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Abstract
We discuss the existence and uniqueness of solutions for a nonlocal three-point
boundary value problem of sequential fractional differential equations on an arbitrary
interval [ξ ,ζ ],ξ ,ζ ∈R. Our results rely on standard fixed point theorems and are well
illustrated with examples. The case for non-homogeneous three-point boundary
conditions is also discussed.
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1 Introduction
During the last few decades, non-integer (arbitrary) order calculus has evolved into an
interesting and useful area of research in view of the extensive application of its model-
ing tools in applied and technical sciences. Nowadays, fractional-order differential and
integral operators, which are nonlocal in nature, appear in mathematical models of many
real world phenomena such as anomalous diffusion, ecological effects, blood flow issues,
spreading of disease, control processes, etc. Wide-spread application of fractional calcu-
lus has motivated many researchers to develop the theoretical aspects of this branch of
mathematical analysis. In particular, there has been shown a great interest in the study of
fractional-order boundary value problems (FBVPs). The literature on FBVPs is now much
enriched and contains a variety of interesting results involving different kinds of bound-
ary conditions. For application details and theoretical development, we refer the reader to
[–] and the references cited therein.

In a recent article [], the author studied a two-point fractional-order boundary value
problem (BVP) on an arbitrary interval. Motivated by [], we investigate a three-point
boundary value problem of sequential fractional differential equations given by

(cDβ+ + κcDβ
)
x(t) = φ

(
t, x(t)

)
,  < β < ,κ > , ξ < t < ζ , (.)

x(ξ ) = , x(η) = , x(ζ ) = , –∞ < ξ < η < ζ < ∞, (.)
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where cDβ denotes the Caputo fractional derivative of order β , φ is a given continuous
function and κ , ξ , ζ ,η are real constants. New existence and uniqueness results for the
problem (.)-(.) are obtained in Section . The non-homogeneous boundary condition
case is briefly described in Sections . It is imperative to note that the results obtained in
this paper are general in the sense that they correspond to any specific interval by fixing
ξ , ζ ∈R.

Definition . ([]) The Caputo derivative of order α for a function ϕ : [ξ ,∞) →R with
ϕ(t) ∈ Cn[,∞) is defined by

cDαϕ(t) =



(n – α)

∫ t

ξ

ϕ(n)(s)
(t – s)α+–n ds = In–αϕ(n)(t), t > ξ , n –  < α < n,

where

Iqχ (t) =



(q)

∫ t

ξ

χ (s)
(t – s)–q ds, t > ξ ,

is called Riemann-Liouville fractional integral of order q >  (q = n – α) for a function
χ : [,∞) →R if the integral involved is point-wise defined on [,∞).

Property . It has been shown in [] that

IαcDαϕ(t) = ϕ(t) – c – c(t – ξ ) – · · · – cn–(t – ξ )n–, t > ξ , n –  < α < n, (.)

where ci (i = , . . . , n – ) are arbitrary constants.

The following lemma dealing with the linear variant of the problem (.)-(.) plays a
key role in the forthcoming analysis.

Lemma . For any y ∈ C[ξ , ζ ], the solution of the linear sequential fractional differential
equation

(cDβ+ + κcDβ
)
x(t) = y(t),  < β < , ξ < t < ζ ,κ > , (.)

supplemented with the three-point boundary conditions (.) is given by

x(t) =
∫ t

ξ

e–κ(t–s)
(∫ s

ξ

(s – u)β–


(β)
y(u) du

)
ds

+ σ(t)
∫ η

ξ

e–κ(η–s)
(∫ s

ξ

(s – u)β–


(β)
y(u) du

)
ds

+ σ(t)
∫ ζ

ξ

e–κ(ζ–s)
(∫ s

ξ

(s – u)β–


(β)
y(u) du

)
ds, (.)

where

σ(t) =
λρ(t) – λρ(t)

μ
, σ(t) =

λρ(t) – λρ(t)
μ

, (.)
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ρ(t) = κ
(
 – e–κ(t–ξ )), ρ(t) = κ(t – ξ ) + e–κ(t–ξ ) – , (.)

μ = λλ – λλ �= , (.)

λ = κ
(
 – e–κ(η–ξ )), λ = κ(η – ξ ) + e–κ(η–ξ ) – ,

λ = κ
(
 – e–κ(ζ–ξ )), λ = κ(ζ – ξ ) + e–κ(ζ–ξ ) – . (.)

