class of families parameterized in time D̂ = {D(t) : t ∈ R} ⊂ P(X).
The class D will be called a universe in P(X).

Definition  A process U on X is said to be pullback D-asymptotically compact if it is
pullback D̂-asymptotically compact for any D̂ ∈ D.

It is said that D̂ = {D(t) : t ∈ R} ⊂ P(X) is pullback D-absorbing for process U on X if
for any t ∈ R and any D̂ ∈ D, there exists a τ(D̂, t) ≤ t such that

U(t, τ )D(τ ) ⊂ D(t) ∀τ ≤ τ(D̂, t).

With the above definitions, we have the main result which is given in [].

Theorem  Consider a closed process U , a universe D in P(X), and a family D̂ = {D(t) :
t ∈ R} ⊂ P(X) which is pullback D-absorbing for U and assume that U is pullback D̂-

asymptotically compact. Then the family A(t) defined by A(t) =
⋃

D̂∈D �(D̂, t)
X

has the fol-
lowing properties:

() For any t ∈ R the set A(t) is a nonempty compact subset of X and A(t) ⊂ �(D̂, t).
() A is pullback D-attracting, i.e. limr→–∞ dist(U(t, τ )D(τ ), A(t)) =  for all D̂ ∈ D and

any t ∈ R.
() A is invariant, i.e. U(t, τ )A(τ ) = A(t) for all (t, τ ) ∈ R.
() If D̂ ∈ D then A(t) = �(D̂, t) ⊂ D(t)

X
for all t ∈ R.

The family A(t) is minimal in the sense that if Ĉ = {C(t) : t ∈ R} ⊂ P(X) is a family of
closed sets such that, for any D̂ = {D(t) : t ∈ R}, limr→–∞ dist(U(t, τ )D(τ ), C(t)) = , then
A(t) ⊂ C(t).

Remark  Under the assumptions of Theorem , the family A(t) is called the minimal
pullback D-attractor for the process U .

Proposition  Let X be a connected metric space. Assume that the semi-process U satisfies
additionally the requirement that for every t and x ∈ X the map τ → U(t, τ )x, τ ∈ (–∞, t]
is continuous. If U possesses a pullback attractor A, then A(t) is connected for every
t ∈ R.
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Theorem  Assume that g ∈ L
loc(R; V ∗

 ), G : R × Cδ(Y) → (L(�)) satisfies (g)-(g) for
any τ < T , (u,φ)(·; τ ,ϑ) is the unique weak solution to (), then the following estimates hold
for all t > τ , and any σ ∈ (,α) such that (α – σ )λ ≤ δ:

∥
∥(u,φ)t

∥
∥

δ
≤ e–((α–σ )λ–Lg )(t–τ )∥∥E(ϑ)

∥
∥

δ

+
∫ t

τ

e–((α–σ )λ–Lg )(t–s)(σ –∥∥g(s)
∥
∥

∗ + c
)

ds, ()

σ

∫ t

τ

∥
∥(u,φ)

∥
∥ ds ≤ eLg (t–τ )∥∥E(ϑ)

∥
∥

δ

+ eLg t–(α–σ )λτ
∫ t

τ

e–((α–σ )λ–Lg )s(σ –∥∥g(s)
∥
∥

∗ + c
)

ds, ()

where c is a positive constant.

Proof Multiplying () with u, () with μ, () with φ and adding the resulting equa-
tions, we derive as the proof of Theorem  that

dE
dt

+ ν‖u‖ + |μ|L = 
〈
u, g(t) + G

(
t, (u,φ)t

)〉
, ()

where

E(t) =
∣
∣(u,φ)(t)

∣
∣
Y

+ 
〈
Fγ

(
φ(t)

)
, 

〉

L + α

and α is a constant large enough to ensure the E(t) is nonnegative.
We can conclude that

dE
dt

+ ν‖u‖ + |μ|L ≤ σ –‖g‖
∗ + σ‖u‖ + Lg

∥
∥(u,φ)t

∥
∥

δ
. ()

Thus,

dE
dt

+ (ν – σ )‖u‖ + |μ|L ≤ σ –‖g‖∗ + Lg
∥
∥(u,φ)t

∥
∥

δ
.

So

dE
dt

+ (ν – σ )λ|u|L + |μ|L ≤ σ –‖g‖∗ + Lg
∥
∥(u,φ)t

∥
∥

δ
.

Set α = ν and as we can choose σ > , such that α > σ and c is a positive constant, then

dE
dt

≤ –(α – σ )λE + σ –‖g‖∗ + Lg
∥
∥(u,φ)t

∥
∥

δ
+ c.

So

E(t) ≤ e–(α–σ )λ(t–τ )E(τ )

+
∫ t

τ

e–(α–σ )λ(s–τ )(σ –‖g‖∗ + Lg
∥
∥(u,φ)s

∥
∥

δ
+ c

)
ds. ()
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Consequently,

‖Et‖δ ≤ max

{

sup
θ∈(–∞,τ–t]

eδθ E
(
ϑ(t + θ – τ )

)
, sup
θ∈[τ–t,]

(

eδθ–(α–σ )λ(t+θ–τ )E(τ )

+ eδθ

∫ t+θ

τ

e–(α–σ )λ(s+θ–τ )(σ –∥∥g(s)
∥
∥

∗ + Lg‖Es‖δ + c
)

ds
)}

.

We assume that, moreover, σ satisfies (α – σ )λ ≤ δ.
On the one hand

sup
θ∈(–∞,τ–t]

eδθ E
(
ϑ(t + θ – τ )

)
= sup

θ≤
eδ(θ–(t–τ ))E

(
ϑ(θ )

)

= e–δ(t–τ )∥∥E(ϑ)
∥
∥

δ
≤ e–(α–σ )λ(t–τ )∥∥E(ϑ)

∥
∥

δ

and on the other hand

sup
θ∈[τ–t,]

eδθ–(α–σ )λ(t+θ–τ )E(τ ) ≤ e–(α–σ )λ(t–τ )E(τ )

and

sup
θ∈[τ–t,]

eδθ

∫ t+θ

τ

e–(α–σ )λ(s+θ–τ )(σ –∥∥g(s)
∥
∥

∗ + Lg‖Es‖δ + c
)

ds

≤
∫ t

τ

e–(α–σ )λ(s–τ )(σ –∥∥g(s)
∥
∥

∗ + Lg‖Es‖δ + c
)

ds

so we get

‖Et‖δ ≤ e–(α–σ )λ(t–τ )∥∥E(ϑ)
∥
∥

δ

+
∫ t

τ

e–(α–σ )λ(t–τ )(σ –∥∥g(s)
∥
∥

∗ + Lg‖Es‖δ + c
)

ds ∀t ≥ τ .

Then by Gronwall’s lemma, we have

∥
∥(u,φ)t

∥
∥

δ
≤ ‖Et‖δ

≤ e–((α–σ )λ–Lg )(t–τ )∥∥E(ϑ)
∥
∥

δ

+
∫ t

τ

e–((α–σ )λ–Lg )(t–s)(σ –∥∥g(s)
∥
∥

∗ + c
)

ds ∀t ≥ τ .

With () and the above equality we get the result (). �

From now on, we will assume that there exist  ≤ σ ≤ α such that Lg ≤ (α – σ )λ ≤ δ

and

∫ 

–∞
eβs(σ –∥∥g(s)

∥
∥

∗ + c
)

ds < +∞, ()
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where

β =
(
(α – σ )λ – Lg

)
.

Remark  If we assume that g ∈ L
loc(R; V ∗

 ), then equation () is equivalent to

∫ t

–∞
e–β(t–s)(σ –∥∥g(s)

∥
∥

∗ + c
)

ds < +∞, ∀t ∈ R.

Corollary  Assume that g ∈ L
loc(R; V ∗

 ), G : R× Cδ(Y) → (L(�)) satisfies assumptions
(g)-(g) for any τ < T and condition () is satisfied, then the family D̂ = {D(t) : t ∈ R},
with D(t) = DCδ (Y)(,ρ(t)), where

ρ(t) =  +
∫ t

–∞
e–β(t–s)(σ –∥∥g(s)

∥
∥

∗ + c
)

ds

is pullback absorbing for bounded sets for the semi-process U .