Proof Applying the operator Iβ on (.) and using the Property ., we get

Iβ
[cDβ (D + κ)x(t)

]
= Iβy(t),

which, taking into account (.), yields

(D + κ)x(t) =
∫ t

ξ

(t – s)β–


(β)
y(s) ds + c + c(t – ξ ), (.)

where c, c are arbitrary constants. Rewriting (.) as

D
(
eκtx(t)

)
= eκt

(∫ t

ξ

(t – s)β–


(β)
y(s) ds + c + c(t – ξ )

)
,

and then integrating from ξ to t, we get

eκtx(t) – eκξ x(ξ ) =
∫ t

ξ

eκs
(∫ s

ξ

(s – u)β–


(β)
y(u) du + c + c(s – ξ )

)
ds.

Using x(ξ ) =  and completing the integration, we get

x(t) =
∫ t

ξ

e–κ(t–s)
(∫ s

ξ

(s – u)β–


(β)
y(u) du

)
ds

+
c

κ

[
 – e–κ(t–ξ )] +

c

κ

[
κ(t – ξ ) + e–κ(t–ξ ) – 

]
. (.)

Making use of the conditions x(η) =  and x(b) =  in (.), we obtain

λc + λc = –κ
∫ η

ξ

e–κ(η–s)
(∫ s

ξ

(s – u)β–


(β)
y(u) du

)
ds, (.)

λc + λc = –κ
∫ ζ

ξ

e–κ(ζ–s)
(∫ s

ξ

(s – u)β–


(β)
y(u) du

)
ds. (.)

Solving the system (.)-(.), we find that

c =
κ

μ

[
λ

∫ η

ξ

e–κ(η–s)
(∫ s

ξ

(s – u)β–


(β)
y(u) du

)
ds

– λ

∫ ζ

ξ

e–κ(ζ–s)
(∫ s

ξ

(s – u)β–


(β)
y(u) du

)
ds

]
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and

c =
κ

μ

[
λ

∫ ζ

ξ

e–κ(ζ–s)
(∫ s

ξ

(s – u)β–


(β)
y(u) du

)
ds

– λ

∫ η

ξ

e–κ(η–s)
(∫ s

ξ

(s – u)β–


(β)
y(u) du

)
ds

]
,

where we have used (.). Inserting the values of c, c in (.) and using the notations
(.)-(.) completes the solution (.). By direct computation, one can establish the con-
verse of this lemma. The proof is completed. �

2 Main results
By Lemma ., the problem (.)-(.) can be transformed into a fixed point problem as

x = Gx, (.)

where the operator G : X →X is defined by

(Gx)(t) =
∫ t

ξ

e–κ(t–s)(Iβφ
(
s, x(s)

))
ds + σ(t)

∫ η

ξ

e–κ(η–s)(Iβφ
(
s, x(s)

))
ds

+ σ(t)
∫ ζ

ξ

e–κ(ζ–s)(Iβφ
(
s, x(s)

))
ds,

Iβφ
(
t, x(t)

)
=



(β)

∫ t

ξ

φ(s, x(s))
(t – s)–β

ds,

σ, σ are defined by (.). HereX = C([ξ , ζ ],R) denotes the Banach space of all continuous
functions from [ξ , ζ ] →R equipped with the norm ‖x‖ = sup {|x(t)| : t ∈ [ξ , ζ ]}.

For the sake of computational convenience, we set the notation

σ̂ = max
t∈[ξ ,ζ ]

∣
∣σ(t)

∣
∣, σ̂ = max

t∈[ξ ,ζ ]

∣
∣σ(t)

∣
∣, (.)

δ =


κ
(β + )
{

( + σ̂)(ζ – ξ )β
(
 – e–κ(ζ–ξ )) + σ̂(η – ξ )β

(
 – e–κ(η–ξ ))}, (.)

δ = δ –
(ζ – ξ )β ( – e–κ(ζ–ξ ))

κ
(β + )
. (.)

In the forthcoming work, we need the following assumptions:

(H) |φ(t, x) – φ(t, y)| ≤ �|x – y|, for all t ∈ [ξ , ζ ], x, y ∈R, � > ;
(H) |φ(t, x)| ≤ ϑ(t), for all (t, x) ∈ [ξ , ζ ] ×R and ϑ ∈ C([ξ , ζ ],R+).

Now we present our first existence result for the problem (.)-(.), which relies on
Krasnoselskii’s fixed point theorem [].