Proof The proof follows immediately from Theorem . �

Proposition  Under the assumptions of Corollary , the semi-process U is D̂-
asymptotically compact.

Proof Let (um,φm) be a sequence in Theorem , we will prove this sequence is relatively
compact in Cδ(Y).

Let τ(D̂, t, h) < t – h –  be such that

e–β(t–h–)eβτ
∥
∥E(ϑ)

∥
∥

δ
≤  ∀τ ≤ τ(D̂, t, h),ϑ ∈ D(τ ).

Consider fixed τ ≤ τ(D̂, t, h) and ϑ ∈ D(τ ).
Firstly, from the result () of Theorem  and using the definition of the norm ‖ · ‖δ , we

can deduce that

∣
∣(u,φ)t

∣
∣
Y ≤  + e–β(t–h–)

∫ t

–∞
eβs((σλ)–∣∣g(s)

∣
∣ + c

)
ds

� ρ(t) ∀r ∈ [t – h – , t].

Secondly, we derive from Theorem  by integrating () between r –  and r

Em(r) – Em(r – ) + (α – σ )
∫ r

r–

∥
∥um∥

∥ + 
∫ r

r–

∣
∣μm(t)

∣
∣
L dt

≤ σ –‖g‖
∗ + Lg

∫ r

r–

∥
∥
(

um,φm)

s

∥
∥

δ
ds,

then from () and

∣
∣
(

u(t),φ(t)
)∣
∣
Y

≤ E(t) ≤ Q
(∣
∣
(

u(t),φ(t)
)∣
∣
Y

)
,
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where Q is a monotone non-decreasing function independent of the time and the initial
data, we can deduce that

(α – σ )
∫ r

r–

∥
∥um∥

∥ + 
∫ r

r–

∣
∣μm(t)

∣
∣
L dt

≤ σ –‖g‖
∗ + Lg

∫ r

r–

∥
∥
(

um,φm)

s

∥
∥

δ
ds + Em(r – )

≤ σ –‖g‖
∗ + Lg

∫ r

r–

(

e–β(s–τ )∥∥E(ϑ)
∥
∥

δ
+

∫ s

τ

e–β(s–ξ )((σλ)–∣∣g(ξ )
∣
∣)dξ + c

)

ds

+ Q
(∣
∣um(t),φm(t)

∣
∣
Y

)
.

As α – σ > ,
∫ r

r–

(∥
∥um∥

∥ +
∣
∣μm∣

∣
L

)
dt ≤ C.

From μ = εAγ φ + αfγ φ we have

ε
∫ r

r–

∣
∣Aγ φm∣

∣
L dt ≤ c

∫ r

r–

(∣
∣μm∣

∣
L + α

∣
∣fγ φm∣

∣
L

)
dt ≤ C

so
∫ r

r–

(∥
∥um∥

∥ +
∣
∣Aγ φm∣

∣
L

)
dt ≤ C, ()

where C, C and C are constants.
For the rest of the estimates we take the inner product in H of () with Au, the inner

product in L(M) of () with A
γ φ and add the resulting equalities; we get (see [] for

the details) the inner product by integrating between r –  and r,

dY
dt

+ ν
∣
∣Aum∣

∣
L + ε

∣
∣A/

γ φm∣
∣
L ≤ �(t)Y (t) + �(t),

where

Y (t) =
∥
∥um(t)

∥
∥ +

∣
∣Aγ φm(t)

∣
∣
L ,

�(t) = c
(∣
∣Aγ φm(t)

∣
∣
L

∣
∣φm(t)

∣
∣
H +

∣
∣um∣

∣
L

∥
∥um∥

∥),

ϒ(t) = c
(∣
∣f ′

γ (φ)∇φm∣
∣
L + |g|L

)
,

�(t) = ϒ(t) +
∣
∣G

(
t,

(
um,φm)

t

)∣
∣
L .

By integrating between r –  and r and from () we can obtain

Y (r) ≤
(∫ r

r–
Y (s) ds +

∫ r

r–
ϒ(s) ds + L

g

∫ r

r–

∥
∥
(

um,φm)

s

∥
∥

δ
ds

)

× exp

(∫ r

r–
�(s) ds

)

≤
(∫ r

r–
Y (s) ds +

∫ r

r–
ϒ(s) ds + L

g

∫ r

r–

(

e–β(s–τ )∥∥E(ϑ)
∥
∥

δ

+
∫ s

τ

e–β(s–ξ )((σλ)–∣∣g(ξ )
∣
∣)dξ + c

)

ds
)

× exp

(∫ r

r–
�(s) ds

)

.
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Recalling (), () and (), and employing standard Sobolev inequalities, it is easy to check
that there exist positive constants ai, i = , , , such that

∫ r

r–
�(s) ds ≡ a < ∞;

∫ r

r–
ϒ(s) ds ≡ a < ∞,

∫ r

r–
Y (s) ds ≡ a < ∞.

Then we get

Y (r) =
∥
∥um(r)

∥
∥ +

∣
∣Aγ φm(r)

∣
∣
L is bounded ∀r ∈ [t – h – , t].

Letting (u,φ) = (·; t – s,ϑ) we get

∥
∥
(

um,φm)

t

∥
∥
V

is bounded ∀r ∈ [t – h – , t].

Thirdly, we have

ν
∣
∣Aum∣

∣
L + ε

∣
∣A/

γ φm∣
∣
L ≤ –

dY
dt

+ �(t)Y (t) + �(t).

By integrating between r –  and r, we obtain

∫ r

r–

(
ν
∣
∣Aum∣

∣
L + ε

∣
∣A/

γ φm∣
∣
L

)
ds

≤ Y (r – ) +
∫ r

r–

(
�(s)Y (s) + �(s)

)
ds

≤ Y (r – ) +
∫ r

r–

(
�(s)Y (s) + ϒ(s) + L

g
∥
∥
(

um,φm)

s

∥
∥

δ

)
ds.

With () we have

∫ r

r–

(
ν
∣
∣Aum∣

∣
L + ε

∣
∣A/

γ φm∣
∣
L

)
ds is bounded ∀r ∈ [t – h, t].

Similar to the proof of Theorem , we also conclude that

∫ r

r–

∣
∣
∣
∣

d
dt

(
um,φm)

∣
∣
∣
∣



ds is bounded ∀r ∈ [t – h, t]

so (um(t),φm(t)) is bounded in L∞(t – h – , t;Y) ∩ L(t – h – , t;V) with d
dt (um,φm) is

bounded in L(t – h – , t;V∗
 ) × L(t – h – , t;V∗

 ) and for a subsequence (relabeled the
same) the following convergences hold:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(um,φm)
∗

⇀ (u,φ) weakly star in L∞(t – h – , t;Y),

(um,φm) ⇀ (u,φ) weakly in L(t – h – , t;V),
d
dt (um,φm) ⇀ d

dt (u,φ) weakly in L(t – h – , t; V ∗
 ) × L(t – h – , t; V ∗

 ),

(um,φm) → (u,φ) strongly in L(t – h – , t;Y),

(um(t),φm(t)) → (u(t),φ(t)) a.e., t ∈ (t – h – , t).
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Then the following proof can be obtained analogously to Step  of Theorem . To avoid
unnecessary repetition, we skip the proof. �

Theorem  Assume that g ∈ L
loc(R; V ∗

 ), G : R× Cδ(Y) → (L(�)) satisfies assumptions
(g)-(g) for any τ < T . Also, suppose that Lg ≤ (α –σ )λ. Then the semi-process U defined
in Cδ(Y) associated to () has a pullback attractor A = {A(t)}. Moreover, every A(t) is
connected in Cδ(Y).