Theorem . Let φ : [ξ , ζ ] × R → R be a continuous function satisfying the conditions
(H) and (H). Then there exists at least one solution for the problem (.)-(.) on [ξ , ζ ] if

�δ < , (.)

where δ is defined by (.).
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Proof Setting supt∈[ξ ,ζ ] |ϑ(t)| = ‖ϑ‖, we fix

� ≥ ‖ϑ‖
κ
(β + )

{
(ζ – ξ )β

(
 – e–κ(ζ–ξ ))

+ (ζ – ξ )β
(
 – e–κ(ζ–ξ ))σ̂ + (η – ξ )β

(
 – e–κ(η–ξ ))σ̂

}
, (.)

and we consider B� = {x ∈ X : ‖x‖ ≤ �}. Introduce the operators G and G on B� as fol-
lows:

(Gx)(t) =
∫ t

ξ

e–κ(t–s)(Iβφ
(
s, x(s)

))
ds, (.)

(Gx)(t) = σ(t)
∫ η

ξ

e–κ(η–s)(Iβφ
(
s, x(s)

))
ds

+ σ(t)
∫ ζ

a
e–κ(ζ–s)(Iβφ

(
s, x(s)

))
ds.

Observe that G = G + G. Now we verify the hypotheses of Krasnoselskii’s fixed point
theorem in the following steps.

(i) For x, y ∈ B� , we have

‖Gx + Gy‖
= sup

t∈[ξ ,ζ ]

∣∣(Gx)(t) + (Gy)(t)
∣∣

≤ sup
t∈[ξ ,ζ ]

{∫ t

ξ

e–κ(t–s)(Iβ
∣∣φ

(
s, x(s)

)∣∣)ds +
∣∣σ(t)

∣∣
∫ η

ξ

e–κ(η–s)(Iβ
∣∣φ

(
s, x(s)

)∣∣)ds

+
∣
∣σ(t)

∣
∣
∫ ζ

ξ

e–κ(ζ–s)(Iβ
∣
∣φ

(
s, x(s)

)∣∣)ds
}

≤ ‖ϑ‖ sup
t∈[ξ ,ζ ]

{
(t – ξ )β


(β + )

∫ t

ξ

e–κ(t–s) ds

+
∣
∣σ(t)

∣
∣ (η – ξ )q


(β + )

∫ η

ξ

e–κ(η–s) ds +
∣
∣σ(t)

∣
∣ (ζ – ξ )β


(β + )

∫ ζ

ξ

e–κ(ζ–s) ds
}

≤ ‖ϑ‖
κ
(β + )

{
(ζ – ξ )β

(
 – e–κ(ζ–ξ ))

+ (ζ – ξ )β
(
 – e–κ(ζ–ξ ))σ̂ + (η – ξ )β

(
 – e–κ(η–ξ ))σ̂

} ≤ �,

where we have used (.). Thus Gx + Gy ∈ B� .
(ii) Using the assumption (H) together with (.), it is easy to show that G is a contrac-

tion.
(iii) Using the continuity of φ, it is easy to show that the operator G is continuous. Fur-

ther, G is uniformly bounded on B� as

‖Gx‖ = sup
t∈[ξ ,ζ ]

∣∣(Gx)(t)
∣∣ ≤ ‖ϑ‖(ζ – ξ )β


(β + )
(
 – e–κ(ζ–ξ )).
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In order to establish that G is compact, we define sup(t,x)∈[ξ ,ζ ]×B�
|φ(t, x)| = φ. Thus, for

ξ < t < t < ζ , we have

∣∣(Gx)(t) – (Gx)(t)
∣∣

=
∣
∣∣
∣

∫ t

ξ

[
e–κ(t–s) – e–κ(t–s)]

(∫ s

ξ

(s – u)β–


(β)
φ
(
u, x(u)

)
du

)
ds

+
∫ t

t

e–κ(t–s)
(∫ s

ξ

(s – u)β–


(β)
φ
(
u, x(u)

)
du

)
ds

∣
∣∣
∣

≤ φ

κ
(β + )
{


(
 – e–κ(t–t)) +

∣∣e–κ(t–ξ ) – e–κ(t–ξ )∣∣} →  as t → t,

independent of x. This shows that G is relatively compact on B� . As all the conditions of
the Arzelá-Ascoli theorem are satisfied, so G is compact on B� . In view of steps (i)-(iii),
the conclusion of Krasnoselskii’s fixed point theorem applies and hence there exists at least
one solution for the problem (.)-(.) on [ξ , ζ ]. �

Remark . Interchanging the roles of the operators G and G in the foregoing result, we
can obtain a second result by requiring the condition:

�

κ
(β + )
(ζ – ξ )β

(
 – e–κ(ζ–ξ )) < ,

instead of (.).

In the next result, we establish the uniqueness of solutions for the problem (.)-(.).