Proof The existence of the pullback attractor is a direct consequence of Theorem , Corol-
lary , Corollary  and Proposition . The connectedness follows from Propositions  and
 and the fact that the space Cδ(Y) is connected. �

Acknowledgements
The paper was supported by the Fundamental Research Funds for the Central Universities (2013B07314). The author also
wants to thank the anonymous referees for their valuable comments on the paper.

Competing interests
The author declares that there is no competition of interests regarding the publication of this paper.

Authors’ contributions
The author wrote the paper and approved the final manuscript.

Authors’ information
Min Yang (1978-), female, lecturer, engaged in the research of numerical solution of partial differential equations.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 16 February 2017 Accepted: 3 August 2017

References
1. Anderson, DM, McFadden, GB, Wheeler, AA: Diffuse-interface methods in fluid mechanics. Annu. Rev. Fluid Mech.

30(1), 139-165 (1998)
2. Feng, JJ, Liu, C, Shen, J, Yue, P: An energetic variational formulation with phase field methods for interfacial dynamics

of complex fluids. In: Advantages and Challenges, vol. 141, pp. 1-26. Springer, New York (2005)
3. Blesgen, T: A generalization of the Navier-Stokes equation to two-phase flows. J. Appl. Phys. 32(10), 1119-1123 (1999)
4. Feireisl, E, Petzeltova, H, Rocca, E, Schimperna, G: Analysis of a phase-field model for two-phase compressible fluids.

Math. Models Methods Appl. Sci. 20(7), 1129-1160 (2010)
5. Gal, CG, Grasselli, M: Longtime behavior for a model of homogeneous incompressible two-phase flows. Discrete

Contin. Dyn. Syst. 28(1), 1-39 (2010)
6. Gal, CG, Grasselli, M: Asymptotic behavior of a Cahn-Hilliard-Navier-Stokes system in 2D. Ann. Inst. Henri Poincaré,

Anal. Non Linéaire 27(1), 401-436 (2010)
7. Medjo, TT: Pullback attractors for a non-autonomous homogeneous two-phase flow model. J. Differ. Equ. 253(6),

1779-1806 (2012)
8. Caraballo, T, Real, J: Attractors for 2D-Navier-Stokes models with delays. J. Differ. Equ. 205(2), 271-297 (2004)
9. Marín-Rubio, P, Real, J, Valero, J: Pullback attractors for a two-dimensional Navier-Stokes model in an infinte delay

case. Nonlinear Anal. 74(5), 2012-2030 (2011)
10. García-Luengo, J, Marín-Rubio, P, Real, J: Regularity of pullback attractors and attraction in H1 in arbitrarily large finite

intervals for 2D Navier-Stokes equations with infinite delay. Discrete Contin. Dyn. Syst. 34(1), 181-201 (2014)
11. Medjo, TT: A two-phase flow model with delays. Discrete Contin. Dyn. Syst. 21, 2263-2285 (2016)
12. Medjo, TT: Attractors for a two-phase flow model with delays. Differ. Integral Equ. 29, 1071-1092 (2016)
13. Temam, R: Infinite dimensional dynamical systems in mechanics and physics. Appl. Math. Sci. 68(5), 2135-2143 (2000)
14. Kloeden, PE, Schmalfuss, B: Nonautonomous systems, cocycle attractors and variable time-step discretization.

Numer. Algorithms 14(1), 141-152 (1997)
15. Kloeden, PE, Stonier, DJ: Cocycle attractors in nonautonomously perturbed differential equations. Dyn. Contin.

Discrete Impuls. Syst. 4, 211-226 (1998)
16. García-Luengo, J, Marín-Rubio, P, Real, J: Pullback attractors in V for non-autonomous 2D-Navier-Stokes equations and

their tempered behaviour. J. Differ. Equ. 252(8), 4333-4356 (2012)


	Pullback attractors for a two-phase ﬂow model in an inﬁnite delay case
	Abstract
	Keywords

	Introduction
	A two-phase ﬂow model
	Existence of solutions
	Existence of pullback attractors
	Acknowledgements
	Competing interests
	Authors' contributions
	Authors' information
	Publisher's Note
	References