Theorem . Let φ : [ξ , ζ ] × R → R be a continuous function such that the assumption
(H) holds with �– > δ, where δ is given by (.). Then the problem (.)-(.) has a unique
solution on [ξ , ζ ].

Proof Let us define supt∈[ξ ,ζ ] |φ(t, )| = φm and select r ≥ δφm
–�δ

to establish that GEr ⊂ Er ,
where Er = {x ∈X : ‖x‖ ≤ r} and G is defined by (.). Using the condition (H), we have

∣∣φ(t, x)
∣∣ =

∣∣φ(t, x) – φ(t, ) + φ(t, )
∣∣ ≤ ∣∣φ(t, x) – φ(t, )

∣∣ +
∣∣φ(x, )

∣∣

≤ �‖x‖ + φm ≤ �r + φm. (.)

Then, for x ∈ Er , we obtain

∥∥G(x)
∥∥ = sup

t∈[ξ ,ζ ]

∣∣G(x)(t)
∣∣

≤ sup
t∈[ξ ,ζ ]

{∫ t

ξ

e–κ(t–s)
(∫ s

ξ

(s – u)β–


(β)
∣
∣φ

(
u, x(u)

)∣∣du
)

ds

+
∣
∣σ(t)

∣
∣
∫ η

ξ

e–κ(η–s)
(∫ s

a

(s – u)β–


(q)
∣
∣φ

(
u, x(u)

)∣∣du
)

ds

+
∣∣σ(t)

∣∣
∫ ζ

ξ

e–κ(ζ–s)
(∫ s

ξ

(s – u)β–


(β)
∣∣φ

(
u, x(u)

)∣∣du
)

ds
}
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≤ (�r + φm) sup
t∈[ξ ,ζ ]

{∫ t

ξ

e–κ(t–s) (s – u)β


(β + )
ds

+
∣∣σ(t)

∣∣
∫ η

ξ

e–κ(η–s) (s – u)β


(β + )
ds +

∣∣σ(t)
∣∣
∫ ζ

ξ

e–κ(ζ–s) (s – u)β


(β + )
ds

}

≤ (�r + φm)
κ
(β + )

{
(ζ – ξ )β

(
 – e–κ(ζ–ξ ))

+ (ζ – ξ )β
(
 – e–κ(ζ–ξ ))σ̂ + (η – ξ )β

(
 – e–κ(η–ξ ))σ̂

}

= (�r + φm)δ ≤ r.

This shows that Gx ∈ Er , x ∈ Er . Thus GEr ⊂ Er . Now we show that G is a contraction. For
this purpose, let x, y ∈X . Then, for each t ∈ [ξ , ζ ], we have

∥∥(Gx) – (Gy)
∥∥ ≤ sup

t∈[ξ ,ζ ]

{∫ t

ξ

e–κ(t–s)
(∫ s

ξ

(s – u)β–


(β)
∣∣φ

(
u, x(u)

)
– φ

(
u, y(u)

)∣∣du
)

ds

+
∣
∣σ(t)

∣
∣
∫ η

ξ

e–κ(η–s)
(∫ s

ξ

(s – u)β–


(β)
∣
∣φ

(
u, x(u)

)
– φ

(
u, y(u)

)∣∣du
)

ds

+
∣∣σ(t)

∣∣
∫ ζ

ξ

e–κ(ζ–s)
(∫ s

ξ

(s – u)β–


(β)
∣∣φ

(
u, x(u)

)
– φ

(
u, y(u)

)∣∣du
)

ds
}

≤ � sup
t∈[ξ ,ζ ]

{∫ t

ξ

e–κ(t–s) (s – u)β


(β + )
ds +

∣∣σ(t)
∣∣
∫ η

ξ

e–κ(η–s) (s – u)β


(β + )
ds

+
∣
∣σ(t)

∣
∣
∫ ζ

ξ

e–κ(ζ–s) (s – u)β


(β + )
ds

}
‖x – y‖

≤ �


κ
(β + )
{

(ζ – ξ )β
(
 – e–κ(ζ–ξ ))

+ (ζ – ξ )β
(
 – e–κ(ζ–ξ ))σ̂ + (η – ξ )β

(
 – e–κ(η–ξ ))σ̂

}‖x – y‖
= �δ‖x – y‖,

which, in view of the given conditions �– > δ, implies that G is a contraction. In conse-
quence, it follows by the contraction mapping principle that there exists a unique solution
for the problem (.)-(.) on [ξ , ζ ]. �

Example . Consider the sequential fractional differential equation

(cD

 +c D



)
x(t) =

( |x|
 + |x| + tan– x(t)

)
A


√

t + 
+ sin t,  < t < , (.)

supplemented with the boundary conditions:

x() = , x(/) = , x() = . (.)

Here, β = /, κ = , η = /, ξ = , ζ = , A is a positive constant to be determined later
and

φ(t, x) =
( |x|

 + |x| + tan– x
)

A

√

t + 
+ sin t.
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Clearly |φ(t, x) – φ(t, y)| ≤ (A/)|x – y| with � = A/. Using the given values, it is found
that δ = . and δ = . (δ and δ are, respectively, given by (.) and (.)).
It is easy to check that |f (t, x)| ≤  + A( + π )/(

√
t + ) = ϑ(t) and �δ <  when A <

.. As all the conditions of Theorem . hold true, therefore the conclusion of The-
orem . applies to the problem (.)-(.) on [, ]. On the other hand, �δ <  whenever
A < .. Thus there exists a unique solution for problem (.)-(.) on [, ] by The-
orem ..

Remark . We can formulate several existence results for the problem (.)-(.) by as-
suming different conditions on the nonlinear function involved in the problem by apply-
ing different tools of the fixed point theory. For instance, there exists at least one solu-
tion for the problem (.)-(.) on [ξ , ζ ] if |φ(t, x)| ≤ p̂(t)ψ̂(‖x‖) for each (t, x) ∈ [ξ , ζ ] ×R

and that M[ψ̂(M)‖̂p‖δ]– > , where ψ̂ : [,∞) → (,∞) is a continuous nondecreasing
function, p̂ ∈ C([ξ , ζ ],R+), M is a positive constant and δ is defined by (.). This result
can be established by applying nonlinear alternative for single valued maps []. We can
also obtain an existence result by applying Leray-Schauder’s degree theory by assuming
φ : [ξ , ζ ] × R → R to be a continuous function such that |φ(t, x)| ≤ � |x| + M for all
(t, x) ∈ [ξ , ζ ] ×R,  ≤ � < δ–, M > .

3 Non-homogeneous boundary conditions
In this section we consider a three-point boundary value problem of sequential fractional
differential equations with non-homogeneous boundary conditions given by

(cDβ+ + κcDβ
)
x(t) = φ

(
t, x(t)

)
,  < β < ,κ > , ξ < t < ζ , (.)

x(ξ ) = ω, x(η) = ω, x(ζ ) = ω, –∞ < ξ < η < ζ < ∞, (.)

where ωi, i = , ,  are real constants.
As before we formulate the following lemma for the linear variant of the problem (.)-

(.).

Lemma . For any y ∈ C[ξ , ζ ], the solution of the linear sequential fractional differential
equation (cDβ+ +κcDβ )x(t) = y(t),  < β < , ξ < t < ζ ,κ >  supplemented with (.) is given
by

x(t) =
∫ t

ξ

e–κ(t–s)(Iβy(s)
)

ds + ωe–κ(t–ξ )

+ σ(t)
{∫ η

ξ

e–κ(η–s)(Iβy(s)
)

ds +
(
ωe–κ(η–ξ ) – ω

)}

+ σ(t)
{∫ ζ

ξ

e–κ(ζ–s)(Iβy(s)
)

ds +
(
ωe–κ(ζ–ξ ) – ω

)
}

,

where σ,σ are defined by (.).
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In view of Lemma ., we introduce an operator Ĝ : X →X associated with the problem
(.)-(.) as follows:

(Ĝx)(t) =
∫ t

ξ

e–κ(t–s)(Iβφ
(
s, x(s)

))
ds + ωe–κ(t–ξ )

+ σ(t)
{∫ η

ξ

e–κ(η–s)(Iβφ
(
s, x(s)

))
ds +

(
ωe–κ(η–ξ ) – ω

)}

+ σ(t)
{∫ ζ

ξ

e–κ(ζ–s)(Iβφ
(
s, x(s)

))
ds +

(
ωe–κ(ζ–ξ ) – ω

)}
.

Also we have

δ̂ =


κ
(β + )
{

( + σ̂)
(
(ζ – ξ )β

(
 – e–κ(ζ–ξ )) + ωe–κ(ζ–ξ ))

+ σ̂
(
(η – ξ )β

(
 – e–κ(η–ξ )) + ωe–κ(η–ξ )) – σ̂ω – σ̂ω

}
,

where σ̂ and σ̂ define by (.).
As in Section , we can obtain the existence results for the problem (.)-(.) with the

aid of the operator Ĝ : X →X and the constant δ̂ defined above.
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